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Problem Set 4

Instructions:
The topics for this problem set are:

Unit 6 – Rademacher Complexity.
Unit 7 – Covering Numbers and Chaining.

Before you start, make sure you are familiar with the course’s Homework Policy.

1. Let X be a nonempty set, and let F and G be a classes of functions X → [−1, 1]. Prove
the following properties of the Rademacher complexity.

(a) Boundedness. Radm(F) ≤ supf∈F supx∈X |f(x)|. [1 pt]
(b) Singleton. If |F| = 1 then Radm(F) = 0. [1 pt]
(c) Monotonicity. If F ⊆ G then Radm(F) ≤ Radm(G). [1 pt]
(d) Linear combination. Radm(F + G) = Radm(F) + Radm(G), where

F + G = {f + g : f ∈ F ∧ g ∈ G}. [2 pts]

(e) Scaling. ∀c ∈ R : Radm(cF) = |c|Radm(F). [2 pts]
(f) Convex hull. Assume F = {f1, . . . , fn}. Then

ConvexHull(F) =
{

n∑
i=1

αifi
∣∣ ∀i ∈ [m] : αi ∈ [0, 1] ∧

n∑
i=1

αi ≤ 1
}

satisfies Radm(ConvexHull(F)) = Radm(F). [2 pts]

2. Let F be a class of functions X → {0, 1}, and let D be a distribution over X . Prove that

RadD,m(F) ≤
√

2VCEntD,F (m)
m

. [10 pts]

(Roughly, this shows that learning bounds obtained using Rademacher complexity will be
at least as good as bounds obtained using VC entropy.)

3. Let m ∈ N, let A ⊆ {0, 1}m and let ρ(x, y) = ‖x− y‖2. Prove that for any ε ∈ [0, 1],

Rad(A) ≤ 4ε+ 12√
m

∫ 1

ε

√
ln (N(A, ε, ρ)) dε. [16 pts]

4. In this question we show that ε-covering numbers can be roughly understood as being
the number of bits necessary to specify any given point in a metric space upto precision
ε. Formally, consider the following definition.

I Definition 1. Let (Ω, ρ) be a metric space, let n ∈ N and let ε ≥ 0. An encoding of
(Ω, ρ) with length n and precision ε is a function f : {0, 1}n → Ω such that

∀x ∈ Ω ∃w ∈ {0, 1}n : ρ(x, f(w)) ≤ ε.

I Notation 2. Let EncodingLength(Ω, ρ, ε) denote the integer

min
{
n ∈ N

∣∣ ∃ f : f is an encoding of (Ω, ρ) with length n and precision ε
}
.
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Prove that for any metric space (Ω, ρ) and any ε ≥ 0,

log2 N(Ω, ρ, ε) ≤ EncodingLength(Ω, ρ, ε) ≤ dlog2 M(Ω, ρ, ε)e. [10 pts]

5. Let F be the set of monotone non-decreasing functions R→ [0, 1]. Let x1, . . . , xm ∈ R.
Consider the pseudo-metric space (F , ρ) where ρ(f, g) = maxi∈[m] |f(xi) − g(xi)|. Let
ε > 0 and k =

⌈ 1
ε

⌉
.

(a) Show that Nin(F , ρ, ε) ≤ km. [5 pts]

(b) Show that Nin(F , ρ, ε) ≤ (m+ 1)k. [10 pts]

6. In this question we will prove the following theorem from Unit 6.

I Theorem 3 (McDiarmid’s Inequality). Let Ω be a set and let f : Ωm → R be a function.
Assume there exist c1, . . . , cm ∈ R such that f satisfies the following bounded differences
property:

∀x1, . . . , xm, x
′
1, . . . , x

′
m ∈ Ω ∀i ∈ [m] :
|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x

′
i, . . . , xm)| ≤ ci.

Let X1, . . . , Xm be independent random variables taking values in Ω. Assume that
E [|f(X1, . . . , Xm)|] <∞. Then for any ε > 0,

P
[
f(X1, . . . , Xm)− E [f(X1, . . . , Xm)] ≥ ε

]
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
and

P
[
E [f(X1, . . . , Xm)]− f(X1, . . . , Xm) ≥ ε

]
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

We will use the following definitions.

I Notation 4. Let v1, v2, . . . be a sequence. For any two indices i, j, we write vi:j to
denote the sub-sequence vi, vi+1, . . . , vj . If i > j then vi:j is an empty sequence.

I Definition 5. Let X1, . . . , Xm and Z0, Z1, . . . , Zm be random variables. We say that
Z0:m is a martingale with respect to X1:m if the following conditions hold:

(i) ∀i ∈ {0, . . . ,m} : E [|Zi|] <∞.
(ii) ∀i ∈ {0, . . . ,m} : Zi is a deterministic function of X1:i. (In particular, Z0 is

constant.)
(iii) ∀i ∈ {1, . . . ,m} : E [Zi | X1:i−1] = Zi−1.

In other words, a martingale is a sequence of random variables where the differences
between consecutive variables are independent and each difference has expectation 0. An
example of a martingale is a random walk Z0:m such that Z0 = 0 and for each i ∈ [m],
Zi = Zi−1 +Xi, where X1:m is a sequence of random variables chosen independently and
uniformly from {−1, 1}.

(a) Prove the following lemma.
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I Lemma 6. Let m ∈ N. Let Z0:m be a martingale with respect to X1:m. Suppose
there exist real numbers σ1:m such that for each i ∈ [m], the difference Di = Zi−Zi−1
is conditionally sub-Gaussian with variance factor σ2

i , namely

∀λ ∈ R : lnE
[
eλDi | X1:i−1

]
≤ λ2σ2

i

2 .

Then Zm − Z0 is sub-Gaussian with variance factor σ2 =
∑m
i=1 σ

2
i .

[10 pts]

Hint: Proceed by induction on m.

(b) In the context of Theorem 3, denote Zi = E [f(X1, . . . , Xm) | X1:i] for all i ∈
{0, . . . ,m}. Prove that Z0:m is a martingale with respect to X1:m. [10 pts]

Hint: You may use without proof the following version of the law of total expectation:
for any real valued random variable Q and random variables A,B,

E
[
E [Q | A,B] | A

]
= E [Q | A] (a.s.).

(c) Let Z0:m be as in (6b). Prove that for each i ∈ [m], the difference Di = Zi − Zi−1 is
conditionally sub-Gaussian with variance factor c2

i/4. [10 pts]

(d) Prove Theorem 3. [5 pts]

(e) Consider the special case where: (1) f(X1, . . . , Xm) = 1
m

∑m
i=1 Xi; and (2) X1:m are

i.i.d. with a, b, µ ∈ R such that for all i ∈ [m], E [Xi] = µ and P [Xi ∈ [a, b]] = 1.

Use Theorem 3 to derive an upper bound on P
[∣∣ 1
m

∑m
i=1 Xi − µ

∣∣ ≥ ε]. How does
this bound compare with Hoeffding’s inequality? [5 pts]
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