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Problem Set 4

Instructions:
The topics for this problem set are:
Unit 6 — Rademacher Complexity.
Unit 7 — Covering Numbers and Chaining.
Before you start, make sure you are familiar with the course’s Homework Policy.

1. Let X be a nonempty set, and let F and G be a classes of functions X — [—1,1]. Prove
the following properties of the Rademacher complexity.

(a) Boundedness. Rad,,(F) < sup;czsup,cx | f(@)]- [1 pt]
(b) Singleton. If |F| =1 then Rad,,(F) = 0. [1 pt]
(c) Monotonicity. If F C G then Rad,,(F) < Rad,,(G). [1 pt]
(d) Linear combination. Rad,,(F + G) = Rad,,(F) + Rad,,(G), where

F+G={f+g: feF N geg}. [2 pts]
(e) Scaling. Ve € R: Rad,,(cF) = |c|Rad, (F). [2 pts]

(f) Convex hull. Assume F = {f1,..., fn}. Then

ConvexHull(F) = {Zaiﬁ; | Vie[m]: a; €[0,1] A Zozi < 1}
i=1 i=1

satisfies Rad,, (ConvexHull(F)) = Rad,, (F). [2 pts]
2. Let F be a class of functions X — {0, 1}, and let D be a distribution over X. Prove that

2VCEntD,}-(m)

m

Radp ., (F) < [10 pts]

(Roughly, this shows that learning bounds obtained using Rademacher complexity will be
at least as good as bounds obtained using VC entropy.)
3. Let m e N, let A C{0,1}™ and let p(x,y) = ||z — yl||2. Prove that for any ¢ € [0, 1],

Rad(A4) < 4e + %/E VIn(N(A, e, p)) de. [16 pts]

4. In this question we show that e-covering numbers can be roughly understood as being
the number of bits necessary to specify any given point in a metric space upto precision
€. Formally, consider the following definition.

» Definition 1. Let (2, p) be a metric space, let n € N and let ¢ > 0. An encoding of
(Q, p) with length n and precision € is a function f: {0,1}"™ — Q such that

Ve e Q Jw e {0,1}": p(x, f(w)) <e.

> Notation 2. Let Encodinglength(£, p,e) denote the integer

min {n € N | 3 f: f is an encoding of (£, p) with length n and precision £} .
1
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Prove that for any metric space (€, p) and any € > 0,
logy, N(Q, p,e) < Encodinglength(€2, p,e) < [log, M (£, p,€)]. [10 pts]

5. Let F be the set of monotone non-decreasing functions R — [0,1]. Let x1,...,2,, € R.
Consider the pseudo-metric space (F, p) where p(f,g) = max;epm) | f(z:) — g(z;)|. Let
e>0and k= [1].

(a) Show that Ny, (F,p,e) < k™. [5 pts]

(b) Show that Ny, (F,p,e) < (m + 1)*. [10 pts]

6. In this question we will prove the following theorem from Unit 6.

» Theorem 3 (McDiarmid's Inequality). Let Q be a set and let f: Q™ — R be a function.

Assume there exist cq,...,cn € R such that f satisfies the following bounded differences
property:
YTy, T, Ty € Q Vi€ [m)]
(1, @iy ey @) — [T, @ )| <
Let Xq,...,X,, be independent random variables taking values in Q. Assume that

E[|lf(X1,...,Xm)|] < oo. Then for any e > 0,

P [f(Xl,...,Xm) CE[f(X1,..., X)) > s} < exp <Z”ﬁ202>

and

IE”[E[f(Xl,...7Xm)]—f(Xl,...,Xm) 25} < exp (;i;)

We will use the following definitions.

» Notation 4. Let vq,v2,... be a sequence. For any two indices 1, j, we write v;;; to
denote the sub-sequence v;, vi41,...,v;. If ¢ > j then v;;; is an empty sequence.

» Definition 5. Let X1,...,X,, and Zy, Z1, ..., Zy be random variables. We say that
Zo.m 18 a martingale with respect to X1.., if the following conditions hold:
(i) Vie {0,...,m}: E[|Z]] < 0.
(i) Vi € {0,...,m} : Z; is a deterministic function of X1.,. (In particular, Zy is
constant.)
(iii) Vie {1,....m}: E[Z; | X1.4-1] = Zi1.

In other words, a martingale is a sequence of random variables where the differences
between consecutive variables are independent and each difference has expectation 0. An
example of a martingale is a random walk Z.,, such that Zy = 0 and for each i € [m],
Z; = Z;_1+ X;, where X7, is a sequence of random variables chosen independently and
uniformly from {—1,1}.

(a) Prove the following lemma.
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(b)

(c)

(d)
(e)

» Lemma 6. Let m € N. Let Zy.,, be a martingale with respect to Xy.,,. Suppose
there exist real numbers o1.m, such that for each i € [m], the difference D; = Z; — Z;_4
is conditionally sub-Gaussian with variance factor o2, namely

N2
5

YAeR: ImE [eM | Xy, <
Then Z,, — Zy is sub-Gaussian with variance factor o = 27;1 o2
[10 pts]
Hint: Proceed by induction on m.

In the context of Theorem 3, denote Z; = E[f(X1,...,Xm) | X1.4] for all ¢ €
{0,...,m}. Prove that Z.,, is a martingale with respect to Xj.,,. [10 pts]

Hint: You may use without proof the following version of the law of total expectation:

for any real valued random variable () and random variables A, B,

E[EQ[AB] | A =E[Q] 4] (as).
Let Zy., be as in (6b). Prove that for each i € [m], the difference D; = Z; — Z;_; is
conditionally sub-Gaussian with variance factor /4. [10 pts]
Prove Theorem 3. [5 pts]
Consider the special case where: (1) f(X1,...,X;) = =37, X;; and (2) X1,y are
ii.d. with a,b, p € R such that for all i € [m], E[X;] = p and P[X; € [a,b]] = 1.

Use Theorem 3 to derive an upper bound on P H% Yo X — ,u‘ > E]. How does
this bound compare with Hoeffding’s inequality? [5 pts]
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