Problem Set 4

Instructions:

- The topics for this problem set are:
 - Unit 6 Rademacher Complexity.
 - Unit 7 Covering Numbers and Chaining.
- Before you start, make sure you are familiar with the course's Homework Policy.
- 1. Let \mathcal{X} be a nonempty set, and let \mathcal{F} and \mathcal{G} be a classes of functions $\mathcal{X} \to [-1, 1]$. Prove the following properties of the Rademacher complexity.
 - (a) Boundedness. $\operatorname{Rad}_m(\mathcal{F}) \leq \sup_{f \in \mathcal{F}} \sup_{x \in \mathcal{X}} |f(x)|.$ [1 pt]
 - (b) Singleton. If $|\mathcal{F}| = 1$ then $\mathsf{Rad}_m(\mathcal{F}) = 0$.
 - (c) Monotonicity. If $\mathcal{F} \subseteq \mathcal{G}$ then $\mathsf{Rad}_m(\mathcal{F}) \leq \mathsf{Rad}_m(\mathcal{G})$. [1 pt]
 - (d) Linear combination. $\operatorname{\mathsf{Rad}}_m(\mathcal{F} + \mathcal{G}) = \operatorname{\mathsf{Rad}}_m(\mathcal{F}) + \operatorname{\mathsf{Rad}}_m(\mathcal{G})$, where

$$\mathcal{F} + \mathcal{G} = \{ f + g : f \in \mathcal{F} \land g \in \mathcal{G} \}.$$
 [2 pts]

- (e) Scaling. $\forall c \in \mathbb{R}$: $\operatorname{\mathsf{Rad}}_m(c\mathcal{F}) = |c|\operatorname{\mathsf{Rad}}_m(\mathcal{F})$.
- (f) Convex hull. Assume $\mathcal{F} = \{f_1, \ldots, f_n\}$. Then

$$\mathsf{ConvexHull}(\mathcal{F}) = \left\{ \sum_{i=1}^{n} \alpha_i f_i \mid \forall i \in [m] : \ \alpha_i \in [0,1] \land \ \sum_{i=1}^{n} \alpha_i \leq 1 \right\}$$

satisfies $\mathsf{Rad}_m(\mathsf{ConvexHull}(\mathcal{F})) = \mathsf{Rad}_m(\mathcal{F}).$

[2 pts]

[2 pts]

[1 pt]

2. Let \mathcal{F} be a class of functions $\mathcal{X} \to \{0,1\}$, and let \mathcal{D} be a distribution over \mathcal{X} . Prove that

$$\operatorname{\mathsf{Rad}}_{\mathcal{D},m}(\mathcal{F}) \le \sqrt{\frac{2\operatorname{\mathsf{VCEnt}}_{\mathcal{D},\mathcal{F}}(m)}{m}}.$$
 [10 pts]

(Roughly, this shows that learning bounds obtained using Rademacher complexity will be at least as good as bounds obtained using VC entropy.)

3. Let $m \in \mathbb{N}$, let $A \subseteq \{0,1\}^m$ and let $\rho(x,y) = ||x-y||_2$. Prove that for any $\varepsilon \in [0,1]$,

$$\mathsf{Rad}(A) \le 4\varepsilon + \frac{12}{\sqrt{m}} \int_{\varepsilon}^{1} \sqrt{\ln\left(N(A,\varepsilon,\rho)\right)} \,\mathrm{d}\varepsilon.$$
 [16 pts]

4. In this question we show that ε-covering numbers can be roughly understood as being the number of bits necessary to specify any given point in a metric space up to precision ε. Formally, consider the following definition.

▶ **Definition 1.** Let (Ω, ρ) be a metric space, let $n \in \mathbb{N}$ and let $\varepsilon \ge 0$. An encoding of (Ω, ρ) with length n and precision ε is a function $f : \{0, 1\}^n \to \Omega$ such that

$$\forall x \in \Omega \; \exists w \in \{0,1\}^n : \; \rho(x,f(w)) \le \varepsilon.$$

▶ Notation 2. Let EncodingLength($\Omega, \rho, \varepsilon$) denote the integer

min $\{n \in \mathbb{N} \mid \exists f: f \text{ is an encoding of } (\Omega, \rho) \text{ with length } n \text{ and precision } \varepsilon \}$.

Prove that for any metric space (Ω, ρ) and any $\varepsilon \geq 0$,

$$\log_2 N(\Omega, \rho, \varepsilon) \leq \mathsf{EncodingLength}(\Omega, \rho, \varepsilon) \leq \lceil \log_2 M(\Omega, \rho, \varepsilon) \rceil.$$
[10 pts]

- 5. Let \mathcal{F} be the set of monotone non-decreasing functions $\mathbb{R} \to [0,1]$. Let $x_1, \ldots, x_m \in \mathbb{R}$. Consider the pseudo-metric space (\mathcal{F}, ρ) where $\rho(f, g) = \max_{i \in [m]} |f(x_i) - g(x_i)|$. Let $\varepsilon > 0$ and $k = \lfloor \frac{1}{\varepsilon} \rfloor$.
 - (a) Show that $N_{\rm in}(\mathcal{F},\rho,\varepsilon) \le k^m$. [5 pts]
 - (b) Show that $N_{\rm in}(\mathcal{F},\rho,\varepsilon) \le (m+1)^k$. [10 pts]
- 6. In this question we will prove the following theorem from Unit 6.

▶ **Theorem 3** (McDiarmid's Inequality). Let Ω be a set and let $f : \Omega^m \to \mathbb{R}$ be a function. Assume there exist $c_1, \ldots, c_m \in \mathbb{R}$ such that f satisfies the following bounded differences property:

$$\begin{aligned} \forall x_1, \dots, x_m, x'_1, \dots, x'_m \in \Omega \ \forall i \in [m] : \\ |f(x_1, \dots, x_i, \dots, x_m) - f(x_1, \dots, x'_i, \dots, x_m)| &\leq c_i. \end{aligned}$$

Let X_1, \ldots, X_m be independent random variables taking values in Ω . Assume that $\mathbb{E}\left[|f(X_1, \ldots, X_m)|\right] < \infty$. Then for any $\varepsilon > 0$,

$$\mathbb{P}\left[f(X_1,\ldots,X_m) - \mathbb{E}\left[f(X_1,\ldots,X_m)\right] \ge \varepsilon\right] \le \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

and

$$\mathbb{P}\left[\mathbb{E}\left[f(X_1,\ldots,X_m)\right] - f(X_1,\ldots,X_m) \ge \varepsilon\right] \le \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

We will use the following definitions.

▶ Notation 4. Let v_1, v_2, \ldots be a sequence. For any two indices i, j, we write $v_{i:j}$ to denote the sub-sequence $v_i, v_{i+1}, \ldots, v_j$. If i > j then $v_{i:j}$ is an empty sequence.

▶ **Definition 5.** Let X_1, \ldots, X_m and Z_0, Z_1, \ldots, Z_m be random variables. We say that $Z_{0:m}$ is a martingale with respect to $X_{1:m}$ if the following conditions hold:

- (i) $\forall i \in \{0, ..., m\}$: $\mathbb{E}[|Z_i|] < \infty$.
- (ii) $\forall i \in \{0, ..., m\}$: Z_i is a deterministic function of $X_{1:i}$. (In particular, Z_0 is constant.)
- (iii) $\forall i \in \{1, \ldots, m\}$: $\mathbb{E}[Z_i \mid X_{1:i-1}] = Z_{i-1}.$

In other words, a martingale is a sequence of random variables where the differences between consecutive variables are independent and each difference has expectation 0. An example of a martingale is a random walk $Z_{0:m}$ such that $Z_0 = 0$ and for each $i \in [m]$, $Z_i = Z_{i-1} + X_i$, where $X_{1:m}$ is a sequence of random variables chosen independently and uniformly from $\{-1, 1\}$.

(a) Prove the following lemma.

▶ Lemma 6. Let $m \in \mathbb{N}$. Let $Z_{0:m}$ be a martingale with respect to $X_{1:m}$. Suppose there exist real numbers $\sigma_{1:m}$ such that for each $i \in [m]$, the difference $D_i = Z_i - Z_{i-1}$ is conditionally sub-Gaussian with variance factor σ_i^2 , namely

$$\forall \lambda \in \mathbb{R} : \ln \mathbb{E} \left[e^{\lambda D_i} \mid X_{1:i-1} \right] \le \frac{\lambda^2 \sigma_i^2}{2}$$

Then $Z_m - Z_0$ is sub-Gaussian with variance factor $\sigma^2 = \sum_{i=1}^m \sigma_i^2$. [10 pts]

Hint: Proceed by induction on m.

(b) In the context of Theorem 3, denote $Z_i = \mathbb{E}[f(X_1, \dots, X_m) | X_{1:i}]$ for all $i \in \{0, \dots, m\}$. Prove that $Z_{0:m}$ is a martingale with respect to $X_{1:m}$. [10 pts] Hint: You may use without proof the following version of the law of total expectation: for any real valued random variable Q and random variables A, B,

$$\mathbb{E}\left[\mathbb{E}\left[Q \mid A, B\right] \mid A\right] = \mathbb{E}\left[Q \mid A\right] \quad (\text{a.s.}).$$

- (c) Let $Z_{0:m}$ be as in (6b). Prove that for each $i \in [m]$, the difference $D_i = Z_i Z_{i-1}$ is conditionally sub-Gaussian with variance factor $c_i^2/4$. [10 pts]
- (d) Prove Theorem 3.
- (e) Consider the special case where: (1) $f(X_1, \ldots, X_m) = \frac{1}{m} \sum_{i=1}^m X_i$; and (2) $X_{1:m}$ are i.i.d. with $a, b, \mu \in \mathbb{R}$ such that for all $i \in [m], \mathbb{E}[X_i] = \mu$ and $\mathbb{P}[X_i \in [a, b]] = 1$.

Use Theorem 3 to derive an upper bound on $\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \geq \varepsilon\right]$. How does this bound compare with Hoeffding's inequality? [5 pts]

[5 pts]