Problem Set 5

Instructions:

- This problem set covers Unit 10 Nonuniform Learning. The textbook reading corresponding to this unit is Chapters 7 and 31 in <u>SSBD</u>. You may cite without proof any claim that was proved in the lectures or in the textbook reading material.
- Before you start, make sure you are familiar with the course's Homework Policy.
- 1. Let \mathcal{X} be a set, let \mathcal{H} be a finite class of functions $\mathcal{X} \to \{0, 1\}$, and let $d : \mathcal{H} \to \{0, 1\}^*$ be an injective function (an encoding of \mathcal{H}). For any bit string $w \in \{0, 1\}^*$, let |w| denote the the length of w.
 - (a) Show that $VC(\mathcal{H}) \le 2 \cdot \max_{h \in \mathcal{H}} |d(h)|$. [10 pts]
 - (b) We say that d is *prefix-free* if for any $h, h' \in \mathcal{H}, d(h)$ is not a prefix of d(h'). Show that if d is prefix-free then $VC(\mathcal{H}) \leq \max_{h \in \mathcal{H}} |d(h)|$. [10 pts]
- 2. (a) Let \mathcal{X} be a set, \mathcal{H} be a finite class of functions $\mathcal{X} \to \{0, 1\}$, \mathcal{D} be a distribution over $\mathcal{X} \times \{0, 1\}$, A be a learning algorithm, $S \sim \mathcal{D}^m$, and let $h = A(S) \in \mathcal{H}$. Prove that for a uniform prior over \mathcal{H} , the PAC-Bayes theorem implies that for any $\delta \in (0, 1)$, with probability at least 1δ ,

$$L_{\mathcal{D}}(h) \le L_S(h) + \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(m/\delta)}{2(m-1)}}$$

with respect to the the 0-1 loss.

How does this bound compare quantitatively to the bound for finite hypothesis classes that we saw in the beginning of the course? [10 pts]

- (b) Use the PAC-Bayes theorem to derive a bound similar to the MDL bound we saw in class (Theorem 7.7 in SSBD). How does this bound compare quantitatively to Theorem 7.7? [10 pts]
- (a) Construct a class H of functions N → {0,1} that is nonuniform PAC learnable but is not PAC learnable and prove that it satisfies these requirements. [10 pts]
 - (b) Let \mathcal{X} be a set, let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$, and let $\{\mathcal{H}_n\}_{n \in \mathbb{N}}$ be a sequence of classes of functions $\mathcal{X} \to \{0,1\}$ such that $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$. Prove that if \mathcal{H} shatters a set $X \subseteq \mathcal{X}$ such that $|X| = \infty$ then there exists $k \in \mathbb{N}$ such that $\mathsf{VC}(\mathcal{H}_k) = \infty$. [30 pts]

Hint: Let $\{X_n\}_{n\in\mathbb{N}}$ be disjoint subsets of \mathcal{X} such that $|X_n| > \mathsf{VC}(\mathcal{H}_n)$ for all n. Show that for each $n \in \mathbb{N}$ there exists a function $f_n : X_n \to \{0,1\}$ that does not agree with any function in \mathcal{H}_n . Show that there exists a function $f : \mathcal{X} \to \{0,1\}$ that agrees with all the functions f_n . Argue that $f \in \mathcal{H} \setminus \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.

(c) Construct a class \mathcal{H} of functions $\mathbb{N} \to \{0, 1\}$ that is not nonuniform PAC learnable and prove that it satisfies this requirement. [20 pts]