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Due: May 7, 11PM PT

Problem Set 6

Instructions:
This problem set covers the following topics.

Unit 12 – Sample Compression Schemes. You may cite without proof any claim
that was proved in the lectures.
Unit 13 – Information-Theoretic Generalization Bounds. You may cite without
proof any claim that was proved in the lectures.
Unit 14 – Online Learning. You may cite without proof any claim that was
proved in the lectures or in Sections 8.1, 8.2.1, 8.2.2 and 8.2.3 in the MRT
textbook.

Before you start, make sure you are familiar with the course’s Homework Policy.

1. Let X be a set, let F be the set of all functions X → {0, 1}, let H ⊆ F , let I be a finite
set. Recall the definitions we saw in class.

I Notation 1. For any m ∈ N, let

SH(m) =
{(

(x1, y1), . . . , (xt, yt)
)
∈ (X × {0, 1})t

∣∣∣
t ∈ N ∧ t ≤ m ∧ ∃h ∈ H ∀i ∈ [t] : yi = h(xi)

}
be the set of samples of length at most m that are consistent with H. Furthermore, let
SH(∞) = ∪m∈NSH(m). y

I Definition 2. Fix m′ ∈ N. A pair a functions

c : SH(∞)→ SH(m′)× I r : SH(m′)× I → F

is a (realizable) sample compression scheme for H of size k ∈ N if for any S =
(

(x1, y1), . . . , (xm, ym)
)
∈

SH(∞), the tuple (S′, i) = c(S) satisfies:
(i) The entries of S′ are a subset of the entries of S.
(ii) f = r((S′, i)) labels S correctly. Namely for all i ∈ [m], f(xi) = yi.
(iii) m′ + log2(|I|) ≤ k.

Consider the following alternative definition.

I Definition 3. Fix m′ ∈ N. A pair a functions

c : (X × {0, 1})∗ → (X × {0, 1})m
′
× I r : (X × {0, 1})m

′
× I → F

is a non-realizeable sample compression scheme for H of size k ∈ N if for any S =(
(x1, y1), . . . , (xm, ym)

)
∈ (X × {0, 1})∗, the tuple (S′, i) = c(S) satisfies:

(i) The entries of S′ are a subset of the entries of S.
(ii) The functions f = r((S′, i)) satisfies that for all h ∈ H, LS(f) ≤ LS(h).
(iii) m′ + log2(|I|) ≤ k.

Prove that H has a realizable sample compression scheme of size k if and only if H has a
non-realizable sample compression scheme of size k. [27 pts]

1

https://www.dropbox.com/s/7voitv0vt24c88s/10290.pdf?dl=1
https://piazza.com/class_profile/get_resource/khs64r6r5yn154/kk6e9cb06u93b1
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2. (a) Consider a generalization of Definition 2 called lossy realizable sample compression
with loss ε, which is the same as Definition 2 except that Item (ii) is replaced by
the requirement that LS(f) ≤ ε.1 Consider the learning algorithm Ac,r that for
sample S outputs the hypothesis f = r(c(S)). Show that if (c, r) is a lossy realizable
sample compression scheme for H of size k with loss ε/2, then Ac,r PAC learns H
with parameters ε and δ using O

(
k ln(k/ε)+ln(1/δ)

ε2

)
samples. [13 pts]

(b) Consider a further generalization where instead of requiring LS(f) ≤ ε for all S,
we require that PS [LS(f) > ε] < δ when S consists of any number of i.i.d. samples
from a specific unknown distribution D. Can you prove a similar PAC learning
sample complexity bound given that (r, c) satisfies this definition for the specific
distribution D? [7 pts]

3. Recall that we saw that if a learning algorithm satisfies I(S;h) ≤ d ∈ N and m ≥ Ω
(
d
δε2

)
then

PS∼Dm [|LS(h)− LD(h)| ≤ ε] ≥ 1− δ, (1)

where h denotes the hypothesis chosen by the algorithm and I denotes mutual information.

(i) Show that in the realizable case, if the algorithm is an ERM (namely, the equality
LS(h) = 0 always holds), then taking m ≥ Ω

(
d
δε

)
is sufficient to imply Eq. (1).

You may assume that the algorithm is deterministic. Conclude that taking Ω
(
d
δε

)
samples is sufficient to ensure that a deterministic ERM algorithm is a PAC learner.

[13 pts]
(ii) Show that the sample complexity in (i) is tight for d and ε in the following sense.

For fixed δ, show an example of a class that requires Ω
(
d
ε

)
samples for PAC

learning. [17 pts]
Hint: You may use the fact that the fundamental theorem of learning is tight.

4. In this question we will see how to use bounds on the number of mistakes of an online
learning algorithm to obtain generalization bounds in the batch (i.e., non-online) setting.
Let X be a set, and let H be a class of functions X → {0, 1}. Assume we have an online
learning algorithm A that operates as follows. A starts with an initial hypothesis h1 ∈ H,
and at each timestep t ∈ [T ], it: (i) receives xt; (ii) predicts label ŷt = ht(xt); (iii) receives
yt; (iv) pays loss `(ŷt, yy); (v) selects hypothesis ht+1.

Fix T ∈ N, let D be a distribution over X ×{0, 1}, let S =
(

(x1, y1), . . . , (xT , yT )
)
∼ DT ,

and let ` be the 0-1 loss. Assume we execute the algorithm A above on the examples
(xt, yt) sequentially for t = 1, 2, . . . , T . Prove the following generalization bound. For any
δ ∈ (0, 1), with probability at least 1− δ,

1
T

T∑
t=1

LD(ht) ≤
1
T

T∑
t=1

`(ht(xt), yt) +
√

2 ln (1/δ)
T

.

[23 pts]

Hint: You may use Azuma’s inequality (Theorem D.7 in MRT). You essentially already
proved Azuma’s inequality as part of the proof of McDiarmid’s inequality in Problem
Set 4.

1 Note that Definition 2 corresponds to the case ε = 0.

https://www.dropbox.com/s/7voitv0vt24c88s/10290.pdf?dl=1

