ECE209AS (Winter 2021)

Lecture 1: Course Introduction

Mani Srivastava mbs@ucla.edu Networked & Embedded Systems Lab ECE & CS Departments UCLA

Copyright (c) 2021

About Me

- Name: Mani Srivastava
 - Professor in CS and ECE Departments
 - Office: 6730-E Boelter Hall / Lab: 1762 Boelter Hall
 - Office Hours: Tu 9-10PM, Th 12-1PM LA Time (tentative)
 - https://ucla.zoom.us/j/92303243429 (password as announced)
 - Email: mbs@ucla.edu
 - please use private note on Piazza instead of email
 - if you do email please put "ECE 209AS" as subject
 - More information:
 - https://www.ee.ucla.edu/mani-srivastava/ [Me]
 - https://scholar.google.com/citations?user=X2Qs7XYAAAAJ [My research]
 - <u>http://www.nesl.ucla.edu</u> [My lab]

Soelter Hall Time (tentative) Ssword as announced)

d of email as subject

/ [Me]
r=X2Qs7XYAAAAJ [My research]

About the course

- New special topics course
- On AI/ML methods for data-driven CPS and IoT systems
- Zoom for lectures and office hours https://ucla.zoom.us/j/92303243429 (password announced in email to class)
- Piazza for course material and discussion
 - https://piazza.com/ucla/winter2021/ece209as (access code announced in email to class)
- Assignment submission via Gradescope
 - Please log in to Gradescope via the institutional login and you will see ECE209AS-1
- CCLE not used for anything

Guide decisions, Control things, Nudge behaviors....

mHealth: New Biomarkers and Just-in-Time Adaptive Interventions

Sensors → Markers		Mar
 Sensors	Markers	
AutoSense	Stress, smoking, conversation	Smoking Cessation
Eyeglasses	Cues, pupil response	
EasySense	Lung fluid, heart and lung motion	Congestive Heart Failure
Wristwatch	Eating and smoking	

Example: BCG for Monitoring of Heart Failure Patients in Daily Life (Continual Assessment of Blood Volume, i.e. Hemodynamic Congestion)

Progression from Chronic Compensated to Acute Decompensated Heart Failure

Reference: Research at Prof. Inan's Laboratory @ GaTech

Wearable Patch for Multimodal Cardiovascular Sensing

Example: BCG for Monitoring of Heart Failure Patients in Daily Life (Continual Assessment of Blood Volume, i.e. Hemodynamic Congestion)

Overall Framework

Smart Built Environments: Sustainability, Occupant Comfort & Safety

Data-driven & Learning-enabled City Services and Planning

Digital Twin

Cross-reality Model Predictive Analytics Decision Making

Urban Robotics

Augmented Vehicular Reality for Enhanced Situational Awareness

National Defense and Security

Intelligent Agent Interacting with Dynamic Environment

- Agents include humans, IoT devices, robots, cyber-physical systems, ...
- trajectory of environment state S(t) meet some desired properties or specifications ▶ e.g. keep a human in a healthy state, a building not consume excessive energy, etc.

The agent has a function $f: P^*(t) \to A(t)$ that maps from percept histories to actions to ensure that the

Perception-Cognition-Action Loop

Perception-Cognition-Action Loop

Perception-Cognition-Action Loop

Driven by Technology Trends

Acoustic Array

Camera

mmWave Radar

LIDAR

UAVs

Rich Sensing & Actuation

Compute Accelerators

Deep Neural Networks

Topics of Interest in this Course

- Architectures for perception and control in IoT/CPS
 - Spatiotemporal, multimodal/crossmodal
 - Classical / probabilistic, deep learning, neurosymbolic, data+physics approaches, deep RL
 - Various inferences tasks and queries
 - detection, classification, localization of events/activities
 - forecast, superresolution, anomaly detection, ...
 - control
- Real world issues and challenges
 - Missing, noisy and incomplete data; noisy and imprecise labels
 - Irregular sampling, timestamp misalignment
 - Domain shift, sensor adaptation, Sim2Real
- System-level issues and challenges
 - Resource availability, dynamics and resource constrains
- Human/societal issues and challenges
 - Explainability and interpretability
 - Safety, privacy, FATE
- We will explore these via a combination of lectures, paper presentation, assignments, and project

Topics Explored

- Inference / prediction with temporal data
- Advanced issues
 - Multimodal / cross-modal
 - Irregular sampling
 - Point cloud
 - Spatially distributed sensors
- Data quality Missing data values, time alignment
- Data vs Physics
- Domain shift
- Distributing across edge-cloud
- Control with Deep RL and Sim2Real

Course Components

dual nt assigned paper (20 min)	15%
dual n reviews of assigned papers (~10)	15%
dual ipate in discussion on papers (in class or on Piazza)	10%
dual or Team as specified epts and analysis	15%
dual or Team (max 2) site + Video Demo/Talk)	45%

Grading

- grade scale (A+=4.3, A=4, A-=3.7, ... D-=0.7, F=0)
- Expectation for letter grade:
- Numerical scores will be mapped to letter grade as follows Scale to 100
 - If median<80, normalize so that highest=100 and median=80.</p>
 - Mapping: scores $\geq 95 = A$, $\geq 90=A-$; $\geq 85=B+$, $\geq 80=B$, and so on.
- Course grade
 - Compute weighted course score on scale of 4
 - Convert to letter grade using mid-points between adjacent letter grades as thresholds
 - A = (4, 4.3], A = [3.85, 4], A = [3.5, 3.85), etc.
 - thresholds may be selective nudged lower at instructor's discretion to account for unusual clustering
 - S grade means letter grade of B or better [UCLA rules]
- Historical: Median course grade A-; Mean between B+ and A-

• Some components of the course will be graded on a numerical scale while others directly on a letter

A+/A/A- = correct / high-quality; B+/B/B- = some-flaws / acceptable; C+/C/C- = significant-flaws / belowaverage-quality; D+/D/C- = mostly-incorrect / unacceptable-quality; F = did not make a serious attempt

Research Paper Presentations

- List of research papers from literature provided by me
- Each student has to present once during the course Most papers will be for individual presentation
 - But some long ones may be designated for two person presentation
- Presentation slot:
 - Main presentation: 20 min talk per paper + 10-min Q&A
- Slide preparation
 - Expected to be original overall, but may incorporate elements from slides obtained from authors
- Participation by everyone
 - Reviews of ~10 (maximum of 12) papers assigned to each student by the instructor
 - 4-slide file on summary, strength, weakness, and future work
 - Participation in Q&A (during lecture or on Piazza)
- Starting Week 3

• Have slides at the end giving your own perspectives on strengths, weaknesses, and additional directions

Course Project Expectations

- What should be your goal?

 - Dig deep into a focus area on your own as lectures would provide a "broad" coverage Something useful, cool, or risky ideas leading to negative results are fine
 - The key is to keep the project simple, and focused
 - Aim for something concrete and tangible, even if minor, and high quality
- What type of projects are **not** acceptable? Application, i.e. collect data (or use available data), train model(s), and report performance, without any associated methodological novelty
 - Literature survey
- course then you would need to finish the project by yourself, and other than giving you extra time the instructor will not be able to provide any other consideration
- The project must have a clear hypothesis and associated questions that it will explore • While teams of 2 are allowed, it is with the understanding that if your partner drops the

Thinking about Project Ideas: Heilmeier Catechism

- product development effort should be able to answer

 - How is it done today, and what are the limits of current practice?

 - •Who cares? If you are successful, what difference will it make?
 - •What are the risks?
 - How much will it cost?
 - How long will it take?
 - What are the mid-term and final "exams" to check for success?
- Of course not all are relevant to a course project setting...

• George H. Heilmeier, a former DARPA director (1975-1977), crafted a set of questions known as the "Heilmeier Catechism" that anyone proposing a research project or

> • What are you trying to do? Articulate your objectives using absolutely no jargon. •What is new in your approach and why do you think it will be successful?

Course Project Timeline and Grading

- Week 2-3: Mandatory initial discussion with instructor about project ideas [2%] Document and summarize meeting via a direct non-anonymous message on Piazza to instructor • Week 3-4: Mandatory second discussion with instructor about project ideas [2%]
- Document and summarize meeting via a direct non-anonymous message on Piazza to instructor
- Week 5: Initial project repo and website ready on GitHub [6%] Submit project title, team information, GitHub repo URL, and GitHub website URL via web form Website must have initial sections for goals, specific aims,
- Week 7: Midterm checkpoint [20%]

 - YouTube video of 8 min max of presentation plus any initial demo [80%] Website updated and also add initial text for data, tools, methods, and results [20%]
- Finals Week: Submission [70%]
 - YouTube video of 15 min max of presentation plus any demo [80%]
 - Website finalized [20%]
- Grading will consider

 - problem and approach: difficulty (relative to team size), novelty • execution: architecture, analysis, evaluation, effort, elegance
 - Presentation: quality, organization, discussion

No Textbook

But, Some Useful Books...

- human behavior from sensor data. John Wiley & Sons, 2015. Available for free via UCLA network
 - https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119010258
- Brunton, Steven L., and J. Nathan Kutz. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2019. Available for free via UCLA network
 - https://www.cambridge.org/core/books/datadriven-science-and-engineering/ 77D52B171B60A496EAFE4DB662ADC36E
 - Great videos by Brunton on YouTube
- Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach" (4th edition, 2020)
- Warden, Pete. TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low. 2020.
 - https://tinymlbook.com
 - Free from UCLA library

• Cook, Diane J., and Narayanan C. Krishnan. Activity learning: discovering, recognizing, and predicting

Book not available but you can find slides on various chapters at <u>http://aima.cs.berkeley.edu/index.html</u>

Desired Student Background

- Exposure to ML methods, both classical (linear regression, decision tree, SVM, clustering etc.) and deep learning based (MLP, CNN, RNN/LSTM etc.)
- Comfortable with linear algebra and probability as most papers use them heavily
- Experience with Python including scikit-learn and Tensorflow/Keras or Pytorch equivalent experience with MATLAB also acceptable, but you will be on your own as I don't have expertise in MATLAB
- For projects you may (depending on project you select) benefit from software expertise in mobile, wearable, or embedded platforms
- It is fine if you don't have some of the above-mentioned expertise It there are plenty of web resources for self-learning, on Wikipedia, YouTube etc.

Plagiarism, Cheating, and other Disallowed Behaviors

- Discussing solution approaches to problems with classmates is okay but showing or sharing your writeup, code etc. is never okay
- Using material from external sources (even if provided by me as reference) is acceptable only if explicitly allowed but must be acknowledged by a clear citation
- Generally:
 - For paper presentations: you need to make your own but can use graphics from the paper or from slides obtained from authors, with explicit acknowledgement • For assignment: the work needs to be your own, though you can draw inspiration from approach from provided references and external sources (if allowed) and must cite them. • For project: your are free to use any legally available code, data, and hardware provided

 - you cite with explicit acknowledgement
 - If in doubt, discuss with me

Post any questions on Piazza!!!

