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Machine Learning Revolutionized by Artificial Neural Networks

Deep Learning Tutorial at Ubicomp 2017 and Efficient Processing of Deep Neural Networks: A Tutorial and Survey 

Deep Learning Tutorial at Ubicomp 2017

Quick history of NN DL

1940 1960 1980 2000

Deep Learning

McCulloch & Pitts

Hebbian Learning

Perceptron

Backpropagation
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(Deep) Artificial Neural Networks 
+ Representation Learning 



A Quick Backgrounder…
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A Deep Feedforward Artificial Neural Network

Deep Learning Tutorial at Ubicomp 2017
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Simple Model of a Biological Neuron

• Human brain contains approx. 1010 neurons, with ~ 1014 connections! 

• Each neuron is connected to thousands of others and sends signals based on it’s input

• With changing input, the output potential on the axon produces a “spike” 

‣ In easy terms this corresponds to a binary output (spike / no spike) 

‣ The perceptron is a very simple model for this behaviour of a neuron

Deep Learning Tutorial at Ubicomp 2017

Simple Model of a Neuron

• With changing input, the output potential on the axon produces a “spike” 

• In easy terms this corresponds to a binary output (spike / no spike) 

• The perceptron is a very simple model for this behaviour of a neuron.

[Reichardt et al. 2009]
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Simple Model of an Artificial Neuron

• Has a number of “weighted" inputs 

‣ represented as a multidimensional array or “tensor” (different from tensors in math/physics)


• Calculates an activation 

•  has to be differentiable

x

𝗁(x) = 𝗀(ΘTx)
𝗀()

Deep Learning Tutorial at Ubicomp 2017
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Infinitely Many Different Activation Functions Possible

• Different applications require 
different activation functions


• Linear or Gaussian useful for 
regression


• Sigmoid (logistics), ReLU etc. 
useful for classification

‣ ReLU popular due to efficiency

Efficient Processing of Deep Neural Networks: A Tutorial and Survey 
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Finding Best Parameters

Deep Learning Tutorial at Ubicomp 2017

Simple Model of a Neuron

h⇥(x) = g(⇥Tx)

⇥ =

2

664

⇥0

⇥1

⇥2

⇥3

3

775x =

2

664

1
x1

x2

x3

3

775

Error

Parameter i

Procedure:
1. Guess initial parameters 
2. Calculate error 
3. Calculate derivative of error 
4. Change the parameters
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Finding Best Parameters

Deep Learning Tutorial at Ubicomp 2017

Learning Weights of a Sigmoid Unit

How does the error change if 
the output changes?

How does the output change 
if the weight changes?
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dE
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• Using the chain rule for partial derivative we 
obtain:
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Finding Parameters of Non-output Layers via Backpropagation

Deep Learning Tutorial at Ubicomp 2017
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How much does the error change  
if I change the input to unit k? 

How much does the error change  
w.r.t. the activation of unit i?

How much does the error change  
w.r.t. the weight between unit i and k?
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Training a Deep Neural Network

Deep Learning Tutorial at Ubicomp 2017

Ex: Online Learning (updates after every example)

1) Randomly initialise all weights 
2) For each randomly chosen sample x 
3) Forward pass, for each layer m  

 
 

4) Calculate derivative of error at output layer 
 

5) Backpropagate the error to the next layers 
 
 

6) Adjust the weights using derivative  
 
 

7) GOTO 2 if not converged
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Problem: Too many parameters

• In general, every connection from output of one neuron in a layer to input of another in 
the text layer can have different weights

‣Called Multi Layer Perceptron 


• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)

CS231N @ Stanford
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Problem: Too many parameters

• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)

CS231N @ Stanford
Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201827

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10



• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201828

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
14

Problem: Too many parameters

CS231N @ Stanford



• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)
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Problem: Too many parameters

CS231N @ Stanford Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201829

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”



• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)
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Problem: Too many parameters

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201832

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



• Exploit two properties to reduce # of parameters 

‣ Structural Locality 

- an output neuron depends on input neurons in a window (space, time)

‣ Translational Equivariance 

- shift in input causes similar shift in output


• Convolutional Layers (instead of fully connected layers)
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Problem: Too many parameters

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201834

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201834

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



• Convolutional Neural Networks (CNNs) 
‣ Sequence of Convolutional Layers
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Problem: Too many parameters

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201836

Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



• Pooling 
‣Making representations more manageable

‣Getting some Shift Invariance
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Problem: Too many parameters

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201872

Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201873

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING



• Putting it all together…
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Problem: Too many parameters

CS231N @ Stanford Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201837

Preview [Zeiler and Fergus 2013]
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But other problems (that matter to us) remain

• How can we handle temporal sequences?

• How can we handle sensors that are distributed irregularly?

• How do we handle multiple sensors of different modalities?

• How do we handle missing data? bad data? misaligned data? 
 
and more…



Deep Learning for Temporal Sequences
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Time Series Classification (TSC) Problem

• A Univariate Time Series  is a sequence of real values

‣ length of  is equal to the number of real values 

‣ no explicit notion of time: either only order matters (e.g. text) or values are equally spaced 

in time, i.e. 


• An -dimensional Multivariate Time Series  consists of  
different univariate time series with 


• TSC task: Train a classifier on a dataset   in order to map from the space of possible 
inputs to a probability distribution over  class labels

‣  where  could either be a univariate or multivariate 

time series with  as its corresponding one-hot label vector of -bits

‣  if the class of  is , and 0 otherwise

X = [x1, x2, ⋯, xT]
X T

xi+1 − xi = xj+1 − xj ∀ i, j ∈ {1,2,⋯, T − 1}
M X = [X1, X2, ⋯, XM] M

Xi ∈ ℝT

D
K

D = {(X1, Y1), (X2, Y2), ⋯, (XN, YN)} Xi
Yi K

Yi[ j] = 1 Xi j

Fawaz, Hassan Ismail, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller.  
"Deep learning for time series classification: a review." Data Mining and Knowledge Discovery 33, no. 4 (2019): 917-963. 
https://arxiv.org/pdf/1809.04356.pdf
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TSC Task

• What if time series is long and so labels change?

• E.g. Activity Recognition: we need a sequence of labels over a long time series

• Approach: TSC over windows with a higher level activity recognizer

‣window level output labels of TSC used as sequence of observations


- essentially TSC is viewed as a noisy sensor of current state
Fawaz, Hassan Ismail, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller.  
"Deep learning for time series classification: a review." Data Mining and Knowledge Discovery 33, no. 4 (2019): 917-963. 
https://arxiv.org/pdf/1809.04356.pdf
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Applications to Sensing Tasks

Audio AnalysisHuman Activity Recognition

Deep Learning Tutorial at Ubicomp 2017
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Human Activity Recognition

• Objective

‣ Infer when? something of interest happened 

(what?), possibly how?


• Sensor data

‣ (body worn) Inertial Measurement Units


• Standard approach 
  Sliding window (frames) 
+ Feature engineering 
+ Pattern classification 

• Alternatives

‣ sample-wise processing, memory

Deep Learning Tutorial at Ubicomp 2017

ignores temporal aspects 

treats windows in isolation
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Audio Analysis

• Objective

‣ Auditory scene analysis

‣ Speaker recognition

‣ Signal improvement

‣ Speech recognition


• Sensor data

‣Microphone data


• Standard approach 
  Sliding window  
+ Feature engineering 
+ Pattern classification 
+ Smoothing

Lane, Nicholas D., Petko Georgiev, and Lorena Qendro. "Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning."  
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 283-294. 2015.



Approach 1: Imaging Time Series
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Main Idea: Turn the problem into a Vision Problem

Spectrogram Movement Trajectory in 2D
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Spectrograms and 2D Trajectories

• Spectrogram

‣ An image with time and frequency as dimensions

‣ In real-world image: nearby pixels normally belong to the same object: CNNs exploit this

‣Unlike pictures, spectrograms have non-local relationships, which complicates CNN

‣ Limited to 1D values


• Trajectories in 2D

‣CNNs work with textures and not edges

‣ Time dimension is lost

‣ Doesn’t work beyond 2D


• Would like to have an image representation than can handle multidimensional values 
and retrieve information about any pair  given time series (xi, xj) (x1, x2, ⋯, xn)
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Recurrence Plot

• Extracts trajectories from time series and computes the pairwise 
distances between these trajectories

‣ capture recurrent behavior such as periodicities & irregular cyclicities 


• The trajectories are defined as: 
 
 
where  is the dimension of the trajectory, and  is the time delay


• The recurrence plot, denoted , is the binarized pairwise distance 
matrix between the trajectories 
 
 
where  is the Heaviside step function and  is the threshold

m τ

R

Θ ϵ

https://pyts.readthedocs.io/en/stable/modules/image.html
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From time-series signal to recurrence plot (binarization skipped)

Left: A simple example of time-series signal ( ) with 12 data points. 


Middle: The 2D phase space trajectory is constructed from  by the time delay embedding ( ). 
States in the phase space are shown with bold dots: . 


Right: The recurrence plot  is a 11 × 11 square matrix with .

x

x τ = 1
s1 : (x1, x2), s2 : (x2, x3), . . . , s11 : (x11, x12)

R Ri,j = 𝖽𝗂𝗌𝗍(si, sj)

Hatami, Nima, Yann Gavet, and Johan Debayle. "Classification of time-series images using deep convolutional neural networks."  
In Tenth international conference on machine vision (ICMV 2017), vol. 10696, p. 106960Y. International Society for Optics and Photonics, 2018. 
https://arxiv.org/pdf/1710.00886.pdf
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Recurrence Plot

Application of Recurrence Plot (m = 3,τ = 4) time-series to image encoding on five different datasets from 
the UCR archive: 50words, TwoPatterns, FaceAll, OliveOil and Yoga data (from left to right, respectively)

Hatami, Nima, Yann Gavet, and Johan Debayle. "Classification of time-series images using deep convolutional neural networks."  
In Tenth international conference on machine vision (ICMV 2017), vol. 10696, p. 106960Y. International Society for Optics and Photonics, 2018. 
https://arxiv.org/pdf/1710.00886.pdf
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Gramian Angular Fields (GAF)

• Creates a matrix of temporal correlations for each  via the following steps:

1. Rescale the time series in a range  where 

2. Compute the polar coordinates of the scaled time series by taking the 

‣ novel way to understand time series: as time increases, corresponding values warp among 
different angular points on the spanning circles, like water rippling. 


3. Compute the cosine of the sum of the angles for the Gramian Angular Summation Field (GASF) 
or the sine of the difference of the angles for the Gramian Angular Difference Field (GADF).

(xi, xj)
[a, b] −1 ≤ a < b ≤ 1

𝖺𝗋𝖼𝖼𝗈𝗌

https://pyts.readthedocs.io/en/stable/modules/image.html

x̃i = a + (b − a) ×
xi − 𝗆𝗂𝗇(x)

𝗆𝖺𝗑(x) − 𝗆𝗂𝗇(x)
, ∀i ∈ {1,2,⋯, n}

ϕi = 𝖺𝗋𝖼𝖼𝗈𝗌(x̃i), ∀i ∈ {1,2,⋯, n}

ri =
ti
n

, ti ∈ ℕ & ∀i ∈ {1,2,⋯, n}

GASFij = 𝖼𝗈𝗌(ϕi + ϕj), ∀i, j ∈ {1,2,⋯, n}
GADFij = 𝗌𝗂𝗇(ϕi − ϕj), ∀i, j ∈ {1,2,⋯, n}



35

GAF Encoding Under the Hood

Wang, Zhiguang, and Tim Oates. "Encoding time series as images for visual inspection and classification using tiled convolutional neural networks." In Workshops at the twenty-ninth AAAI conference on artificial intelligence, vol. 1. 2015.



36

Markov Transition Fields (MTF)

• Discretize a time series into  quintile bins

• Construct a  weighted adjacency matrix  by counting transitions among quantile bins

‣ as a first-order Markov chain along the time axis:  = probability that a point in  is followed by a point in 


• Finally spread out the adjacency matrix to a field in order to reduce the loss of temporal information

‣ Compute the Markov Transition Field matrix  of the discretized time series

‣  = probability of transition  where  and  are quantile bins for data at timestamps  and 

‣  encodes the multi-span transition probabilities of the time series

‣  = transition probability between the points with time interval 

‣ MTF size reduced by averaging pixels in non-overlapping  patches

Q
Q × Q W

wi,j qj qi

M
Mi,j qi → qj qi qj i j
M
Mi,j||i−j|=k k

m × m

https://pyts.readthedocs.io/en/stable/modules/image.html
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MTF Encoding Under the Hood

Wang, Zhiguang, and Tim Oates. "Encoding time series as images for visual inspection and classification using tiled convolutional neural networks." In Workshops at the twenty-ninth AAAI conference on artificial intelligence, vol. 1. 2015.



Approach 2: One-Dimensional CNN



39

TSC using a CNN

Zeng, Ming, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu, and Joy Zhang. "Convolutional neural networks for human activity recognition using mobile sensors." In 6th International Conference on Mobile Computing, Applications and Services, pp. 197-205. IEEE, 2014. 
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7026300
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Alternative CNNs with 1D or 2D Convolution KernelsCNN	Structures	for	HAR

Conv

Pooling

Dense/Fully-
Connected

softmax

Conv

Pooling

Conv

Pooling

Conv

Pooling

softmax

Conv

Pooling

softmax

Neverova,	et	al.	2015
Zeng	et	al.,	2014 Yang	et	al.	2015

Dense/Fully-
Connected

Dense/Fully-
Connected

2d	kernel

1d	kernel
1d	kernel

25

Deep Learning Tutorial at Ubicomp 2017



Approach 3: Recurrent Neural Networks



Sequence Processing with Recurrent Neural Networks (RNN)

42
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201815

Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentiment

Label an

Image

Give a Caption

for an Image

Give a Label

for a VIdeo

Translate Sentence

from English to French

Classify Frames

of a Video

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sequence Processing

• RNNs combine the input vector with their state vector with a fixed (but learned) function to produce a new 
state vector

‣ This can in programming terms be interpreted as running a fixed program with certain inputs and some internal 

variables

‣ Viewed this way, RNNs essentially describe programs 

‣ While CNNs describe pure functions


• Sequential processing is useful in absence of sequences

‣ even if your inputs/outputs are fixed vectors, it is still possible to use RNNs to process them sequentially 

An algorithm learns a recurrent 
network policy that steers its 
attent ion around an image 
(specifically, it learns to read out 
house numbers from left to right)

A recurrent network generates 
images of digits by learning to 
sequentially add color to a canvas

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sequence Processing
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‣ Viewed this way, RNNs essentially describe programs 
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RNN = CNN + Memory

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201822

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

CS231N @ Stanford
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RNN computation

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN Processing Unfolded in Time

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201829

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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Backpropagation Over (Truncated) Time

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201845

Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps
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Backpropagation Over (Truncated) Time

CS231N @ Stanford

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201846

Truncated Backpropagation through time
Loss
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Inside the Green Box

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



50

The Problem of Long-Term Dependencies

• One of the appeals of RNNs is that they might be able to connect previous information to the present task

‣ e.g. using previous video frames might inform the understanding of the present frame.


• If RNNs could do this, they’d be extremely useful. But can they? Answer: It depends.


• Sometimes, we only need to look at recent information to perform the present task.

‣ In such cases, where the gap between the relevant information and the place that it’s needed is small, RNNs 

can learn to use the past information.


• But there are also cases where we need more context.

‣ Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

vs.
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Long Short Term Memory (LSTM) networks

• Special kind of RNN, capable of learning long-term dependencies

Standard RNN LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The Core Idea Behind LSTMs

• Cell state: the horizontal line running through the LSTM cell

• Structures called gates carefully regulate addition or removal of information to the cell state

‣ composed out of a sigmoid layer and a pointwise multiplication operation

‣ sigmoid layer outputs numbers between zero and one, describing how much of each component should be let 

through

• An LSTM has three of these gates, to protect and control the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The Core Idea Behind LSTMs

• Cell state: the horizontal line running through the LSTM cell

• Structures called gates carefully regulate addition or removal of information to the cell state

‣ composed out of a sigmoid layer and a pointwise multiplication operation

‣ sigmoid layer outputs numbers between zero and one, describing how much of each component should be let 

through

• An LSTM has three of these gates, to protect and control the cell state.

forget when see something new that overrides

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The Core Idea Behind LSTMs

• Cell state: the horizontal line running through the LSTM cell

• Structures called gates carefully regulate addition or removal of information to the cell state

‣ composed out of a sigmoid layer and a pointwise multiplication operation

‣ sigmoid layer outputs numbers between zero and one, describing how much of each component should be let 

through

• An LSTM has three of these gates, to protect and control the cell state.

forget when see something new that overrides
what new information to store

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The Core Idea Behind LSTMs

• Cell state: the horizontal line running through the LSTM cell

• Structures called gates carefully regulate addition or removal of information to the cell state

‣ composed out of a sigmoid layer and a pointwise multiplication operation

‣ sigmoid layer outputs numbers between zero and one, describing how much of each component should be let 

through

• An LSTM has three of these gates, to protect and control the cell state.

forget when see something new that overrides
what new information to store

what are we going to output

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Many Variants of LSTM

• Most common: Gated Recurrent Unit, or GRU

• It combines the forget and input gates into a single “update gate.” 

• It also merges the cell state and hidden state, and makes some other changes. 

• The resulting model is simpler than standard LSTM models

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Combining Conv and LSTM: ConvLSTMConvLSTM

Conv+	pooling

Dense

softmax

Yang	et	al.	2015

LSTM

softmax

Ordonez	and	Roggen.	2016

ConvLSTM:
Taking	advantage	of	
temporal	structure

CNN:	
Abandoning	
temporal	structure

Conv+	pooling

38
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Stacking RNNs

• Just like other types of layers in deep neural networks, one can stack RNNs


• E.g. one can form a two layer RNN

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Using RNNs as Models of Sequences

• Give the RNN a large data set of sequences of symbols

‣ text, sensor measurements, activity state etc.


• Ask RNN to model the probability distribution of the 
next symbol in the sequence given a sequence of 
previous symbol

‣ Train using backpropagation


• This will then allow us to generate new sequences one 
symbol at a time


• Simple example of RNN for character level model of 
English language

‣ https://gist.github.com/karpathy/d4dee566867f8291f086


• Ref: “The Unreasonable Effectiveness of Recurrent 
Neural Networks”

‣ http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://gist.github.com/karpathy/d4dee566867f8291f086
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Rich Variety of DNN Models for HAR

Hammerla, Nils Y., Shane Halloran, and Thomas Plötz. "Deep, convolutional, and recurrent models for human activity recognition using wearables." arXiv preprint arXiv:1604.08880 (2016).

Fully connected 
feed-forward 

network with hidden 
(ReLU) layers

Convolutional networks that contain 
layers of convolutions and max-

pooling, followed by fully-connected 
layers and a softmax group 

Bi-directional LSTM network with two 
parallel tracks in both future direction 

(green) and to the past (red) 


LSTM network hidden layers 
containing LSTM cells and a final 

softmax layer at the top 
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Performance Comparison of DNN Alternatives on HARPerformance	of	Models	on	HAR	Tasks

MLP CNN LSTM ConvLSTM

Accuracy 0.78 0.85 0.78 0.88

Mean-f1 0.71 0.84 0.71 0.87

Structure FC128,	FC128 C16,P,C16,P,
FC32	

L64,	L64 C16,P,C16,P,
L32

Performance	after	3	epochs	using	CPU	…

41
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Deep Learning Based Audio Analysis: DeepEar

Lane, Nicholas D., Petko Georgiev, and Lorena Qendro. "Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning."  
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 283-294. 2015.
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DeepEar’s Building Block: Restricted Boltzmann Machines (RBM)

• RBMs are DNNs with feedback

‣ ~ Markov Random Fields


• Components

‣ Rectified Linear Units (ReLU)

‣ Input layer: Gaussian visible unit

‣ Input data: Perceptual Linear Prediction  

(PLP) features

‣Output: Softmax


• Unsupervised Pre-Training  
+ Supervised Fine-Tuning 

Lane, Nicholas D., Petko Georgiev, and Lorena Qendro. "Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning."  
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 283-294. 2015.
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DeepEar’s Performance

Lane, Nicholas D., Petko Georgiev, and Lorena Qendro. "Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning."  
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 283-294. 2015.



Approach 4: RNNs Augmented with Attention
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Recap what we have learnt about RNN

• One of the staples of deep learning that allow working with sequences of data

‣ text, audio, video, sensors,…


• They can be used to

‣ boil a sequence down into a high-level understanding

‣ annotate sequences

‣ even generate new sequences from scratch


• Basic RNN design struggles with longer sequences, but LSTM can work with these

‣ remarkable results in translation, voice recognition, image captioning, HAR, …


• A growing number of attempts to augment RNNs with new properties
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Four Directions for Augmenting RNNs

• Individually, these techniques are all potent extensions of RNNs

• Moreover, they can be combined

‣ seem to just be points in a broader space


• Rhey all rely on the same underlying trick—something called attention—to work.

https://distill.pub/2016/augmented-rnns/
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Sequence-to-Sequence Model

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Sequence-to-Sequence Model

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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E.g. Neural Machine Translation

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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E.g. Neural Machine Translation

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Looking under the hood

• The model is composed of an encoder and a decoder

• The encoder processes each item in the input sequence, it compiles the information it captures into a 

vector (called the context)

• After processing the entire input sequence, the encoder sends the context over to the decoder, which 

begins producing the output sequence item by item

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Looking under the hood

•  The encoder and the decoder are RNNs

‣ Raw inputs (e.g. words, sensor measurements) algorithmically mapped to vectors called embeddings (“x2vec”)

‣ Vector spaces that capture a lot of the meaning/semantic information


• The context is a vector whose size is a hyperparameter of the model

‣ It is basically the number of hidden units in the encoder RNN

‣ in real world applications the context vector may be of a size like 256, 512, or 1024.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Looking under the hood
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Looking under the hood
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Looking under the hood

Unrolled View

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Looking under the hood

Unrolled View

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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The Attention Mechanism

• The context vector becomes a bottleneck, making it hard to deal with long sequences

‣ Information about the earlier part of the sequence fades

‣ Which parts of the sequence are important changes


• Attention introduced to allow a model to focus on the relevant parts of the input sequence as needed

‣ introduced for machine translation but has broader applicability


• An attention model differs from a classic sequence-to-sequence model in two main ways

1. The encoder passes a lot more data to the decoder

2. An attention decoder does an extra step before producing its output

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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1. Encoder passes a lot more data to the decoder

• Instead of passing the last hidden state of the encoding stage, the encoder passes all the hidden states to 
the decoder

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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1. Encoder passes a lot more data to the decoder

• Instead of passing the last hidden state of the encoding stage, the encoder passes all the hidden states to 
the decoder

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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2. Decoder does an extra step

To focus on the parts of the input that are 
relevant to a decoding time step, the decoder 
does the following at each time step:


1. Look at the set of encoder hidden states it 
received – each encoder hidden state is 
most associated with a certain word in the 
input sentence 

2. Give each hidden state a score 

3. Multiply each hidden state by its softmaxed 
score, thus amplifying hidden states with 
high scores, and drowning out hidden states 
with low scores

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



74

2. Decoder does an extra step
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Putting it all together

1. The attention decoder RNN takes in the 
embedding of the <END> token, and an initial 
decoder hidden state.


2. The RNN processes its inputs, producing an 
output and a new hidden state vector (h4)

•  The output is discarded.


3. Attention Step: We use the encoder hidden 
states and the h4 vector to calculate a context 
vector (C4) for this time step.


4. We concatenate h4 and C4 into one vector.

5. We pass this vector through a feedforward 

neural network

•  one trained jointly with the model


6. The output of the feedforward neural 
networks indicates the output word of this 
time step.


7. Repeat for the next time steps

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Approach 5: Transformers
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Limitations of RNNs and LSTMs

• Firstly, RNNs are slow, in fact, extremely slow to train

‣ often we have to truncate the training using techniques like Truncated Back Propagation 

In Time


• Secondly and more commonly, RNNs suffer from a problem of vanishing and 
exploding gradients.

‣ the information from the beginning of the sequence gets lost


• LSTMs solves the second problem, but are even slower to train


• Sequential processing does not allow taking advantage of parallel processing in GPUs 


• Attention solves some of the flaws of RNNs and LSTMs

‣ sequential processing remains :-(
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Attention is All You Need

• Famous paper that introduced “Transformer” architecture


• Transformer is an architecture for transforming one sequence into another one with the help of two parts 
(Encoder and Decoder)


• But it does so without any any Recurrent Networks (GRU, LSTM, etc.)

‣ an architecture with only attention-mechanism


• The input for the encoder is the whole sequence


• The inputs for the decoder are also the entire sequence (shifted right)
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Transformer Model Architecture

• Encoder and Decoder

‣ Composed of modules that can be stacked on top of 

each other multiple times (Nx in the figure, N=6 in paper)

‣ Modules consist mainly of Multi-Head Attention and Feed 

Forward layers


• inputs and outputs are first embedded into an 
n-dimensional space


• Important aspect: positional encoding of the different 
symbols in the sequence

‣ Gives each symbol in the sequence a relative position


- since a sequence depends on the order of its elements

‣ These positions are added to the embedded 

representation (n-dimensional vector) of each symbol

Encoder

Decoder

https://arxiv.org/pdf/1706.03762.pdf
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The Attention Function

• Scaled Dot-Product Attention

‣ Operates on queries and keys of dimension  and values of dimension 

‣ Simultaneously on a set of queries packed into a matrix 

‣ The keys and values are also packed together into matrices  and | 

                 


• Multi-Head Attention 

‣ Instead of performing a single attention function with -dimensional keys, 

values and queries, linearly project the queries, keys and values  times with 
different, learned linear projections to , , and  dimensions respectively


‣ Attention function performed on each of them in parallel, yielding -dimensional 
output values, which are concatenated and once again projected to final values


‣ Intuition: multi-head attention allows the model to jointly attend to information from 
different representation subspaces at different positions, while with a single 
attention head, averaging inhibits this  
                  
                    where 

dk dv
Q

K V
𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(Q, K, V ) = 𝗌𝗈𝖿𝗍𝗆𝖺𝗑(

QKT

dk
)V

dmodel
h

dk dk dv
dv

𝖬𝗎𝗅𝗍𝗂𝖧𝖾𝖺𝖽(Q, K, V ) = 𝖢𝗈𝗇𝖼𝖺𝗍(𝗁𝖾𝖺𝖽𝟣, 𝗁𝖾𝖺𝖽𝟤, …, 𝗁𝖾𝖺𝖽𝗁)WO

𝗁𝖾𝖺𝖽𝗂 = 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(QWQ
i , KWK

i , VWV
i )

https://arxiv.org/pdf/1706.03762.pdf
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Positional Encoding

• There is no recurrence and no convolution, and so there is no sense of order of 
symbols in the sequence

‣One must inject some information about the relative or absolute position of the symbols in 

the sequence


• Approach: add "positional encodings" to the input embeddings at the bottoms of the 
encoder and decoder stacks

‣ The positional encodings have the same dimension  as the input embeddings, so 

that the two can be summed 

‣Original Transformer paper uses sine and cosine functions of different frequencies  

            

Note: for any fixed offset ,  can be represented as a linear function of 

dmodel

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel) where pos is the position and i is the dimension

k PEpos+k PEpos

https://arxiv.org/pdf/1706.03762.pdf
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Other Details

• Position-wise feedforward networks (executed in parallel)

‣ each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is 

applied to each position separately and identically  
       


‣ the linear transformations are the same across different positions, but use different parameters from layer to 
layer 

- Another way of describing this is as two convolutions with kernel size 1 


• Embeddings and Softmax 

‣ learned embeddings convert the input symbols and output symbols to vectors of dimension  

‣ learned linear transformation and softmax function to convert the decoder output to predicted next-symbol 

probabilities 


• Forcing learning how to predict a symbol at position  given previous symbols at positions 

‣ decoder input sequence is shifted right by one (with a special start symbol put in place)

‣ applies a mask to the input in the first multi-head attention module to avoid seeing potential ‘future’ sequence

𝖥𝖥𝖭(x) = 𝗆𝖺𝗑(0,xW1 + b1)W2 + b2

dmodel

i < i

https://arxiv.org/pdf/1706.03762.pdf



Approach 6: Deep Autoregressive Models
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Classical Statistical Model for Time Series: Autoregression

• An autoregressive (AR) model predicts future behavior based on past behavior

‣ Useful for forecasting, anomaly detection


• Output variable depends linearly on its own previous values and on a stochastic term

‣  model (AR model of order ) 

                           

where  are parameters of the model,  is a constant, and  is white noise

‣ Can be viewed as the output of an all-pole infinite impulse response filter whose input is white noise

‣ Parameters conteained for necessary for the model to remain wide-sense stationary 

• Advantages: interpretable, analysis tools

• For large  the traditional approach can become impractically slow to train

‣ but large  needed for monitoring high-rate data

AR(p) p

yt = c +
p

∑
i=1

wiyt−1 + et

w1, w2, …, wp c et

p
p
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A Tale of Two Sequence Models

• RNNs are sequence-to-sequence models 

‣ Expressive model without requiring elaborate features


- scale well to applications with rich data

‣ But, they can be overly complex for typical time series data


- resulting in a lack of interpretability


• Another model in the class: Autoregressive Neural Networks 
‣ Like an RNN, an autoregressive model’s output at time  depends 

on not just on input at the time but also from previous time steps

‣ However, unlike an RNN, the inputs from previous timesteps are 

not provided via some hidden state: they are given as just 
another input to the model


• Characteristics

‣ Bridge statistical and deep learning-based approaches

‣ Semi-explicitly incorporate time series dynamics, such as 

autoregression, trend shifts, and seasonality

‣ Scalable, extensible, and interpretable

https://eigenfoo.xyz/deep-autoregressive-models/

An autoregressive model is merely a 
feed-forward model which predicts 
future values from past values.
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The Bargain with Autoregressive Neural Networks

• Pros: One can have stable, parallel and easy-to-optimize training, faster inference 
computations (with some caveats), and completely do away with the fickleness of truncated 
backpropagation through time


• Cons: Provided you are willing to accept a model that (by design) cannot have infinite memory. 
Also, in some cases such as long sequences autoregressive inference can be a bottleneck and 
require clever engineering.


• Very much like FIR (Finite Impulse Response) vs IIR (Infinite Impulse Response) filters

Parallelization Trainability Inference 
Speed
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Feed-Forward Models Can Outperform Recurrent Models

• It would appear that trainability and parallelization for feed-forward models comes at the price of reduced accuracy


• However, research has shown that feed-forward networks can actually achieve the same accuracies as their 
recurrent counterparts on many tasks


• Why?

‣ The unlimited context offered by recurrent models is not strictly necessary for modeling.

‣ The “infinite memory” advantage of RNNs is largely absent in practice and that are effectively feedforward


- either because truncated backpropagation through time cannot learn long patterns

- or may be because models trainable by gradient descent cannot have long-term memory


‣ Research suggests that if the recurrent model is stable (meaning the gradients can not explode), then the model can be 
well-approximated by a feed-forward network for the purposes of both inference and training


• References

‣ When Recurrent Models Don't Need to be Recurrent 

http://www.offconvex.org/2018/07/27/approximating-recurrent/

‣ Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolutional and recurrent networks 

for sequence modeling." arXiv preprint arXiv:1803.01271 (2018). 
https://arxiv.org/pdf/1803.01271.pdf

http://www.offconvex.org/2018/07/27/approximating-recurrent/
https://arxiv.org/pdf/1803.01271.pdf
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Example: Facebook’s AR-Net

• Two advantages over its traditional counterpart

‣ scales well to large orders, making it possible to estimate long-range dependencies


- important in high-resolution monitoring applications

‣ automatically selects and estimates the important coefficients of a sparse AR process


- achieve this by introducing a small regularization factor of the learned weights

- eliminating the need to know the true order of the AR process


• Can be expanded to include any arbitrary number of hidden layers but at less interpretability

Left: AR-equivalent neural network without hidden layers (simplest form of AR-Net). 
Right: AR-inspired neural network with n hidden layers (general AR-Net).

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/ & https://arxiv.org/pdf/1911.12436.pdf

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/
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Facebook’s AR-Net: Learns only relevant weights

• If the order is unknown, AR-Net automatically learns the relevant weights, even if the underlying data is 
generated by a noisy and extremely sparse AR process

‣ It achieves this by introducing a small regularization factor of the learned weights

‣ In such a sparse setting, AR-Net outperforms classic AR

AR-Net effectively learns the sparse weights, 
setting the irrelevant weights to zero. Classic 
AR overestimates the irrelevant weights. Fitted 
on data generated by a noisy AR-3 process 

with sparsity (lags 1, 3, and 10 are non-zero).

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/ & https://arxiv.org/pdf/1911.12436.pdf

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/
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Facebook’s AR-Net: Computational Performance of Learning

• Shows that modeling time series with neural networks can be just as interpretable as doing so using 
classical statistical methods


• Computationally tractable and simple for the practitioner to fit a sparse AR model of a high order

‣ This makes it possible to model temporal data without having to determine the true order of the underlying AR 

process, allowing the model to automatically learn accurate long-range dependencies without overfitting

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/ & https://arxiv.org/pdf/1911.12436.pdf

https://ai.facebook.com/blog/ar-net-a-simple-autoregressive-neural-network-for-time-series/


Approach 7: Time Convolution Networks
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Video-based Action Segmentation

CNN

Input	Video Local	low-level	Features

RNN
High	level	

temporal	

relationships
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Video-based Action Segmentation

CNN

Input	Video Local	low-level	Features

RNN
High	level	

temporal	

relationships

Requires	training	two	separate	models	and	prevents	
capturing	of	nuanced	long	range	spatio-temporal	

relationships
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Time Convolution Networks (TCNs)

The	architecture	can	take	a	sequence	of	any	length	and	map	it	to	an	
output	sequence	of	the	same	length,	just	as	with	an	RNNs.

The	convolutions	in	the	architecture	are	causal,	meaning	that	there	is	
no	information	“leakage”	from	future	to	past.

Take	less	time	to	train	than	RNN	and	are	more	memory	efficient
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Causal Convolutions

• The output at time t depends solely on current and past elements of the input.

Input

Filter

Output
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Dilated Convolutions



95

Dilated Convolutions

• Dilated	convolutions	have	generally	improved	performance	in	semantic	segmentation	of	
images.


• Allows	one	to	have	larger	receptive	field	with	same	computation	and	memory	
costs	while	also	preserving	resolution.


• Pooling	and	Strided	Convolutions	are	similar	concepts	but	both	reduce	the	resolution.
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What does a TCN use?

1D	convolutions

Captures	how	features	at	
lower	levels	change	over	

time

Pooling

Efficient	computation	of	
long-range	temporal	patterns

Channel-wise	normalization

Robustness	towards	varying	
environmental	conditions
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Temporal Encoder-Decoder network hierarchically 
models actions from video or other time series data
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