
Copyright (c) 2021

Mani Srivastava

mbs@ucla.edu

Networked & Embedded Systems Lab

ECE & CS Departments

UCLA

Lecture 2: Making Inferences from Sensor Data
(The Pre Deep Learning Era)

ECE209AS (Winter 2021)

mailto:mbs@ucla.edu

2

Sensor Measurement ≠ State

• Challenge: sensors themselves do not provide environment state

‣ E.g. sensors do not say “There is Mr. Smith sitting on a chair and

wearing a black suit”

• Rather, sensors may tell

‣ Light level

‣ Color

‣ Whether it is touching something in an area

‣ Sound level

‣ Distance to nearest object

‣ Etc.

• Sensors measure physical quantities

‣ Need to be processed to be useful

• Same physical quantity may be measurable by different sensors

‣ Can help improve accuracy in the presence of error and noise

Physical Property → Sensing Technology

Contact → bump, switch

Distance → ultrasound, radar, IR

Light Level → photocells, cameras

Sound Level → microphones

Strain → strain guages

Rotation → encoders, potentiometers

Acceleration → accelerometers, gyroscopes

Magnetism → compasses

Smell → chemical sensors

Temperature → thermal, IR

Inclination → inclinometers, gyroscopes

Pressure → pressure guages

Altitude → altimeters

Some sensors and the information they measure

3

Example: Measuring distance to an object

• Ultrasound

‣ time of flight

• Infra-red

‣ return signal intensity

• Two cameras

‣ stereo

• Single camera

- using perspective + assumption about environment structure

• Laser + fixed camera

‣ triangulate distance

• Laser-based structured lighting (overlay grid pattern) + fixed camera

‣ distance from distortion in pattern

• Others?

4

Example: Detecting people

• Use a camera?

‣ Camera/vision is a very powerful modality

‣ Intensity, color, texture, shape etc.

‣ But very costly in processing

• Other ways: using sensors simpler than vision

‣ Temperature: search for temperature ranges corresponding to human body temperature

‣ Movement: if everything else is static, movement means people

‣ Color: look for colors corresponding to human skin or clothes/uniforms

‣ Distance: if an otherwise open distance range becomes blocked, there is likely a human being

• Often simpler sensors are enough

‣ E.g. burglar alarm

‣ can’t distinguish humans from other animals, but non-human burglars are rare

‣ Plus, can help improve accuracy of vision

5

Activity Detection: Ambient Sensors in the Environment

• Passive Infrared (PIR)

• Magnetic Door/Window

• Temperature, Light, Humidity

• Vibration

• Pressure

• RFID

• Camera

• Microphone

• Electric meter

• Water meter

• Coverage: near-field vs far-field

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

6

Activity Detection: Wearable Sensors on (or in) Body

• Inertial

‣ Accelerometer

‣Gyroscope

‣Magnetometer

• Physiological

‣Heart Rate

‣Heart Rate Variability

‣ Breathing Rate

‣Galvanic Skin Response

‣ Blood Pressure

‣ EMG, EEG, etc.

‣…

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

7

Example Deployment: Ambient + Wearable Sensors

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

8

Sensor Measurements for Human Activities

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

SweepingHandwashing

9

Common Sensor Analytics

• Inferring latent states

• Forecasting

• Anomaly Detection

• Missing Value Imputation

• Clustering

10

Formalizing the Problem

• We need to track and predict the state of a dynamic environment in the presence of uncertainty

‣ E.g. managing health of a diabetic individual, accounting for time spent in different activities, control HVAC

system in a building, etc.

‣ Unlike static situations, such as analyzing an X-ray image or diagnosing a faulty engine

• Notation

‣

- e.g. sitting, walking, running, biking, etc.

‣

- e.g. measurements from accelerometer, gyroscope, PPG, camera etc.

- may be multimodal and from spatially distributed sensors

• Simplification of time
‣ time is discretized into fixed step-size that is identical for and , and steps aligned for and

‣ allows treating time as an index so that time goes as

‣ notation:

‣ later in the course we will relax this regular synchronous sampling

St = set of unobservable state variables at time t

Ot = set of observable evidence variables at time t

t Δ St Ot St Ot
t t = 0,1,2,...

Xa:b = Xa, Xa+1, . . . , Xb−1, Xb

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

11

Physics vs Data Drive Approaches

• Physics of the environment: equations governing the evolution of the states

• Physics of the sensor: equations governing mapping of states to observation

• If these are known, we can solve an inverse problem to get state from obersvations

• But:

‣ Physics may not be known at all, or may be complex to compute, or highly uncertain

‣ Environment and sensor characteristics may be dynamic

• Alternative: data drive “machine learning” approaches

12

Wearable Sensor-based Activity Recognition

• User performing activities belonging to a predefined set
where is the number of activity types

• There is a sequence of sensor reading that captures the activity
information where is the sensor reading
(in general a vector) at time

• We need to build a model to predict the activity sequence based on
sensor reading  
  
while the true activity sequence (ground truth) is denoted as  

• Goal is to learn by minimizing the discrepancy between predicted
activity sequence and the ground truth activity sequence

• governs the algorithmic latency in inferring the activity state

A = {Ai}m
i=1

m

o1:n = [o1, o2, ⋯ot, ⋯on] ot
t

ℱ
s

̂A1:n = ℱ(o1:n), ∀j ̂Aj ∈ A

A*1:n, ̂A*j ∈ A

ℱ
̂A1:n A*1:n

n

https://arxiv.org/pdf/1707.03502.pdf

13

Inferring Activity State Using Conventional Patter Recognition

• Goal is to learn by minimizing the discrepancy between predicted and the ground truth activity sequence

• Typically, during training a positive loss function is constructed to reflect this discrepancy

• does not take as an input, but rather assumes there is a projection function that projects each sensor
reading to a -dimensional feature vector , so that loss function is

ℱ
ℒ(ℱ(o1:n), A*1:n)

ℱ o1:n Φ
oi d Φ(oi) ∈ ℝd ℒ(ℱ([Φ(oi)]n

i=1), A*1:n)

https://arxiv.org/pdf/1707.03502.pdf

14

Common Simplifications

• grouped into windows of some time duration

‣ Activity type assumed constant within each window

‣ Activity in a window assumed independent of activities in other window

‣ Simplifies and makes it easier to deal with irregular and missing observations

‣ But also creates problems

- Activity changes misaligned with segment boundaries

- Activity state may change multiple times within the segment if is large

- Ignores temporal correlations between activities in different segments

• The assumption that all sensors contributing to have the same sample rate is not correct

‣ In fact, sampling rate of a sensor may not even be fixed

- e.g. in Android the sensor sampling rate is an advice to the OS but it is not guaranteed
that timestamps will be equally spaces

‣ Preprocessing done to address this before extracting features

- it also takes care of missing data, calibration etc.

o1:n

ℱ

k

ot

15

Features

• Two types of observations from sensors

‣ Sensors that generate time series of periodic numeric measurements of state

- e.g. periodic sampling of temperature

‣ Sensors that generate event reports about change in state

- e.g. send event when there is motion

• Features computed over windows of observations basically get rid of the temporal
aspects of the problem

• Quality of the learned model depends on expressiveness of features

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

16

Features

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Sample of window events from the sweeping activity

17

Features: Broad Categories

• Characteristics of sensor event sequence

‣ time of occurrence

- time of day, day of week etc.

‣ sequence duration

- 12:50:22.8739-12:50:13.102682

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

18

Features: Broad Categories

• Characteristics of sensor event sequence

‣ time of occurrence

- time of day, day of week etc.

‣ sequence duration

- 12:50:22.8739-12:50:13.102682

• Characteristics of discrete sensor values

‣ bag of sensors

- set of events with associated frequencies

‣ elapsed time since last event from sensor

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

19

Features: Broad Categories

• Characteristics of sensor event sequence

‣ time of occurrence

- time of day, day of week etc.

‣ sequence duration

- 12:50:22.8739-12:50:13.102682

• Characteristics of discrete sensor values

‣ bag of sensors

- set of events with associated frequencies

‣ elapsed time since last event from sensor

• Statistical features over a time window

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Plot of acceleration (Ax,Ay,Az) and rotational
velocity (RxRy,Rz) values from the HIP IMU

from sweeping activity data sample

20

Features: Broad Categories

• Characteristics of sensor event sequence

‣ time of occurrence

- time of day, day of week etc.

‣ sequence duration

- 12:50:22.8739-12:50:13.102682

• Characteristics of discrete sensor values

‣ bag of sensors

- set of events with associated frequencies

‣ elapsed time since last event from sensor

• Statistical features over a time window

• Activity context features

‣ previous activity

‣ previous dominant sensor

‣ weighted features from previous window

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

21

Common Statistical Features: Temporal

• Max, Min

• Sum, Mean, Median

• Mean Absolute Deviation, Median Absolute Deviation

• Standard Deviation

• Coefficient of Variation

• Zero Crossings

• Percentiles, Inter-quartile Range

• Square Sum of Percentile Observations

• Histogram

• Skewness (degree of asymmetry of distribution)

• Kurtosis (peakiness of distribution around mean)

• Correlation (across dimensions)

• Autocorrelation

• Signal Energy, Log Energy, Signal Power

• Signal Magnitude Area

• Peak-to-Peak Amplitude

• Time between Peaks

22

Common Statistical Features: Spectral

• Spectral Centroid

• Spectral Energy

• Spectral Entropy

23

Common forms of ℱ

• Naive Bayes

• Linear

• Linear with Non-linear Kernels

• Support Vector Machines

• Decision Tree

• Random Forests

• Bayesian Network

• HMM

• CRF 

…

• Being replaced by neural

networks in many cases

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

24

What if there are multiple sensors?

• Complementary vs overlapping information

• Three approaches

‣ Data fusion

- average sensor measurements

- weighted by trust/quality/variance

‣ Feature fusion

- concatenate feature vectors

- dimensionality reduction methods in case of overlap

‣Classifier fusion

- simple voting

- weighted majority voting

- highest quality (lowest uncertainty)

- learn a second level classifier

- Bayesian

- summing K independent classifiers

25

Supervised Learning of parameters of model ℱ

https://en.proft.me/2015/12/24/types-machine-learning-algorithms/

26

A Simple but Very Useful Classifier: Naive Bayes

• Notation

‣ X: feature vector of dimension D over a window

‣ Y: activity label

• Objective: given X, find Y that maximizes the likelihood P(Y|X)

• Learning from training data would need lots of data

• Assumes that data attributes are conditionally independent given class label

• Then:

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

27

Naive Bayes Classifier (NBC) contd.

• Learning model parameters from training data

‣ using maximum likelihood estimators

‣ problem: if no data for a given value of X then likelihood probability 0 
solution: smoothing (M is the # of distinct values X can take)

‣ What if features are continuous instead of categorical?

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

28

Applying NBC

• Probability of attribute X1 (day of week, values in 1-7) taking value 1 given that activity is Personal
Hygiene (Y=1):

• Prior probability that activity is Personal Hygiene (Y=1):

• Similarly P(X1=1|Y=3) and P(Y=3) are 1/3 and 2/7

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

29

NBC with Continuous Features

• Typical approach is to model P(Xi|Y=j) as a Gaussian Distribution

• Estimate the parameters of the Gaussian Distribution as:

• This estimate can be done from training data using maximum likelihood estimation process:

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

30

Applying NBC contd.

• Consider X5 (Energy in hip accelerometer Z axis)

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

31

Applying NBC contd.

• Given a test sample: 
 
X1=1 
X5=250

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

32

NBC Summary

• Probabilistic approach to classification that is popular for several reasons

‣ Simple

‣ Explicit mechanism for calculating explicit probabilities for different hypothesis

‣ Interpretable

• Initial probabilities

‣ Domain knowledge

‣ Learnt from training data

• Often gives good performance even when independence is violated in real world

• Assuming continuous attribute is Gaussian has nice analytical properties and yields a
simple methods for parameter estimation, but is often not true

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

33

Extending NBC to Continuous Attributes

• Assuming attribute is Gaussian distribution

‣Nice analytical properties

‣ Simple method for parameter estimation

• But, is it sufficient? 
 
E.g. Activity Start Time attribute  
for Eating Activity. 
 
What do you expect the distribution to look like?

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

?

33

Extending NBC to Continuous Attributes

• Assuming attribute is Gaussian distribution

‣Nice analytical properties

‣ Simple method for parameter estimation

• But, is it sufficient? 
 
E.g. Activity Start Time attribute  
for Eating Activity. 
 
What do you expect the distribution to look like?

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

34

Gaussian Mixture Models

• Distribution P(Xi|Y=k) is modeled as a combination of M
Gaussian probability distribution functions

• Generalize to cover all attributes by considering M
multivariate Gaussians where & are 
D-dimensional vectors

• Parameters and mixing coefficients estimated using an
iterative Expectation-Maximization algorithm

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

35

Expectation Maximization Algorithm

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

35

Expectation Maximization Algorithm

Initial Estimate

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

35

Expectation Maximization Algorithm

Initial Estimate

M Step

parameters are updated using
the modified data assignments

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

35

Expectation Maximization Algorithm

Initial Estimate

M Step

parameters are updated using
the modified data assignments

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

E Step

each datapoint is assigned to
the nearest mixture component

36

Some Other Classifiers: Decision Tree

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

37

Some Other Classifiers: Support Vector Machine

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Separable Case: Hard Margin

y = wT x + b

min
1
2

∥w∥2 such that yi(wT x + b) ≥ 0 ∀i

37

Some Other Classifiers: Support Vector Machine

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Separable Case: Hard Margin

y = wT x + b

min
1
2

∥w∥2 such that yi(wT x + b) ≥ 0 ∀i

Non-separable Case Soft Margin

min
1
2

∥w∥2+C
N

∑
i=1

ζi such that yi(wT x + b) − 1 + ζi ≥ 0 and ζi ≥ 0 ∀i

38

Some Other Classifiers: Non-Linear Support Vector Machine

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Separable Case

Non-separable Case

SVM in practice…

Temporal Probabilistic Models

41

State Transition Model

• Specifies how the state of the environment evolves, i.e.

‣ Initial state is considered known

• Problem #1: the set is unbounded as grows

‣ Solve by Markov assumption: current state depends only on a finite fixed number of previous states

‣ Many flavors

- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

P(St |S0:t−1)
S0 = s0

S0:t−1 t
St

P(St |S0:t−1) = P(St |St−1)

St−2 St−1 St St+1 St+2

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

42

State Transition Model

• Specifies how the state of the environment evolves, i.e.

‣ Initial state is considered known

• Problem #1: the set is unbounded as grows

‣ Solve by Markov assumption: current state depends only on a finite fixed number of previous states

‣ Many flavors

- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

- more complex, such as second-order Markov process

- question: can you reduce second-order Markov process to a first-order one?

‣ First-order Markov process is commonly used but often insufficient for real world

- Solution: increase order of Markov process, or augment the state

P(St |S0:t−1)
S0 = s0

S0:t−1 t
St

P(St |S0:t−1) = P(St |St−1)

P(St |S0:t−1) = P(St |St−1, St−2)

St−2 St−1 St St+1 St+2

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

43

State Transition Model

• Specifies how the state of the environment evolves, i.e.

‣ Initial state is considered known

• Problem #1: the set is unbounded as grows

‣ Solve by Markov assumption: current state depends only on a finite fixed number of previous states

‣ Many flavors

- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

- more complex, such as second-order Markov process

- question: can you reduce second-order Markov process to a first-order one?

‣ First-order Markov process is commonly used but often insufficient for real world

- Solution: increase order of Markov process, or augment the state

• Problem #2: we have infinitely many , each with its own distribution for state transition

‣ Solve by Stationarity Assumption, i.e.

P(St |S0:t−1)
S0 = s0

S0:t−1 t
St

P(St |S0:t−1) = P(St |St−1)

P(St |S0:t−1) = P(St |St−1, St−2)

t
P(St |S0:t−1) = P(St′

|S0:t′ −1)∀t, t′

St−2 St−1 St St+1 St+2

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

44

Sensor Model (aka Observation Model)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

44

Sensor Model (aka Observation Model)

• Specifies how the sensor observations depend on the current state and previous variables, i.e.
P(Ot |S0:t, O1:t−1)

• A good choice of state should suffice to generate the current sensor value, which leads to 
sensor Markov assumption, i.e. P(Ot |S0:t, O1:t−1) = P(Ot |St)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

44

Sensor Model (aka Observation Model)

• Specifies how the sensor observations depend on the current state and previous variables, i.e.
P(Ot |S0:t, O1:t−1)

• A good choice of state should suffice to generate the current sensor value, which leads to 
sensor Markov assumption, i.e. P(Ot |S0:t, O1:t−1) = P(Ot |St)

• Combining with the simplified first order Markov transition model, we get:

St−2 St−1 St St+1 St+2S0 S1

Ot−2 Ot−1 Ot Ot+1 Ot+2O1

P(S0:t, O1:t) = P(S0)
t

∏
i=1

P(Si |Si−1)P(Oi |Si)• Complete joint distribution: Dynamic Bayesian Network

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

45

Digression: Bayesian Network

• A probabilistic graphical model that represents a set of variables and their conditional dependencies via a
directed acyclic graph (DAG)

‣ Nodes represent variables: observable quantities, latent variables, unknown parameters or hypotheses

‣ Edges represent conditional dependencies

- nodes that are not connected (no path connects one node to another) represent conditionally independent variables

• Each node is associated with a probability function that takes, as input, a particular set of values for the

node's parent variables, and gives the probability distribution of the variable represented by the node.

• Efficient algorithms can perform inference and learning in Bayesian networks

‣ Using a Bayesian network can save considerable amounts of memory over exhaustive probability tables,

P(G, S, R) = P(G |S, R)P(S |R)P(R)
E.g. The model can answer questions about the presence of a cause
given the presence of an effect (so-called inverse probability) like "What
is the probability that it is raining, given the grass is wet?"

P(R = T |G = T) =
P(G = T, R = T)

P(G = T)
=

∑S∈{T, F} P(G = T, S, R = T)

∑S,R∈{T, F} P(G = T, S, R)

https://en.wikipedia.org/wiki/Bayesian_network

• Filtering:

• Forecasting: where

• Smoothing: where

• Most likely explanation: argmaxS0:t

P(St |O1:t = o1:t)
P(St′

|O1:t = o1:t) t′ > t
P(St′

|O1:t = o1:t) t′ < t
P(S1:t |O1:t = o1:t)

46

Inference Tasks: Latent States from Sensor Observations

keep track of current state for rational decision-making

evaluate possible courses of action 
based on their expected outcomes

better estimate of the state than was 
available at the time, useful for learning

tasks such as speech recognition

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

St−2 St−1 St St+1 St+2S0 S1

Ot−2 Ot−1 Ot Ot+1 Ot+2O1

47

Learning Task

• The transition and sensor models, if not yet known, can be learnt from observations

• Learning can be done as a byproduct of inference

‣ Inference provides an estimate of what transitions actually occurred and of what states

generated the sensor readings

‣ These estimates can be used to update the models

‣ The updated model provides new estimates, and the process iterates to convergence

‣Overall process is an instance of the Expectation Maximization (EM) algorithms

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

48

Filtering

• A useful filtering algorithm needs to maintain a current state estimate and update it

‣ rather than going back over the entire history of percepts for each update. as then the

cost of update will increase with time

• In other words, we need a recursive estimation algorithm of the form 

 for some function

• Computation can be viewed as being composed of two parts: project current state

forward in time, and then update it in light of the new sensor observation

P(St+1 |o1:t+1) = f(ot+1, P(St |o1:t)) f

ot+1

P(St+1 |o1:t+1) = P(St+1 |o1:t, ot+1) (dividing up the observations)
= αP(ot+1 |St+1, o1:t)P(St+1 |o1:t) (using Bayes' rule, α is normalizing constant)
= αP(ot+1 |St+1)P(St+1 |o1:t) (by the sensor Markov assumption)

update prediction

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

49

Filtering

• A useful filtering algorithm needs to maintain a current state estimate and update it

‣ rather than going back over the entire history of percepts for each update. as then the

cost of update will increase with time

• In other words, we need a recursive estimation algorithm of the form 

 for some function

• Computation can be viewed as being composed of two parts: project current state

forward in time, and then update it in light of the new sensor observation

P(St+1 |o1:t+1) = f(ot+1, P(St |o1:t)) f

ot+1

P(St+1 |o1:t+1) = P(St+1 |o1:t, ot+1) (dividing up the observations)
= αP(ot+1 |St+1, o1:t)P(St+1 |o1:t) (using Bayes' rule, α is normalizing constant)
= αP(ot+1 |St+1)P(St+1 |o1:t) (by the sensor Markov assumption)
= αP(ot+1 |St+1)∑

st

P(St+1 |st, o1:t)P(st |o1:t)

= αP(ot+1 |St+1)∑
st

P(St+1 |st)P(st |o1:t) (by Markov assumption)
sensor
model

transition
model recursion

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

50

Filtering

• A useful filtering algorithm needs to maintain a current state estimate and update it

‣ rather than going back over the entire history of percepts for each update. as then the

cost of update will increase with time

• In other words, we need a recursive estimation algorithm of the form 

 for some function

• Computation can be viewed as being composed of two parts: project current state

forward in time, and then update it in light of the new sensor observation

• One can view the filtered estimate as a message that is propagated
along the sequence, modified by each transition and updated by each new sensor
observation via where implements the
above equation and

P(St+1 |o1:t+1) = f(ot+1, P(St |o1:t)) f

ot+1

P(St |o1:t) f1:t

f1:t+1 = 𝖥𝖮𝖱𝖶𝖠𝖱𝖣(f1:t, ot+1) 𝖥𝖮𝖱𝖶𝖠𝖱𝖣
f1:0 = P(S0)

P(St+1 |o1:t+1) = αP(ot+1 |St+1)∑
st

P(St+1 |st)P(st |o1:t)

• Goal: compute

• Day 0: no observation - only prior belief .

• Day 1: umbrella appears, so

• Day 2: umbrella appears, so

P(R2 |u1:2)
P(R0) = ⟨0.5,0.5⟩

U1 = true

U2 = true

51

Example of Filtering

P(R1) = ∑
r0

P(R1 |r0)P(r0) = ⟨0.7,0.3⟩ × 0.5 + ⟨0.3,0.7⟩ × 0.5 = ⟨0.5,0.5⟩

P(R1 |u1) = αP(u1 |R1)P(R1) = α⟨0.9,0.2⟩⟨0.5,0.5⟩ = α⟨0.45,0.1⟩ ≈ ⟨0.818,0.182⟩

P(R2 |u1) = ∑
r1

P(R2 |r1)P(r1 |u1) = ⟨0.7,0.3⟩ × 0.818 + ⟨0.3,0.7⟩ × 0.182 ≈ ⟨0.627,0.373⟩

P(R2 |u1, u2) = αP(u2 |R2)P(R2 |u1) = α⟨0.9,0.2⟩⟨0.627,0.373⟩ = α⟨0.565,0.075⟩ ≈ ⟨0.883,0.117⟩

Intuitively, the probability of
rain increases from day 1 to
day 2 because rain persists.

52

Forecasting

• The task of forecasting can be seen simply as filtering without the addition of new sensor observation

• The filtering process already incorporates a one-step prediction

• It is easy to derive the following recursive computation for predicting the state at from a

prediction for

• Note that no sensor model is involved in forecasting

• if we try to predict further and further into the future, the predicted distribution for the states will converge

to the stationary distribution of the Markov process defined by the transition model

‣ mixing time: roughly, the time taken to reach the fixed point

- in practical terms, this dooms to failure any attempt to predict the actual state for a number of steps that is more
than a small fraction of the mixing time, unless the stationary distribution itself is strongly peaked in a small area of
the state space

- the more uncertainty there is in the transition model, the shorter will be the mixing time and the more the future is
obscured

t + k + 1
t + k

P(St+k+1 |o1:t) = ∑
st+k

P(St+k+1 |st+k)P(st+k |o1:t)
transition

model recursion

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

53

Smoothing

• Process of computing the distribution over past states given evidence up to the present 
i.e.

• Another recursive message-passing approach by splitting the computation into two parts: the
observations up to and the observations from to

P(Sk |o1:t) for 0 ≤ k < t

k k + 1 t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

Sk StS0 S1

Ok OtO1

P(Sk |o1:t) = P(Sk |o1:k, ok+1,t)
= αP(Sk |o1:k)P(ok+1,t |Sk, o1:k) (using Bayes' rule, given o1:k)
= αP(Sk |o1:k)P(ok+1,t |Sk) (using conditional independence)
= αf1:k × bk+1:1 (× represents pointwise multiplication of vectors)

backward
message

54

Computing Backward Message bk+1:t

• By a recursive process that runs backward from

• In message form, we have

• Initialization with where is a vector of 1s because is an empty
sequence and so the probability of observing it is 1.

t

bk+1:t = 𝖡𝖠𝖢𝖪𝖶𝖠𝖱𝖣(bk+2:t, ok+1)
bt+1:t = P(ot+1:t |St) = P(|St) = 1 1 ot+1:t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

P(ok+1:t |Sk) = ∑
sk+1

P(ok+1:t |Sk, sk+1)P(sk+1 |Sk) (conditioning on Sk+1)

= ∑
sk+1

P(ok+1:t |sk+1)P(sk+1 |Sk) (by conditional independence)

= ∑
sk+1

P(ok+1, ok+2:t |sk+1)P(sk+1 |Sk)

= ∑
sk+1

P(ok+1 |sk+1)P(ok+2:t |sk+1)P(sk+1 |Sk) (by conditional independence of ok+1 & ok+2:t given sk+1

sensor
model

transition
modelrecursion

• Goal: computing the smoothed estimate for the probability of rain at time given the umbrella
observations on days 1 and 2

• Note that the smoothed estimate for rain on day 1 is higher than the filtered estimate (0.818) because the
umbrella on day 2 makes it more likely to have rained on day 2; in turn, because rain tends to persist, that
makes it more likely to have rained on day 1.

k = 1

55

Example of Smoothing

P(R1 |u1, u2) = αP(R1 |u1)P(u2 |R1)
we know P(R1 |u1) = ⟨0.818,0.182⟩
while P(u2 |R1) can be computed by applying the backward recursion
 P(u2 |R1) = ∑

r2

P(u2 |r2)P(|r2)P(r2 |R1) = (0.9 × 1 × ⟨0.7,0.3⟩) + (0.2 × 1 × ⟨0.3,0.7⟩) = ⟨0.69,0.41⟩

so that P(R1 |u1, u2) = α⟨0.818,0.182⟩ × ⟨0.69,0.41⟩ ≈ ⟨0.883,0.117⟩

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

56

Forward-Backward Algorithm for Smoothing

• Both the forward and backward recursions take a constant amount of time per step; hence, the time
complexity of smoothing at time step with respect to observation is

• If we want to smooth the whole sequence, one obvious method is simply to run the whole smoothing
process once for each time step to be smoothed.

‣ This results in a time complexity of

• A better approach uses a simple application of dynamic programming to reduce the complexity to

‣ The key to the linear-time algorithm is to record the results of forward filtering over the whole sequence

‣ Then we run the backward recursion from down to , computing the smoothed estimate at each step from

the computed backward message and stored forward message

k o1:t O(t)

O(t2)
O(t)

t 1 k
bk+1:t f1:k

P(S0)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

57

Drawbacks of Forward-Backward Algorithm in Practice

• Space complexity can be too high when the state space is large and the sequences are long

‣ It uses space where is the size of the representation of the forward message

‣ Can be reduced to with a concomitant increase in the time complexity by a factor of

• It needs to be modified to work in an online setting where smoothed estimates must be computed for
earlier time slices as new observations are continuously added to the end of the sequence

‣ The most common requirement is for fixed-lag smoothing, which requires computing the smoothed estimate

 for fixed , 
i.e. smoothing is done for time step that is steps behind the current time

‣ Inefficient to run Forward-Backward over the -step window for each sensor observation

‣ Instead, fixed-lag smoothing can, in some cases, be done in constant time per update independent of

O(| f | t) | f |
O(| f | log t) log t

P(St−d |o1:t) d
d

d
d

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

58

Finding the Most Likely Sequence

• Problem: given sensor observation sequence what state sequence is most likely to explain this?

• Brute force approach

‣ enumerate all state sequences and computer their likelihood: expensive!

• Incorrect approach

‣ use smoothing to find the posterior distribution for the state at each time step; then construct the sequence,

using at each step the state that is most likely according to the posterior

‣ most likely sequence sequence of most likely states

- posterior distributions computed by smoothing are distributions over single time steps, whereas to find the most
likely sequence we must consider joint probabilities over all the time steps.

• Efficient linear time (and space) algorithm: the Viterbi algorithm

o1:t

≠

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

59

Viterbi Algorithm

• View each state sequence as a path through a graph whose nodes are the possible states at each time step

• The likelihood of any path is the product of the transition probabilities along the path and the probabilities of

the given observations at each state

• Because of the Markov property, there is a recursive relationship between most likely paths to each state

 and most likely paths to each state

‣ Most likely path to each most likely path to some plus one more step  
 

 

or, where , and

‣ Similar to filtering algorithm: it starts at time 0 and and then runs forward along the sequence, computing the
vector message

‣ Eventually will contain the probability for the most likely sequence reaching each of the final states

- One can thus easily select the final state of the most likely sequence overall

- In order to identify the actual sequence, as opposed to just computing its probability, the algorithm will also need to

record, for each state, the best state that leads to it

st+1 st
st+1 = st

max
s1:t

P(s1:t, St+1 |o1:t+1) = P(ot+1 |St+1) max
st

(P(St+1 |st) max
s1:t−1

P(s1:t−1, st |o1:t))

m1:t+1 = P(ot+1 |St+1) max
st

(P(St+1 |st)m1:t) m1:t = max
s1:t−1

P(s1:t−1, St |o1:t)) m1:0 = P(S0)

m
m1:t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

60

Example of Most Likely Sequence

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

61

Hidden Markov Models

• A temporal probabilistic model in which the process state is described by a single, discrete RV

‣ The possible values of the variable are the possible states of the world

• The restricted structure allows for a simple and elegant matrix implementation of all the basic algorithms

‣ Let the state variable be an integer where is the number of possible states

‣ Transition model becomes an matrix where

‣ Rain/Umbrella example 

• What happens if one has a model with two or more state variables?

‣ One can still fit it into the HMM framework by combining the variables into a single “megavariable” whose

values are all possible tuples of values of the individual state variables.

St ∈ {1,2,⋯ S} S
P(St |St−1) S × S T Tij = P(St = j |St−1 = i)

T = P(St = St−1) = (0.7 0.3
0.3 0.7)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

62

Hidden Markov Models (contd.)

• Although the state must be a single, discrete variable, there is no similar restriction on observations.

‣ This is because observations variations are known, so that there is no need to keep track their distributions

‣ If a variable is not observed, it can simply be dropped from the model for that time step.

‣ There can be many observation variables, both discrete and continuous

• However, one can also put sensor model in matrix form

‣ Because observation at every time step is known, only need to specify for each state how likely is to

occur, i.e.

‣ Specified as diagonal matrix where the -th diagonal entry is

• Umbrella world:

‣ If then 
 

‣ and if then

ot t ot
P(ot |St = i) ∀i ∈ {1,2,⋯ S}

S × S Ot i P(ot |St = i)

Umbrellat = true

Umbrellat = false

Ot = (0.9 0
0 0.2)

Ot = (0.1 0
0 0.8)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

63

Forward-Backward Algorithm in Matrix-Vector Form

• Column vectors to represent the forward & backward messages

‣ forward equation becomes: 

‣ backward equation becomes: 

• Complexity

‣ Time:

- each step requires multiplying an element vector with an matrix

‣ Space:

- the forward pass stores stores vectors of size

• Matrix-Vector formulation allows for improvements too, e.g.,

‣ constant space algorithm for smoothing, independent of

‣ online smoothing with fixed lag

f1:t+1 = αOt+1T𝖳f1:t

bk+1:t = TOk+1bk+2:t

O(S2t)
S S × S

O(St)
t S

t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

P(S0)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

64

Constant Space Algorithm for Smoothing (independent of)t

• Idea: Smoothing for any particular time index requires the simultaneous presence of
both the forward and backward messages and  

• Forward-Backward algorithm achieves this by storing the s computed on the forward
pass so that they are available during the backward pass.

• Instead, one can do a single pass that propagates both and in the same direction

‣ First do standard forward pass to compute

- forgetting all the intermediate results

‣ Then run backward pass for both and together using a backward propagation of as 

k
f1:k bk+1:t

P(Sk |o1:t) = αf1:k × bk+1:1

f

f b
ft:t

f b f
f1:t = α′ (T𝖳)−1O−1

t+1f1:t+1

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

65

Online Smoothing with Fixed Lag d

• Goal: smooth at time when the current time is , i.e. compute

• Then, when a new observation arrives, we need to compute

• How to do this incrementally?

‣ First, we can compute from using the standard filtering process 

‣ But, there is no analogous simple relationship between new and old ☹

- Trick: repeatedly use to get

 and  

 
which gives the incremental update

t − d t αf1:t−d × bt−d+1:1

αf1:t−d+1 × bt−d+2:1

f1:t−d+1 f1:t−d
P(St+1 |o1:t+1) = αP(ot+1 |St+1)∑

st

P(St+1 |st)P(st |o1:t)

bt−d+2:1 bt−d+1:1
bk+1:t = TOk+1bk+2:t

bt−d+1:1 = (
t

∏
i=t−d+1

TOi)bt+1:t = Bt−d+1:t1 bt−d+2:1 = (
t+1

∏
i=t−d+2

TOi)bt+2:t+1 = Bt−d+2:t+11

Bt−d+2:t+1 = O−1
t−d+1T

−1Bt−d+1:tTOt+1

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

66

Online Algorithm for Smoothing with Fixed Lag d

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

67

HMM Application: Vacuum Robot Localization

• Discrete grid where represents the current location of the robot

• Robot can move randomly to any of the adjacent empty squares from its current location 

i.e.,

• Noisy binary sensors with error rate report whether the four adjacent NESW locations are empty or not,
i.e. is a 4-bit sequence taking values such as  
so that  
where

• The robot can use filtering to estimate current location, and smoothing to get past location

st ∈ 1,2,3,⋯42

P(St+1 = j |St = i) = Tij = 1/(# of empty adjacent locations) if j ∈ 𝖭𝖤𝖨𝖦𝖧𝖡𝖮𝖱𝖲(𝗂) else 𝟢
ϵ

Ot ot = 1011
P(Ot = ot |St = i) = (ot)ii = (1 − ϵ)4−ditϵdit

dit = is the discrepancy between the true values for square i and the actual reading ot

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

68

Limitations of HMM

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

68

Limitations of HMM

• Consider vacuum robot that has the policy of going straight for as long as it can

‣ Then the state will need to including both location and heading, and so could take

 values, so that will be of size

- still manageable though large
42 × 8 = 168 T 1682 = 28,224

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

68

Limitations of HMM

• Consider vacuum robot that has the policy of going straight for as long as it can

‣ Then the state will need to including both location and heading, and so could take

 values, so that will be of size

- still manageable though large
42 × 8 = 168 T 1682 = 28,224

• What if we add the possibility of dirt in each of the 42 squares?

‣Now the number of states is multiplied by and has more than entries 🙁242 T 1029

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

68

Limitations of HMM

• Consider vacuum robot that has the policy of going straight for as long as it can

‣ Then the state will need to including both location and heading, and so could take

 values, so that will be of size

- still manageable though large
42 × 8 = 168 T 1682 = 28,224

• What if we add the possibility of dirt in each of the 42 squares?

‣Now the number of states is multiplied by and has more than entries 🙁242 T 1029

• In general if state is composed of discrete variables that can take at most values
each, then the state transition matrix will have size and the per-update
computation time will be also

‣While HMMs used a lot (e.g. speech recognition), they are fundamentally limited in their

ability to represent complex processes

‣ Problem: represent states as integers and don’t exploit any internal structure

n d
O(d2n)

O(d2n)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

69

Kalman Filter

• In many applications we need to reconstruct trajectory of some variable of interest (position, speed, blood
sugar level, etc.) from irregular and noisy observations

• If variables are discrete, one can use HMMs

• Kalman Filter targets the case when the variables of interest are continuous

‣ E.g. flight of incoming enemy aircraft or a pedestrian on the road may be specified by six continuous variables:

three for position and three for velocity

• Uses linear-Gaussian distributions for conditional densities to represent the transition and sensor models

‣ next state is a linear function of current state plus some Gaussian noise

‣ sensor observation is a linear function of current state plus some Gaussian noise

(Xt, Yt, Zt) (·Xt,
·Yt,

·Zt)

St+1 St
Ot St

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

70

Consider Tracking a Vehicle from Sporadic Observations

•

• Consider just coordinate and let be the time interval
between observations

• Then, assuming constant velocity during the interval and
no noise

• Adding Gaussian noise (to account for wind variation,
etc.), we obtain a linear–Gaussian transition model: 

• Note: this is a specific case of linear-Gaussian, and when

generalizing to dimensions then we need to use
multivariate Gaussian with a -element mean and a
covariance matrix

St = (Xt, Yt, Zt,
·Xt,

·Yt,
·Zt)

Xt Δ

Xt+Δ = Xt + ·XtΔ

P(Xt+Δ = xt+Δ |Xt = xt,
·Xt = ·xt) = N(xt+Δ; xt + ·xtΔ, σ2)

d
d d × d

Σ
Ot+1Ot

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

71

Updating Gaussian Distributions

• Special property of linear-Gaussian: closed under Bayesian updating

‣ i.e. given an observation, the posterior distribution is still in the linear–Gaussian family

• Recall filtering:

• If current distribution is Gaussian and the transition model is linear-Gaussian then
the the one-step predicted distribution given by the following is also Gaussian.

• If the prediction is Gaussian and the sensor model is linear–Gaussian, then,
after conditioning on the new observation , the updated distribution below is also Gaussian.

P(St |o1:t) P(St+1 |st)

P(St+1 |o1:t) P(ot+1 |St+1)
ot+1

P(St+1 |o1:t+1) = αP(ot+1 |St+1)∑
st

P(St+1 |st)P(st |o1:t)
sensor
model

transition
model recursion

P(St+1 |o1:t) = ∫st

P(St+1 |st)P(st |o1:t)dst

P(St+1 |o1:t+1) = αP(ot+1 |St+1)P(St+1 |o1:t)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

72

Kalman Filter in Summary

• operator for Kalman filtering takes a Gaussian forward message specified by a mean
and covariance , and produces a new multivariate Gaussian forward message specified by a
mean and covariance .

‣ This translates into computing a new mean and covariance from the previous mean and covariance

• So if we start with a Gaussian prior , filtering with a linear–Gaussian model
produces a Gaussian state distribution for all time

‣ Not only nice and elegant, but also important: except for a few special cases such as this, filtering with

continuous or hybrid (discrete and continuous) networks generates state distributions whose representation
grows without bound over time

• Simple univariate case: state variable with nosy observation

• General multivariate case

𝖥𝖮𝖱𝖶𝖠𝖱𝖣 f1:t μt
Σt f1:t+1

μt+1 Σt+1

f1:0 = P(S0) = N(μ0, Σ0)

Xt Zt

Kalman gain matrix
Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

73

Making Intuitive Sense of Kalman Filter General Case

Kalman gain matrix

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

73

Making Intuitive Sense of Kalman Filter General Case

Kalman gain matrix

Predicted state at t + 1

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

73

Making Intuitive Sense of Kalman Filter General Case

Kalman gain matrix

Predicted state at t + 1 Predicted observation at t + 1

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

73

Making Intuitive Sense of Kalman Filter General Case

Kalman gain matrix

Predicted state at t + 1 Predicted observation at t + 1

Error in the predicted observation

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

73

Making Intuitive Sense of Kalman Filter General Case

Kalman gain matrix

Predicted state at t + 1 Predicted observation at t + 1

Error in the predicted observation

Measure of how seriously to take the new
observation relative to the prediction

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

74

Real-time Computation of Kalman Filter

Kalman gain matrix

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

74

Real-time Computation of Kalman Filter

Kalman gain matrix

Independent of observations zt

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

74

Real-time Computation of Kalman Filter

Kalman gain matrix

Independent of observations zt

The sequence of values for and can be computed offline,
and so calculations during online tracking are modest.

Σt Kt

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

75

Kalman Filtering and Smoothing for Object Moving in PlaneX − Y

• State variables are so that and are matrices

• Variance in the right plot (Kalman Smoothing) is much reduced except at the start and the end. Why?

X = (X, Y, ·X, ·Y) F, Σx, H, Σz 4 × 4

ovals indicated
the variance in the
position estimate

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

76

Applicability of Kalman Filtering

• Classical applications

‣ radar tracking of aircrafts and missiles, acoustic tracking of submarines and ground vehicles, visual tracking of

vehicles and people

• More esoteric applications

‣ reconstruct particle trajectories from bubble chamber photographs, ocean currents from satellite surface

measurements

• Applicable to any system with continuous state variables and noisy measurements

‣ national economies, human body, chemical plants, nuclear reactors, plant ecosystems, etc.

• But results may not be valid or useful

‣ strong assumption of linear-Gaussian transition and sensor models

• Extended Kalman Filter (EKF): overcome nonlinearities in the system being modeled

‣ models the system as locally linear in in the neighborhood of

‣ works well for smooth, well-behaved systems

- allows the tracker to maintain and update a Gaussian state distribution that is a reasonable approximation to the
true posterior

• What about systems that are “unsmooth” and “poorly behaved”?

xt xt = μt

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

77

Switching Kalman Filter

• Track a bird as it flies through the jungle and appears to be heading at high speed straight for a tree trunk

• The Kalman filter, whether regular or extended, can make only a Gaussian prediction of the location of the

bird, and the mean of this Gaussian will be centered on the trunk

• A reasonable model of the bird, on the other hand, would predict evasive action to one side or the other

‣ Such a model is highly nonlinear, because the bird’s decision varies sharply depending on its precise location

relative to the trunk.

• Switching Kalman Filter: multiple Kalman filters run in parallel, each using a different model of the system

‣ E.g., one for straight flight, one for sharp left turns, and one for sharp right turns

‣ A weighted sum of predictions is used, where the weight depends on how well each filter fits the current data

‣ A special case of the general dynamic Bayesian network model

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

78

Dynamic Bayesian Networks (DBNs)

• Special case of Bayesian Networks: infinitely many variables grouped in time slices

‣ Each slice can have any number of state variables and observation variables

• For simplicity, we assume that

‣ the variables, their links, and their conditional distributions are exactly replicated from

slice to slice (time-homogeneous)

‣ the DBN represents a first-order Markov process, i.e., each variable can have parents

only in its own slice or the immediately preceding slice.

st ot

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

• Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

• Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

• Every discrete-variable DBN can be represented as an HMM

‣ We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

• Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

• Every discrete-variable DBN can be represented as an HMM

‣ We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

• If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

• Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

• Every discrete-variable DBN can be represented as an HMM

‣ We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

• If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?

• The difference: by decomposing the state of a complex system into its constituent variables, we can take
advantage of sparseness in the temporal probability model.

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

79

DBN vs. HMM

• Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

• Every discrete-variable DBN can be represented as an HMM

‣ We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

• If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?

• The difference: by decomposing the state of a complex system into its constituent variables, we can take
advantage of sparseness in the temporal probability model.

• Consider: a temporal process with discrete variables, each with up to values

‣ HMM model will need a transition matrix of size

‣ DBN model has size , assuming each node can have at most parents

‣ E.g. vacuum robot with 42 possibly dirty locations: size reduces from to a few thousands

n d
O(d2n)

O(ndk) k
5 × 1029

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

80

DBN vs. Kalman Filter

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

80

DBN vs. Kalman Filter

• Every Kalman filter model can be represented in a DBN with continuous variables and linear–Gaussian
conditional distributions

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

80

DBN vs. Kalman Filter

• Every Kalman filter model can be represented in a DBN with continuous variables and linear–Gaussian
conditional distributions

• However, not every DBN can be represented by a Kalman filter model

‣ In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution

- e.g. a single “bump” in a particular location in a position tracking system

‣ DBNs, on the other hand, can model arbitrary distributions

‣ Many real-world applications require this

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

80

DBN vs. Kalman Filter

• Every Kalman filter model can be represented in a DBN with continuous variables and linear–Gaussian
conditional distributions

• However, not every DBN can be represented by a Kalman filter model

‣ In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution

- e.g. a single “bump” in a particular location in a position tracking system

‣ DBNs, on the other hand, can model arbitrary distributions

‣ Many real-world applications require this

• E.g. consider a system that tracks location of my keys

‣ They might be in my pocket, on the bedside table, on the kitchen counter, dangling from the front door, or

locked in the car, …

‣ A single Gaussian bump that included all these places would have to allocate significant probability to the keys

being in mid-air above the front garden!

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

80

DBN vs. Kalman Filter

• Every Kalman filter model can be represented in a DBN with continuous variables and linear–Gaussian
conditional distributions

• However, not every DBN can be represented by a Kalman filter model

‣ In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution

- e.g. a single “bump” in a particular location in a position tracking system

‣ DBNs, on the other hand, can model arbitrary distributions

‣ Many real-world applications require this

• E.g. consider a system that tracks location of my keys

‣ They might be in my pocket, on the bedside table, on the kitchen counter, dangling from the front door, or

locked in the car, …

‣ A single Gaussian bump that included all these places would have to allocate significant probability to the keys

being in mid-air above the front garden!

• Real world has purposive agents, obstacles, and pockets which introduce “nonlinearities” and require
combinations of discrete and continuous variables in order to get reasonable models

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

81

Constructing DBNs

• To construct a DBN, one must specify three kinds of
information: the prior distribution over the state variables,

; the transition model, ; and the sensor
model,

• To specify the transition and sensor models, one must also
specify the topology of the connections between successive
slices and between the state and evidence variables.

• Because the transition and sensor models are assumed to be
time-homogeneous—the same for all —one only needs to
specify and for the first slice

‣ the complete DBN with an unbounded number of time slices can

be constructed as needed by copying the first slice

P(S0) P(St+1 |St)
P(Ot |St)

t
P(St+1 |St) P(Ot |St)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

82

Example: Battery Powered Robot Moving in PlaneX − Y

• State Variables

‣ Position:

‣ Velocity:

‣ Battery Status:

• Topology:

‣ The position at the next time step depends on the current

position and velocity

‣ The velocity at the next step depends on the current velocity

and the state of the battery

‣ The battery state at the next step depends on the current

velocity and the current state of the battery

• Sensor observations

‣ Some method of measuring position—perhaps a fixed camera

or onboard GPS (Global Positioning System)—yielding

‣ Battery charge meter yielding

Xt = (Xt, Yt)·Xt = (·Xt,
·Yt)

Batteryt

zt
BMetert

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

83

A Deeper Look at the Sensor Model BMetert

• Assume discrete values in the range 0 to 5 for both and

‣ If the meter was always accurate then the conditional probability table (CPT) for will

have probabilities of 1.0 along the diagonal and 0 elsewhere

• Reality: noise always creeps into measurements

‣ For continuous measurements, a Gaussian distribution with a small variance might be used

‣ For our discrete variables, we can approximate a Gaussian

- using a distribution in which the probability of error drops off in the 
appropriate way, so that the probability of a large error is very small

• However, in real world sensors also fail

‣ When a sensor fails, it simply sends nonsense

‣ Transient failure: the sensor occasionally decides to send nonsense

- model by a higher probability for large errors than gaussian noise

‣ Persistent failure: the sensor fails and stays failed

- model by an additional state variable

‣ Other issues: sensor drift, sudden decalibration, and the effects  

of exogenous conditions (such as weather) on sensor readings

Batteryt BMetert
P(BMetert |Batteryt)

BMBroken

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

84

Exact inference in DBNs by Unrolling

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

84

Exact inference in DBNs by Unrolling

• Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

84

Exact inference in DBNs by Unrolling

• Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

• But very inefficient 😰

‣ Space requires to filter or smooth on would require space and thus grown without bound

‣ Inference time per update will also increase as

o1:t O(t)
O(t)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

84

Exact inference in DBNs by Unrolling

• Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

• But very inefficient 😰

‣ Space requires to filter or smooth on would require space and thus grown without bound

‣ Inference time per update will also increase as

o1:t O(t)
O(t)

• What about recursive algorithms with “constant” time and space complexity per filtering update?

‣ Unfortunately exponential: pace complexity and time complexity  

with state variables of domain size and maximum number of parents
O(dn+k) O(ndn+k)

n d k
Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

85

Approximate inference in DBNs

• Idea: randomized sampling algorithms, aka Monte Carlo algorithms

‣ Work by generating random events based on the probabilities in the DBN and counting up the different

answers found in those random events

‣ Provide approximate answers whose accuracy depends on the number of samples generated

• Two families of algorithms used for general Bayes Networks

‣ Direct sampling

- generate each sample from scratch

- e.g. Likelihood Weighting

‣ Markov chain sampling
- generate a sample by making a random change to the preceding sample

- e.g. Markov Chain Monte Carlo (MCMC)

• These can be adapted for DBNs

‣ Require several improvements to be practical

• E.g. Particle Filtering, an adaption of Likelihood Weighting

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

86

Particle Filtering

• First we generate a population of samples from the prior distribution

• Then the update cycle is repeated for each time step:

‣ Each sample is propagated forward by sampling the next state value given the current value for the

sample, given the transition model

‣ Each sample is weighted by the likelihood it assigns to the new observation,

‣ The population is resampled to generate a new population of samples

- Each new sample is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

N P(S0)

st+1 st
P(St+1 |St)

P(ot+1 |st+1)
N

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

87

Particle Filtering

• First we generate a population of samples from the prior distribution

• Then the update cycle is repeated for each time step:

‣ Each sample is propagated forward by sampling the next state value given the current value for the

sample, given the transition model

‣ Each sample is weighted by the likelihood it assigns to the new observation,

‣ The population is resampled to generate a new population of samples

- Each new sample is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

N P(S0)

st+1 st
P(St+1 |St)

P(ot+1 |st+1)
N

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

88

Particle Filtering

• First we generate a population of samples from the prior distribution

• Then the update cycle is repeated for each time step:

‣ Each sample is propagated forward by sampling the next state value given the current value for the

sample, given the transition model

‣ Each sample is weighted by the likelihood it assigns to the new observation,

‣ The population is resampled to generate a new population of samples

- Each new sample is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

• Important property of Particle Filtering: it is consistent

‣ i.e. gives the correct probabilities as tends to infinity 

  

where is the # of samples occupying state after observations have been processed

• Also, efficient for many practical applications and is therefore widely used

‣ Maintains a good approximation to the true posterior using a constant number of samples

‣ Handles combinations of discrete and continuous variables

‣ Handles nonlinear and non-Gaussian models for continuous variables

N P(S0)

st+1 st
P(St+1 |St)

P(ot+1 |st+1)
N

N
lim
n→∞

N(st |o1:t)/N = P(st |o1:t) = ft

N(st |o1:t) st o1:t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

89

Revisit HMM

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."

90

Learning HMM Model

• Supervised: Learn transition and sensor models from labeled data

‣ Access to both observations and ground truth

‣ Ground truth via manual labeling, addition sensor etc. Costly!

• Unsupervised: Learning from observations alone

‣ Maximum likelihood estimate of the parameters of the HMM given the set of output sequences (intractable 😰)

‣ Efficient practical approach: learning as a byproduct of inference - similar to Expectation Maximization algorithm

- Inference provides an estimate of what transitions actually occurred and of what states generated the observations

- These estimates can be used to update the models

- The updated model provides new estimates, and the process iterates to convergence

• Training is also possible with prior expert-provided knowledge of some aspects of the model

• individually trained HMM can be combined to construct a larger HMM model

‣ e.g., of a complex activities with clear sub-activities structure

o1:t s0:t

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

St−2 St−1 St St+1 St+2S0 S1

Ot−2 Ot−1 Ot Ot+1 Ot+2O1

91

A Common Algorithm: Baum–Welch

• It gives local optimum: gradient descent

• References:

‣ https://www.youtube.com/watch?v=JRsdt05pMoI

- part of an excellent series on HMM

‣ https://en.wikipedia.org/wiki/Baum–Welch_algorithm

‣ https://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-410-principles-of-autonomy-and-
decision-making-fall-2010/lecture-notes/
MIT16_410F10_lec21.pdf

https://tex.stackexchange.com/questions/480005/baum-welch-algorithm-description

https://www.youtube.com/watch?v=JRsdt05pMoI
https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf

92

Limitations of HMM

• Difficulty in representing multiple interacting activities (concurrent or interwoven)

• Incapable of capturing long-range or transitive dependencies of the observations due

to its very strict independence assumptions (on the observations)

• Without significant training, an HMM may not be able to recognize all of the possible

observation sequences that can be consistent with a particular activity.

• In practice:

‣Many activities are concurrent or interwoven

‣Many activities may have non-deterministic natures

- some steps of the activities may be done in any order

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."

93

A More Flexible Alternative: Conditional Random Field (CRF)

• Addresses practical requirements that HMM cannot

• Two types of models

‣Generative: finds a joint probability distribution of a hidden variable and an

observed variables

‣ Discriminative: finds only the conditional probability

• Both can be used to find a hidden state transition from observation sequences

• What type is HMM?

p(x, y) y
x

p(y |x)

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."

94

A More Flexible Alternative: Conditional Random Field (CRF)

• Addresses practical requirements that HMM cannot

• Two types of models

‣Generative: finds a joint probability distribution of a hidden variable and an

observed variables

‣ Discriminative: finds only the conditional probability

• Both can be used to find a hidden state transition from observation sequences

• What type is HMM? Generative!

• CRF: a conditional distribution with an associated graphical structure

‣ Attempts to find only the conditional probability , i.e. discriminative approach

‣ Allows for arbitrary, non-independent relationships among the observation sequences

‣ Relaxes the independence assumptions

- the hidden state probabilities may depend on the past and even future observations

‣Modeled as an undirected acyclic graph with two types of nodes: observed & unobserved

p(x, y) y
x

p(y |x)

p(y |x)

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."

95

Digression: Markov Random Fields (MRFs)

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

95

Digression: Markov Random Fields (MRFs)

• Represented by a graph

‣ nodes represent random variables

‣ edges collectively represent the dependencies between them

G = (V, E)

• The graph can be factorized into different cliques or factors

‣ each governed by a factor function with its scope being a subset of 

random variables where

J
Φj

𝖣j Φj(dj) > 0∀dj ∈ 𝖣j

• The unnormalized joint probability of the variables is the product of all 
the factor function, so that

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

95

Digression: Markov Random Fields (MRFs)

• Represented by a graph

‣ nodes represent random variables

‣ edges collectively represent the dependencies between them

G = (V, E)

• The graph can be factorized into different cliques or factors

‣ each governed by a factor function with its scope being a subset of 

random variables where

J
Φj

𝖣j Φj(dj) > 0∀dj ∈ 𝖣j

• The unnormalized joint probability of the variables is the product of all 
the factor function, so that

Z

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

95

Digression: Markov Random Fields (MRFs)

• Represented by a graph

‣ nodes represent random variables

‣ edges collectively represent the dependencies between them

G = (V, E)

• The graph can be factorized into different cliques or factors

‣ each governed by a factor function with its scope being a subset of 

random variables where

J
Φj

𝖣j Φj(dj) > 0∀dj ∈ 𝖣j

• The unnormalized joint probability of the variables is the product of all 
the factor function, so that

• Gibb’s Notation: represent the joint as a Gibbs  
distribution by operating on factor functions in  
log space by using β(dⱼ)= log(ϕ(dⱼ))

‣ X is the set of all the random variables in the graph

Z

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

96

Conditional Random Field Model

• Assume a MRF divides into two sets of random variables Y (unobserved) and X (observed) respectively

• CRF ia special case of this MRF wherein the graph satisfies the property:

‣ A variable’s neighboring nodes or variables are also called the Markov Blanket of that variable

• One such graph that satisfies the above property is the chain-structured graph shared below:

“When we condition the graph on X globally i.e. when the values of random variables in X is fixed or
given, all the random variables in set Y follow the Markov property p(Yᵤ|X,Yᵥ, u≠v) = p(Yᵤ|X,Yₓ, Yᵤ~Yₓ),
where Yᵤ~Yₓ signifies that Yᵤ and Yₓ are neighbors in the graph.”

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

https://en.wikipedia.org/wiki/Markov_blanket

97

Making Inferences with CRF

• CRF is a discriminative model i.e. it models the conditional probability P(Y|X)

‣ i.e. X is always given or observed

• Therefore the graph ultimately reduces to a simple chain

• As we condition upon X and we are trying to find the corresponding Yᵢ for every Xᵢ , X and Y are also
called the evidence (sensor observations) and label variables respectively

• Training problem: maximizing the log likelihood wrt all model parameters

‣ See “Conditional Random Fields Explained” by Aditya Prasad @ the URL in left bottom footer

‣ Many off-the-shelf packages

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776

98

CRF Version of the Eating Activity Example

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."

99

• scikit-learn (https://scikit-learn.org) provides many general classification and regression algorithms

• Pomegranate package for Python

‣ Many probabilistic models: HMM, Naive Bayes, and various others…

‣ Schreiber, Jacob. "Pomegranate: fast and flexible probabilistic modeling in python." The Journal of Machine

Learning Research 18, no. 1 (2017): 5992-5997.

- https://jmlr.org/papers/volume18/17-636/17-636.pdf

‣ https://github.com/jmschrei/pomegranate and https://pomegranate.readthedocs.io

• pgmpy python library for working with Probabilistic Graphical Models.

‣ Many probabilistic graphs models: Dynamic Bayesian Networks, Naive Bayes etc.

‣ https://github.com/pgmpy/pgmpy and http://pgmpy.org

• Fun with Hidden Markov Models in PyTorch (by Loren Lugosch)

‣ Based on: Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech

recognition." Proceedings of the IEEE 77, no. 2 (1989): 257-286.

- https://www.cs.cmu.edu/~cga/behavior/rabiner1.pdf

‣ https://colab.research.google.com/drive/1IUe9lfoIiQsL49atSOgxnCmMR_zJazKI

• python-crfsuite python binding for CRFSuite

‣ An implementation of Conditional Random Fields (CRFs) for labeling sequential data

‣ https://github.com/chokkan/crfsuite

Practical Resources

https://scikit-learn.org
https://jmlr.org/papers/volume18/17-636/17-636.pdf
https://github.com/jmschrei/pomegranate
http://pomegranate.readthedocs.io
https://github.com/pgmpy/pgmpy
http://pgmpy.org
https://www.cs.cmu.edu/~cga/behavior/rabiner1.pdf
https://colab.research.google.com/drive/1IUe9lfoIiQsL49atSOgxnCmMR_zJazKI
https://github.com/chokkan/crfsuite

100

Practical Resources (contd.)

• FilterPy package for Python

‣ Python library that implements a number of Bayesian filters, most notably Kalman filters

‣ https://github.com/rlabbe/filterpy

‣ Excellent related interactive book: Kalman and Bayesian Filter in Python

- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/

• pykalman library for Python

‣ Kalman Filter, Kalman Smoother, and EM

‣ https://pykalman.github.io and https://github.com/pykalman/pykalman

• TinyEKF Lightweight C/C++ Extended Kalman Filter with Python

‣ https://github.com/simondlevy/TinyEKF

• tsBNgen for generating synthetic time series data in Python (from Prof. Pottie’s group)

‣ Python package to generate time series data based on an arbitrary Bayesian Network structures

‣ Tadayon, Manie, and Greg Pottie. "tsBNgen: A Python Library to Generate Time Series Data from an Arbitrary

Dynamic Bayesian Network Structure." arXiv preprint arXiv:2009.04595 (2020).

- https://arxiv.org/pdf/2009.04595.pdf

‣ https://github.com/manitadayon/tsBNgen#Features

https://github.com/rlabbe/filterpy
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/
https://pykalman.github.io
https://github.com/pykalman/pykalman
https://github.com/simondlevy/TinyEKF
https://arxiv.org/pdf/2009.04595.pdf
https://github.com/manitadayon/tsBNgen#Features

