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Sensor Measurement # State

- (Challenge: sensors themselves do not provide environment state
» E.g. sensors do not say “There is Mr. Smith sitting on a chair and
wearing a black suit”

- Rather, sensors may tell

Light level

Color

Whether it is touching something in an area
Sound level

Distance to nearest object

Etc.

vV VvV Vv Vv Vv V9

» Sensors measure physical quantities
» Need to be processed to be useful

- Same physical quantity may be measurable by different sensors
» Can help improve accuracy in the presence of error and noise

Physical Property — Sensing Technology
Contact — bump, switch
Distance — ultrasound, radar, IR

Light Level — photocells, cameras
Sound Level — microphones
Strain — strain guages
Rotation — encoders, potentiometers
Acceleration — accelerometers, gyroscopes
Magnetism — compasses
Smell — chemical sensors
Temperature — thermal, IR
Inclination — Inclinometers, gyroscopes
Pressure — pressure guages
Altitude — altimeters

Some sensors and the information they measure




Example: Measuring distance to an object

Ultrasound
» time of flight

Infra-red
» return signal intensity

Two cameras
» stereo

Single camera
- using perspective + assumption about environment structure

Laser + fixed camera
» triangulate distance

Laser-based structured lighting (overlay grid pattern) + fixed camera
» distance from distortion in pattern

Others?



Example: Detecting people

- Use a camera?
» Camera/vision is a very powerful modality
» Intensity, color, texture, shape etc.
» But very costly in processing

- Other ways: using sensors simpler than vision
» Temperature: search for temperature ranges corresponding to human body temperature
» Movement: if everything else is static, movement means people
» Color: look for colors corresponding to human skin or clothes/uniforms
» Distance: if an otherwise open distance range becomes blocked, there is likely a human being

» Often simpler sensors are enough
» E.g. burglar alarm
» can’t distinguish humans from other animals, but non-human burglars are rare
» Plus, can help improve accuracy of vision



Activity Detection: Ambient Sensors in the Environment

» Passive Infrared (PIR)

» Magnetic Door/Window

» Temperature, Light, Humidity
» Vibration

» Pressure

« RFID

- Camera

» Microphone

-

« Water meter

T —
e

—

« Coverage: near-field vs far-field

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Activity Detection: Wearable Sensors on (or in) Body

* |nertial
» Accelerometer
» Gyroscope
» Magnetometer D

» Physiological
» Heart Rate
» Heart Rate Variabllity
» Breathing Rate
» Galvanic Skin Response

» Blood Pressure
» EMG, EEG, etc.
...

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Example Deployment: Ambient + Wearable Sensors
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Sensor Measurements for Human Activities
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Common Sensor Analytics

» Inferring latent states

» Forecasting

- Anomaly Detection

» Missing Value Imputation

» Clustering



Formalizing the Problem

» We need to track and predict the state of a dynamic environment in the presence of uncertainty
» E.g. managing health of a diabetic individual, accounting for time spent in different activities, control HVAC
system in a building, etc.
» Unlike static situations, such as analyzing an X-ray image or diagnosing a faulty engine

 Notation

» §, = set of unobservable state variables at time ¢
- e.qg. sitting, walking, running, biking, etc.
» O, = set of observable evidence variables at time ¢

- e.g. measurements from accelerometer, gyroscope, PPG, camera etc.
- may be multimodal and from spatially distributed sensors

- Simplification of time
» time ¢ is discretized into fixed step-size A that is identical for S, and O, , and steps aligned for §, and O,
» allows treating time ¢ as an index so that time goes as t = 0,1,2,...
» notation: X ., = X , X .1,....X,_1, X,
» later in the course we will relax this regular synchronous sampling

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Physics vs Data Drive Approaches

» Physics of the environment: equations governing the evolution of the states
* Physics of the sensor: equations governing mapping of states to observation

» If these are known, we can solve an inverse problem to get state from obersvations

» But:
» Physics may not be known at all, or may be complex to compute, or highly uncertain
» Environment and sensor characteristics may be dynamic

» Alternative: data drive “machine learning” approaches

11



Wearable Sensor-based Activity Recognition

- User performing activities belonging to a predefined set A = {A;}",
where m is the number of activity types

» There is a sequence of sensor reading that captures the activity
information 0., = [0{, 05, :--0,, ---0, | where 0, is the sensor reading

(in general a vector) at time ¢

- We need to build a model & to predict the activity sequence based on
sensor reading S
Ay, =F(0,), VjA €A
while the true activity sequence (ground truth) is denoted as
A¥ | A]fk cA

- Goal is to learn # by minimizing the discrepancy between predicted

activity sequence A ., and the ground truth activity sequence A;’fn

« n governs the algorithmic latency in inferring the activity state

https:/7arxiv.org/pdf/1707.03502. pdf
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Inferring Activity State Using Conventional Patter Recognition

- Goal is to learn & by minimizing the discrepancy between predicted and the ground truth activity sequence
. Typically, during training a positive loss function &£ (F# (olzn),Affn) is constructed to reflect this discrepancy

- & does not take 0., as an input, but rather assumes there is a projection function @ that projects each sensor
reading 0; to a d-dimensional feature vector ®(0,) € R¢ so that loss function is Z(F([DP(0)]'_,), Affn)

Activity signal =P Feature extraction —p  Model training =P Activity inference

.
( K nearest neighbor ) E K Upstairs \
C Naive Bayes ) . |
[ Neural ] k Running \ »

network
i ()R‘) k Riding bike \
. L\f - Frequency domain (Dccision trcc) ;
( Gaussian Mixture ) k Having coffee \ !)

CHiddcn Markov modcl) d \ Watching TV \

C Support vector machine ) I

.'"" Time domain

https:/7arxiv.org/pdf/1707.03502. pdf



Common Simplifications

* 01., grouped into windows of some time duration

» Activity type assumed constant within each window
» Activity in a window assumed independent of activities in other window

» Simplifies & and makes it easier to deal with irregular and missing observations

» But also creates problems
- Activity changes misaligned with segment boundaries

- Activity state may change multiple times within the segment if £ is large
- Ilgnores temporal correlations between activities in different segments

 The assumption that all sensors contributing to 0, have the same sample rate is not correct

» In fact, sampling rate of a sensor may not even be fixed
- e.g. In Android the sensor sampling rate is an advice to the OS but it is not guaranteed
that timestamps will be equally spaces
» Preprocessing done to address this before extracting features
- It also takes care of missing data, calibration etc.

14



Features

» Two types of observations from sensors

» Sensors that generate time series of periodic numeric measurements of state
- €.g. periodic sampling of temperature

» Sensors that generate event reports about change in state
- €.g. send event when there is motion

» Features computed over windows of observations basically get rid of the temporal
aspects of the problem

 Quality of the learned model depends on expressiveness of features

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Features
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Features: Broad Categories

« Characteristics of sensor event sequence
» time of occurrence
- time of day, day of week etc.
» sequence duration
- 12:50:22.8739-12:50:13.102682

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Features: Broad Categories

« Characteristics of sensor event sequence

» time of occurrence
- time of day, day of week etc.
» sequence duration
- 12:50:22.8739-12:50:13.102682

« Characteristics of discrete sensor values

» bag of sensors
- set of events with associated frequencies

» elapsed time since last event from sensor

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Discrete-Based Features

Sensor Counts Sensor Elapsed Times
Dustpan 1 Dustpan 97,712
Duster 1 Duster 86,559
Broom 1 Broom 66,386
Hand soap 2 Hand soap 40,837
M017 (Kitchen) 2 MO17 (Kitchen) 44,219
M018 (Sink) 1 MO018 (Sink) 58,721
Burner 1 Burner 9,786

All other sensors 0 All other sensors ?

18



Features: Broad Categories

- Characteristics of sensor event sequence
» time of occurrence
- time of day, day of week etc.
» seguence duration
- 12:50:22.8739-12:50:13.102682

- Characteristics of discrete sensor values
» bag of sensors
- set of events with associated frequencies
» elapsed time since last event from sensor

« Statistical features over a time window

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Features: Broad Categories

- Characteristics of sensor event sequence
» time of occurrence
- time of day, day of week etc.
» seguence duration
- 12:50:22.8739-12:50:13.102682

« Characteristics of discrete sensor values
» bag of sensors
- set of events with associated frequencies
» elapsed time since last event from sensor

Statistical features over a time window

Activity context features

» previous activity

» previous dominant sensor

» weighted features from previous window

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Common Statistical Features: Temporal

Max, Min
« Sum, Mean, Median

o _ o Max 1,159.00 CV 0.09 SqSumPt(80) 8,272,43
Mean Absolute Deviation, Median Absolute Deviation
o Min 973.00 ZC 5 BD(1) 0.5
« Standard Deviation
o o Sum 10,438.00 PT(20) 981.01  BD(2) 0.3
Coefficient of Variation
| Mean 1,043.00 PT(50) 1019.01 BD(3) 0.2
» Zero Crossings ,
_ _ Median 1,033.00 PT(80) 1072.01 Skewness 0.83
Percentiles, Inter-quartile Range ,
MeanAbsDev 19.12 IQ 91.00 Kurtosis -().48

« Square Sum of Percentile Observations

Hip Ax Continuous-Based Feature Values for Sweeping Activity

MedAbsDev 25.50 SqSumPt(20) 1,909,090 Corr(Ax,Ay) 0.37

Histogram StDev 66.98 SqSumPt(50) 4,913,656 AC; —0.20
- Skewness (degree of asymmetry of distribution) i )
Kurtosis (peakiness of distribution around mean)
. Correlation (across dimensions) Ax Signal-Based Features for Sweeping Activity
Autocorrelation Signal energy 10,935,556.0 P2PA 186.0
« Signal Enerqgy, Log Energy, Signal Power ,
.g g.y . 9, =19 Log signal energy 200.5 TBPeaks 3.5
Signal Magnitude Area
° Peak-to_Peak Amp“tude POWEI‘ 1,093,555.6 NumPeakS 3

Time between Peaks

21



Common Statistical Features: Spectral

Spectra
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Common forms of &

- Naive Bayes

* Linear

» Linear with Non-linear Kernels
« Support Vector Machines

» Decision Iree

« Random Forests

- Bayesian Network

- HMM

« CRF

» Being replaced by neural
networks in many cases

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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What if there are multiple sensors”

« Complementary vs overlapping information

» Three approaches

» Data fusion

- average sensor measurements

- weighted by trust/quality/variance
» Feature fusion

- concatenate feature vectors

- dimensionality reduction methods in case of overlap
» Classifier fusion

- simple voting

- weighted majority voting

- highest quality (lowest uncertainty)

- learn a second level classifier

- Bayesian

- summing K independent classifiers  ps,, ... ,5,) = 201 SIOAO)

K
P(Sl, ,SK) Ct — argmax‘. {P(C = ()LI=]]P(SA = SAIC — ()}




Supervised Learning of parameters of model &

Training

https.//en.proft. me/2015/12/24/types-machine-learning-algorithms/

Feature
Extraction

N —

A

Feature
Extraction

.
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A Simple but Very Useful Classifier: Naive Bayes

Notation | | | P(X|Y)P(Y)
» X: feature vector of dimension D over a window P(Y|X) = P

» Y: activity label

Objective: given X, find Y that maximizes the likelihood P(Y|X)

Learning P(X',Xz, ,X”lY) from training data would need lots of data

Assumes that data attributes are conditionally independent given class label
P(Xlaxzq. e ,XDIY) _ rI P(X;[ly)

* Then:

" POALY = bP(Y = k)

[

[ .
| [T, Py =kPy=k
kel 2 D d=1_" d=]
P(Y=klx',x, ... .x")= b | | Y = argmax, =
2 I L. Py =ipar=j > 1. Pociy =Py = j

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

= argmax,\.H PO Y = k)P(Y = k)
d=|
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Naive Bayes Classifier (NBC) contd.

» Learning model parameters from training data
» using maximum likelihood estimators

#data samples with X' = v, and ¥ =k

P Xi =Y =§)=
( bl ) #idata samples with ¥ =k

» problem: if no data for a given value of X then likelihood probability O
solution: smoothing (M is the # of distinct values X can take)

(#data samples with X' = v;and ¥ = k) +/

PIX'=uv.|Y =k) =
( jl ) (#data samples with ¥ = k) + IM

(#data samples with label k) +/

P(Y =k)=
(#data samples) + (K

» What if features are continuous instead of categorical?

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Applying NBC

X Xy | X | X3 | X3 | X5 | Xg | X7
Day of the week (x!) 1 1 1 2 2 2 2
Time of the day in hours ( x¢) 2 7 20 6 10 14 21
Bathroom sensor count ( x*) 13 10 5 11 3 12 3

Medicine cabinet sensor count ( x+) o 2 6 1 4 1 9
Energy in the Hip accelerometer Z axis 455 500 200 506 207 521 293
(X°)

Activity label (¥) 2 1 3 1 4 1 3

- Probability of attribute X' (day of week, values in 1-7) taking value 1 given that activity is Personal
Hygiene (Y=1): P(X! =1|Y =1) = -;-

» Prior probability that activity is Personal Hygiene (Y=1): P(Y = 1) = ;

» Similarly P(X1=1|Y=3) and P(Y=3) are 1/3 and 2/7

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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NBC with Continuous Features

- Typical approach is to model P(Xi|Y=j) as a Gaussian Distribution N(uj‘f,ﬂf')

- Estimate the parameters of the Gaussian Distribution as:
u; = EIX'|Y =]

of = E[(X' = u)’|Y =]

» This estimate can be done from training data using maximum likelihood estimation process:

X!
A - Zm Yunf
/

I #data samples with activity label §

: NI
J“' —— “‘ -
oL Zml.\'"ﬁj( " ;1)

. L — P ———
/ #data samples with acuvity label j

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Applying NBC contad.

X K| *2 | X3 | 2| X5 | X6 | M7
Day of the week () 1 1 1 2 2 2 2
Time of the day in hours ( x?) 2 7 20 6 10 14 21
Bathroom sensor count ( x) 13 10 5 11 3 12 3

Medicine cabinet sensor count ( x#) o 2 6 1 4 1 9

Energy in the Hip accelerometer Z axis 455 500 200 506 207 521 293
(X?)
Activity label (Y) 2 1 3 1 4 1 3

« Consider X% (Energy in hip accelerometer Z axis)

5 SOO+506+521

uy = —— =509 gf — :
»5
u; = 246.5 o; =2162.5

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Applying NBC contad.

X Xy | X2 | X3 | X4 | X5 | X6 | X7
Day of the week () 1 1 1 2 2 2 2
Time of the day in hours ( x?) 2 7 20 6 10 14 21
Bathroom sensor count ( x*) 13 10 5 11 3 12 3
Medicine cabinet sensor count ( x#) o 2 6 1 4 1 9

Energy in the Hip accelerometer Z axis 455 500 200 506 207 521 293

(X?)
Activity label (Y) 2 1 3 1 4 1 3
PY=1lx'=1,=250)=Px' = 1|Y =D XPE =250|Y = DX P = 1)
« Given a test sample: = % X (8.04 x 107187 x ; = 1.419 x 10~'%
X1=1 PY=3Ix'=1,=250)=P(x' = 1|Y =3) %X P(x’ =250|Y = 3) X P(Y = 3)
X5=250 .

g

= -l- X .086 X = 8.1905 x 10~

Since p(Y = 3|x! = 1,x° =250) > P(Y = 1]x! = 1, x* = 250), the NBC will
label this data point as Take Medicine (Y = 3).

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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NBC Summary

» Probabilistic approach to classification that is popular for several reasons
» Simple
» Explicit mechanism for calculating explicit probabillities for different hypothesis
» Interpretable

» |nitial probabilities
» Domain knowledge
» Learnt from training data

 Often gives good performance even when independence is violated in real world

» Assuming continuous attribute is Gaussian has nice analytical properties and yields a
simple methods for parameter estimation, but is often not true

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Extending NBC to Continuous Attributes

» Assuming attribute is Gaussian distribution
» Nice analytical properties
» Simple method for parameter estimation

« But, is it sufficient?

Probability p(x)

E.g. Activity Start Time attribute
for Eating Activity.

What do you expect the distribution to look like?

0.00 AM 8.00am1  12.00PM 7.00PM 11.59u
Time of the day (x)

33

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Extending NBC to Continuous Attributes

» Assuming attribute is Gaussian distribution
» Nice analytical properties N\
» Simple method for parameter estimation |

+ But, is it sufficient? {a

E.g. Activity Start Time attribute
for Eating Activity.

Probability p(x)

What do you expect the distribution to look like?

0.00 am 8.00 am 12.00pPM 7.00PMm 11.59pPM
Time of the day (x)

33

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Gaussian Mixture Models

Probability p(x)

0.00 am 8.00 am 12.00pPM 7.00PMm 11.59PM
Time of the day (x)

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Distribution P(Xi|Y=k) is modeled as a combination of M

Gaussian probability distribution functions
M
+

PX'|Y = k) = Z r, N( ;JL", cr:

m

)

m=|
M
r,, = 0and Z r, =]
m=|
Generalize to cover all attributes by considering M

multivariate Gaussians where M & o7, are
D-dimensional vectors

Parameters and mixing coefficients estimated using an
iterative Expectation-Maximization algorithm

34



Expectation Maximization Algorithm

Algorithm GMM_EM(x)

form=1.. M

done

repeat
fori=1. N,

Z; = argmax p

m §im

done

form=1..M

A

m

q

“*m

done

until convergence

Pim= I'V(..l', l Hme O-Im)

2 1 2
Ojm= _ Z {(.l‘,- = ukm)

Il X = X4, Xo, .., Xy, I8 the subset L, of the training data that is marked with activity k
// M is the number of Gaussian mixture components required to describe L,

Initialize the multivariate Gaussian mean y,,, and variance o,

// Expectation step

/I p,,, represents probability that data point x; has been

o

// sampled from the m"™ mixture component N(u,,,., of,,,)

/I z;is a latent variable representing the mixture
/[ component to which data point x; is assigned

[l Maximization step

A, = number of data points assigned to m" component

1
gy = = P (x: >z, = m)}

// Update the mean

: z; = m} // Update the variance

// Update the mixing coefficient

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Expectation Maximization Algorithm

Algorithm GMM_EM(x)

Il X = X4, Xo, .., Xy, I8 the subset L, of the training data that is marked with activity k
// M is the number of Gaussian mixture components required to describe L,

form=1.M
Initial Estimate Initialize the multivariate Gaussian mean y,,, and variance rrf,,'.
done
repeat
fori=1. N, // Expectation step
P = N(X; | Hierms afm) /I p,,, represents probability that data point x; has been
// sampled from the m"™ mixture component N(u,,,., of,,,)
<= argmax p, /l z;is a latent variable representing the mixture
/[ component to which data point x; is assigned
done
form=1.M [l Maximization step
A, = number of data points assigned to m" component
1
Hpm = — 20 {x; 2 2, = m) // Update the mean
"“HJ
2 1 ) :
Oim= — 2{(x; = )" : z;=m} // Update the variance
Am
Am -y o
R = TV_ /I Update the mixing coefficient
k
done

until convergence

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Expectation Maximization Algorithm

Algorithm GMM_EM(x)
Il X = X4, Xo, .., Xy, I8 the subset L, of the training data that is marked with activity k
// M is the number of Gaussian mixture components required to describe L,
form=1.M

oy . . . 2
Initial Estimate Initialize the multivariate Gaussian mean y,,, and variance oy,
done

fori=1. N, // Expectation step

Pim =N, | fpms (;fm) /I p,,, represents probability that data point x; has been

o

M Step

, // sampled from the m"™ mixture component N(u,,,,, ¢ fﬁ,,,)
parameters are updated using

the modified data assignments Z;=argmaxp, /I z;is a latent variable representing the mixture

m

/[ component to which data point x; is assigned

done
form=1.M [l Maximization step
A, = number of data points assigned to m" component
1
Hpm = — 20 {x; 2 2, = m) // Update the mean
"“HJ
2 1 > .
Oim= — 2{(x; = )" : z;=m} // Update the variance
Am
Am -y o
R = TV_ /I Update the mixing coefficient
k
done

until convergence

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Expectation Maximization Algorithm

Algorithm GMM_EM(x)

Il X = X4, Xo, .., Xy, I8 the subset L, of the training data that is marked with activity k
// M is the number of Gaussian mixture components required to describe L,

form=1.. M

Initial Estimate Initialize the multivariate Gaussian mean y,,, and variance oy,
done

repeat
fori=1. N, // Expectation step

M Step Pin= NG | fms i) /I p,, represents probability that data point x; has been

, // sampled from the m"™ mixture component N(u,,,,, ¢ fﬁ,,,)
parameters are updated using

the modified data assignments Z;=argmaxp, /I z;is a latent variable representing the mixture

m

/[ component to which data point x; is assigned

done
form=1.. M [l Maximization step
A, = number of data points assigned to m" component
1
Him = — 2 (x: >z, = m)} // Update the mean
E Step Ap

2 1 3 .
each datapoint is assigned to Oim= — 2{(X; = pgm)” & 2, = m} I/ Update the variance
the nearest mixture component :

// Update the mixing coefficient

until convergence

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.



Some Other Classifiers: Decision Tree

Count (bathroom

Sensor)
> 15 < 5 > 5
<15
Other
| Count (medicine
Time of day cabinet sensor)
> 10:00pPm < 10:00Pm o5
< 6:00 Am > 6:00 am
Bed toilet FPersonal Other
transition hygiene

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

>5

Take
medicatit
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Some Other Classifiers: Support Vector Machine

Hand washing

® Sweeping
ad
L
=
m b
' &
-
“~_Hs
\\\ “a — T b
Hy S . y=w X+
- e
\\\ \\\
\\ ‘\\
\\\\ \\\
\\\ \
Feature 1

Separable Case: Hard Margin

1
min Ellwll2 such that y(w/x+b) >0 Vi

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.
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Some Other Classifiers: Support Vector Machine

Hand washing

® Sweeping

Feature 2

Feature 1

Separable Case: Hard Margin

1
min Ellwll2 such that y(w!x +b) > 0 Vi

Cook & Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. 2015.

Feature 2

Hand washing

® Sweeping

Feature 1

Non-separable Case Soft Margin

b)—1

;>0and >0 Vi

37

N
CZ ¢ such that y,(w’x
i=1



Some Other Classifiers: Non-Linear Support Vector Machine

Hand washing

® Sweeping

Feature 2

Linear kernel X! X;
Polynomial kernel (x!x; + c)?
Feature 1 (- .
L,
Separable Case . . . | '-r;' e -\.;'l |:
. Radial basis function kernel exp | —————
e Hand washing 20"

® Sweeping
Hyperbolic tangent kernel tan h(x.\"r.’.\', +c)fork>0ande <0

Feature 2

Feature 1

Non-separable Case
P 38
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SVM in practice...

Interestingv G

e O

G file:///Users/mbs/Downloads/S

PUServer AWSUCLA Frank McSherry

@,

O O o

Home Network v  Stanford CPNT AWS Distill

Voice

Google Voic...

Keras Docu...

JupyterLab

Huma

SVM

>>

>>

4_

In [18]:

In [6]:

In [24]:

Human Activity Recogniton with Smartphones

Acknowledgements: This notebook is based on material drawn from:

e https://github.com/patoalejor/Human-Activity-Recognition-with-Smartphones/blob/master/Recognition.ipynb

import

numpy as np

import pandas as pd

import

time

import pdb # usage: pdb.set trace()

import

sys

import matplotlib.pyplot as plt

$matplo

tlib inline

Download and read HAR Data

Download data from Kaggle: https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones. You would
need to create a Kaggle account, and would get two files: test.csv and train.csv

Put them

in ./data

The data comes from recordings of 30 study participants performing activities of daily living (ADL) while carrying a
waist-mounted smartphone with embedded inertial sensors. Each person performed six activities (WALKING,

WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung
Galaxy S Il) on the waist. More degails are at the aforementioned link.

df test
df trai

n

pd.read csv("data/test.csv")
pd.read csv("data/train.csv")

Explore and preprocess the data

print ("
print ("
print ("
print ("

trainData
trainLabel

testData

Number of features in Train :
Number of records

, train.shape[1l])
in Train : ",train.shape[0])

Number of features in Test : ",test.shape[l])
Number of records in Test : ",test.shape[0])

testLabel = df_test.Activity.values

print("Train Data shape : ",trainData.shape)
print("Train Label shape : ",trainLabel.shape)
print("Test Data shape : ",testData.shape)

print("Test Label shape : ",testLabel.shape)

print("Label examples: ")
print(np.unique(trainLabel))

Number
Number
Number
Number
Train D
Train L
Test Da
Test La
Label e
[ 'LAYIN
'WALKI

of features in
of records in
of features in
of records in
ata shape
abel shape
ta shape
bel shape
xamples:

Train : 563
Train : 7352
Test : 563
Test : 2947
(7352, 561)
(7352,)

(2947, 561)
(2947,)

df train.drop([ 'subject', 'Activity'] , axis=1).values
df train.Activity.values

df test.drop([ 'subject', 'Activity'] , axis=1l).values

G' 'SITTING' 'STANDING' 'WALKING' 'WALKING DOWNSTAIRS'

NG_UPSTAIRS']




Temporal Probabilistic Models



State Transition Model

- Specifies how the state of the environment evolves, i.e. P(S,[S,.,_)
» Initial state is considered known S, = s,

. Problem #1: the set S,.,_; is unbounded as 7 grows

» Solve by Markov assumption: current state S, depends only on a finite fixed number of previous states

» Many flavors
- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

P(St | SO:t—l) — P(St | St—l)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

41



State Transition Model

- Specifies how the state of the environment evolves, i.e. P(S,[S,.,_)
» Initial state is considered known S, = s,

. Problem #1: the set S,.,_; is unbounded as 7 grows

» Solve by Markov assumption: current state S, depends only on a finite fixed number of previous states

» Many flavors
- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

P(St | S():t—l) — P(St | St—l)

/ N

St 2 St—l St St+1 St+2 >

- more complex, such as second-order Markov process P(S,|S,.,_;) = P(S,|S,_;,S,_»)
- question: can you reduce second-order Markov process to a first-order one?
» First-order Markov process is commonly used but often insufficient for real world
- Solution: increase order of Markov process, or augment the state

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

42



State Transition Model

- Specifies how the state of the environment evolves, i.e. P(S,[S,.,_)
» Initial state is considered known S, = s,

. Problem #1: the set S,.,_; is unbounded as 7 grows

» Solve by Markov assumption: current state S, depends only on a finite fixed number of previous states

» Many flavors
- simplest is first-order Markov process in which current state depends only on the previous state, i.e.

P(St | SO:t—l) — P(St | St—l)

/ N

St 2 St—l St St+1 St+2 >

- more complex, such as second-order Markov process P(S,|S,.,_;) = P(S,|S,_;,S,_»)
- question: can you reduce second-order Markov process to a first-order one?
» First-order Markov process is commonly used but often insufficient for real world
- Solution: increase order of Markov process, or augment the state

- Problem #2: we have infinitely many f#, each with its own distribution for state transition
» Solve by Stationarity Assumption, i.e. P(S,[Sy.._) = P(S,|Sy.,_) Vt, ¢

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Sensor Model (aka Observation Model)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Sensor Model (aka Observation Model)

» Specifies how the sensor observations depend on the current state and previous variables, i.e.

P(Ot ‘ SO:t’ Ol:t—l)
» A good choice of state should suffice to generate the current sensor value, which leads to
sensor Markov assumption, i.e. P(O,|S,.,O,.._,) = P(O,|S))

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Sensor Model (aka Observation Model)

« Specifies how the sensor observations depend on the current state and previous variables, i.e.
P(Ot ‘ SO:t? Ol:t—l)

» A good choice of state should suffice to generate the current sensor value, which leads to
sensor Markov assumption, i.e. P(O,|S,., O,.._;) = P(O,|S,)

- Combining with the simplified first order Markov transition model, we get:

!
« Complete joint distribution: P(S();p 01;;) — P(SO)HP(Si | Si_1)P(Oi | Si) Dynamic Bayesian Network
i=1

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Digression: Bayesian Network

» A probabillistic graphical model that represents a set of variables and their conditional dependencies via a
directed acyclic graph (DAG)
» Nodes represent variables: observable quantities, latent variables, unknown parameters or hypotheses

» Edges represent conditional dependencies
- nodes that are not connected (no path connects one node to another) represent conditionally independent variables

- Each node is associated with a probability function that takes, as input, a particular set of values for the
node's parent variables, and gives the probability distribution of the variable represented by the node.

- Efficient algorithms can perform inference and learning in Bayesian networks
» Using a Bayesian network can save considerable amounts of memory over exhaustive probability tables,

SPRINKLER RAIN
el CUED, e I R pra
F 0.4 0.6 0.2 0.8
r | o1 0o P(G,S,R) = P(G|S,R)P(S|R)P(R)
@ E.g. The model can answer questions about the presence of a cause
given the presence of an effect (so-called inverse probability) like "What
GRASS WET IS the probability that it is raining, given the grass is wet?"
SPRINKLER RAIN| T F
F F 0.0 1.0 P(G =T,R = T) ZSE{T,F} P(G =T,5,R= T)
F T | 08 02 PR=T|G=T)= PG =T — P(G=TSR
T F 0.9 0.1 ( — ) ZS,RE{T,F} ( — L, )
T T 0.99 0.01

https.//en.wikipedia.org/wiki/Bayesian_network
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INnference Tasks: Latent States from Sensor Observations

» S y Poommmmmmmmmmes St—y St—y Sy Sty Sty >

. Fi/tering: P(S / ‘ () 11 — ()1 : t) keep track of current state for rational decision-making
. ; . — / evaluate possible courses of action
ForecaStlng' P(St’ ‘ () 1:r = 01 ;t) where ¢ > 1 based on their expected outcomes

o Smoothing: P(St" Ol:l‘ — 01:1) where t’ <t better estimate of the state than was

available at the time, useful for learning

- Most likely explanation: argmaxs,, P(S;..[| ., = 0,.,) tasks such as speech recognition

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Learning Task

» The transition and sensor models, if not yet known, can be learnt from observations

» Learning can be done as a byproduct of inference
» Inference provides an estimate of what transitions actually occurred and of what states
generated the sensor readings
» These estimates can be used to update the models
» The updated model provides new estimates, and the process iterates to convergence
» Overall process is an instance of the Expectation Maximization (EM) algorithms

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Filtering

- A useful filtering algorithm needs to maintain a current state estimate and update it
» rather than going back over the entire history of percepts for each update. as then the
cost of update will increase with time

» In other words, we need a recursive estimation algorithm of the form
PSS, (l0y.,..) =f(0,.,P(S,|0,.)) for some function f

- Computation can be viewed as being composed of two parts: project current state
forward in time, and then update it in light of the new sensor observation o,

P(S,.10,,.) =P8, 0,0, (dividing up the observations)
= aP(0,,{]S,,1,0..)P(S,.{]0;.) (using Bayes' rule, a is normalizing constant)
= aP,, S, )PS0, (by the sensor Markov assumption)

update  prediction

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Filtering

- A useful filtering algorithm needs to maintain a current state estimate and update it
» rather than going back over the entire history of percepts for each update. as then the
cost of update will increase with time

» In other words, we need a recursive estimation algorithm of the form
PSS, (l0y.,..) =f(0,.,P(S,|0,.)) for some function f

- Computation can be viewed as being composed of two parts: project current state
forward in time, and then update it in light of the new sensor observation o, ;

PSS, 10/, =P, 10,0, (dividing up the observations)
= aP(0,.([S,;1,0. )P, ]0.) (using Bayes' rule, a is normalizing constant)
= aP(o,, S, DP(S, . ]0;.,) (by the sensor Markov assumption)

= aP(0,, 1S4 1) Z PGS, 18, 0.)P(s;|0;,)

S

= aP(0,,,S,,)) ) P(S,,[s)P(s, o) (by Markov assumption)

~ sensor S; transiton

recursion

model model

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Filtering

- A useful filtering algorithm needs to maintain a current state estimate and update it
» rather than going back over the entire history of percepts for each update. as then the
cost of update will increase with time

» In other words, we need a recursive estimation algorithm of the form
PSS, (l0y.,..) =f(0,.,P(S,|0,.)) for some function f

- Computation can be viewed as being composed of two parts: project current state
forward in time, and then update it in light of the new sensor observation o, ;

P(S,11101.41) = aP(0,,11S,41) ) P(S,418)P(s, |0y,

!

- One can view the filtered estimate P(S,|0,.,) as a message f ., that is propagated
along the sequence, modified by each transition and updated by each new sensor

observation viaf;.,. | = FORWARD({;,.,, 0,, ) where FORWARD implements the
above equation and f;., = P(S)
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Example of Filtering

R;_4

P(R;)

0.7

(Rain, 3)—

Rt

P(U,)

!

f

09
0.2

Uribrtiay_p - CUmbrelia,

Goal: compute P(R, | u;.,)

Day 0: no observation - only prior belief P(R,) = (0.5,0.5).

Day 1: umbrella appears, so U; = true

P(R)) = ) P(R,|ry)P(ry) = (0.7.0.3) x 0.5+ (0.3,0.7) X 0.5 = (0.5.0.5)

o

PR, |u;) = aP(u; | R)P(R,) = a(0.9,0.2)(0.5,0.5) = (0.45,0.1) ~ (0.818,0.182)

Day 2: umbrella appears, so U, = true

P(Ry|uy) = Y P(Ry| r)P(ry | uy) = (0.7,0.3) x 0.818 +(0.3,0.7) x 0.182 » (0.627,0.373)

r

PR, | u;, u,) = aP(u, | R,)P(R, | 1) = 2(0.9,0.2)(0.627,0.373) = a(0.565,0.075) ~ (0.883,0.117)

0.500 0.627
0.500 0.373
True 0.500 0.J1 8 0.383
False 0.500 0.182 0.117

Intuitively, the probability of
rain increases from day 1 to
day 2 because rain persists.
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Forecasting

» The task of forecasting can be seen simply as filtering without the addition of new sensor observation
 The filtering process already incorporates a one-step prediction

- |t is easy to derive the following recursive computation for predicting the state at r + kK + 1 from a
prediction for t + k

P(S 1101 = Z PGS vt 8PSkl 01)

t+k transition

recursion
model

» Note that no sensor model is involved in forecasting

- If we try to predict further and further into the future, the predicted distribution for the states will converge
to the stationary distribution of the Markov process defined by the transition model

» mixing time: roughly, the time taken to reach the fixed point
- In practical terms, this dooms to failure any attempt to predict the actual state for a number of steps that is more
than a small fraction of the mixing time, unless the stationary distribution itself is strongly peaked in a small area of

the state space
- the more uncertainty there is in the transition model, the shorter will be the mixing time and the more the future is

obscured

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Smoothing

» Process of computing the distribution over past states given evidence up to the present
.e. P(S,|0,.)forO <k <t

» Another recursive message-passing approach by splitting the computation into two parts: the
observations up to k and the observations from k + 1 to ¢

P(S,lo..) =P(S; 014,04, ;)

= aP(S; 0, )P0 1 ;]S 01.4) (using Bayes' rule, given o,.,)

= aP(S; |01 )P0, .Sy (using conditional independence)

=af;, Xb, (X represents pointwise multiplication of vectors)
packward

L message
Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”

53



Computing Backward Message by, .,

- By a recursive process that runs backward from ¢

P(o,,..,1S;) = Z P01 1Sk S )P ISy (conditioning on S, . ;)

= Z P01 181 DP(Seaq |1 Sy) (by conditional independence)
Sk+1

- Z P01y 1> Opy0: | Spy DP(Spy 1 [S5p)

Sk+1
= Z P01 |81 )P0 r, St DP(Sky 1 |Sp) (by conditional independence of 0,,; & 0,.,., given s, .

Sl sensor " fransition.
recursion
model model

- In message form, we have b, ;., = BACKWARD(b_5.;, 0, )
- Initialization with b, ., = P(0,,(.,|S,) = P(|S,) = 1 where 1 is a vector of 1s because o0,_,.,is an empty
seguence and so the probability of observing it is 1.

54
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Example of Smoothing

R,_;| P(R,)
1 0.7
(Rain,_y——=( Rain, (Rainy .
R, | P(U,)
t 0.9
f 0.2

Uribrtiay_p - CUmbrelia,

- Goal: computing the smoothed estimate for the probability of rain at time kK = 1 given the umbrella
observations on days 1 and 2
PR, |uy,uy) = aP(R; |u))P(u, | R)
we know P(R, |u;) = (0.818,0.182)
while P(u, | R,) can be computed by applying the backward recursion

Py |R) = Y Pluy | )P(| r)P(ry | Ry) = (0.9 X 1% (0.7,0.3)) + (0.2 x 1 X (0.3,0.7)) = (0.69,0.41)

r

so that P(R, | u;, u,) = a(0.818,0.182) x (0.69,0.41) ~ (0.883,0.117)

- Note that the smoothed estimate for rain on day 1 is higher than the filtered estimate (0.818) because the
umbrella on day 2 makes it more likely to have rained on day 2; in turn, because rain tends to persist, that
makes it more likely to have rained on day 1.

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”



Forward-Backward Algorithm for Smoothing

- Both the forward and backward recursions take a constant amount of time per step; hence, the time
complexity of smoothing at time step k with respect to observation 0., is O(¢)

» If we want to smooth the whole sequence, one obvious method is simply to run the whole smoothing
process once for each time step to be smoothed.

» This results in a time complexity of O(t%)

- A better approach uses a simple application of dynamic programming to reduce the complexity to O(t)
» The key to the linear-time algorithm is to record the results of forward filtering over the whole sequence

» Then we run the backward recursion from f down to 1, computing the smoothed estimate at each step k from
the computed backward message b, . ., and stored forward message f .,

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1.... .t
prior, the prior distribution on the initial state, P(So)
local variables: fv, a vector of forward messages for steps U,... .1
b, a representation of the backward message, initially all 1s

sv, a vector of smoothed estimates for steps 1,....1
fv[0] < prior
fori= 1tordo
fv[i] < FORWARD(fv[i — 1], ev[i])

for i= r down to | do
sv[i] «~ NORMALIZE(fv[i] x b)
b+ BACKWARD(b, ev/i])

return sy
Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Drawbacks of Forward-Backward Algorithm in Practice

« Space complexity can be too high when the state space is large and the sequences are long
» It uses O(|I'| ) space where |f| is the size of the representation of the forward message
» Can be reduced to O( |f|log ) with a concomitant increase in the time complexity by a factor of log ¢

* |t needs to be modified to work in an online setting where smoothed estimates must be computed for

earlier time slices as new observations are continuously added to the end of the sequence
» The most common requirement is for fixed-lag smoothing, which requires computing the smoothed estimate

P(S,_,]0,.,) for fixed d,
i.e. smoothing is done for time step that is d steps behind the current time
» Inefficient to run Forward-Backward over the d-step window for each sensor observation
» Instead, fixed-lag smoothing can, in some cases, be done in constant time per update independent of d

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Finding the Most Likely Sequence

- Problem: given sensor observation sequence 0., what state sequence is most likely to explain this?

» Brute force approach
» enumerate all state sequences and computer their likelihood: expensive!

* |Incorrect approach
» use smoothing to find the posterior distribution for the state at each time step; then construct the sequence,

using at each step the state that is most likely according to the posterior

» most likely sequence # sequence of most likely states
- posterior distributions computed by smoothing are distributions over single time steps, whereas to find the most
likely sequence we must consider joint probabilities over all the time steps.

Efficient linear time (and space) algorithm: the Viterbi algorithm

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Viterbi Algorithm

* View each state sequence as a path through a graph whose nodes are the possible states at each time step

- The likelihood of any path is the product of the transition probabilities along the path and the probabilities of
the given observations at each state

- Because of the Markov property, there is a recursive relationship between most likely paths to each state
S;. 1 and most likely paths to each state S,
» Most likely path to each s, = most likely path to some S, plus one more step

max P(sy., 8,110y, = P(o, |5, ) max(P(S,, |s,) max P(s;.,_;,s,[0.))
S St S1i-1

or,my ;= P(0, |5, msaX(P(Sm |s)m,)  wherem,, = Isnax P(s;.;_1,5;]01,)), andm;.q = P(S;)
t l:1—1

» Similar to filtering algorithm: it starts at time O and and then runs forward along the sequence, computing the
vector message m

» Eventually m,., will contain the probability for the most likely sequence reaching each of the final states

- One can thus easily select the final state of the most likely sequence overall
- In order to identify the actual sequence, as opposed to just computing its probability, the algorithm will also need to
record, for each state, the best state that leads to it
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Example of Most Likely Sequence

R; 1| P(R;)
z 0.7
R, | PU,)
1 09
f 0.2
Rain 1 Rain > Rain3 Rain 4 Rain 5
space
paths
false false false false false
umbrella false
Most < 8182 5155 0361 0334 v 0210
likely A
paths | 1818 0491 1237 0173 0024
ml:l ml:2 lnl:?; n11:4 n11:5
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Hidden Markov Models

» A temporal probabilistic model in which the process state is described by a single, discrete RV
» The possible values of the variable are the possible states of the world

» The restricted structure allows for a simple and elegant matrix implementation of all the basic algorithms
» Let the state variable be an integer §, € {1,2,--- S} where § is the number of possible states
» Transition model P(S,;[S,_;) becomes an § X § matrix T where T;; = P(S, = j|§,_; = 1)
» Rain/Umbrella example

Rt-l P(Rt)

T=PGs =5 )= <0.7 0.3>

0.3 0.7

- What happens if one has a model with two or more state variables?
» One can still fit it into the HMM framework by combining the variables into a single “megavariable” whose
values are all possible tuples of values of the individual state variables.
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Hidden Markov Models (contd.)

- Although the state must be a single, discrete variable, there is no similar restriction on observations.
» This Is because observations variations are known, so that there is no need to keep track their distributions
» If a variable is not observed, it can simply be dropped from the model for that time step.
» There can be many observation variables, both discrete and continuous

» However, one can also put sensor model in matrix form
» Because observation 0, at every time step 7 is known, only need to specify for each state how likely is 0, to

occur, i.e. P(o,|S,=1) Vie {1,2,--- §}
» Specified as § X § diagonal matrix O, where the i-th diagonal entry is P(0,| S, = i)

» Umbrella world:
» If Umbrella, = true then

(09 0
0= ( 0 o.z)
» and if Umbrella, = false then
(01 0
0= ( 0 o.s)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Forward-Backward Algorithm in Matrix-Vector Form

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

« Column vectors to represent the forward & backward messages

inputs: ev, a vector of evidence values for steps 1.....t
» forward equation becomes: p.rior, the prior distribution on the initial state, P(So)
T local variables: fv, a vector of forward messages for steps U, ...t
fl 1] — CXO 1T fl . b, a representation of the backward message, initially all 1s
b kj + d ! Ttl_ b Y sv, a vector of smoothed estimates for steps 1,...,t
» DACKward eguation becomes:
fv[0] < prior
b = TO b . fori= 1tor do
k+1:t k+17k+2:1 fv[i] < FORWARD(fv[i — 1], ev[i])
. . for i= t down to | do
CompIeX|ty2 sv[i] ¢+~ NORMALIZE(fv[i] x b)
» Time: O(S t) l.etul:fn—sleCKWARD(b.ev[z])

- each step requires multiplying an S element vector with an .S X S matrix
» Space: O(51)
- the forward pass stores stores f vectors of size S

» Matrix-Vector formulation allows for improvements too, e.g.,

» constant space algorithm for smoothing, independent of ¢
» online smoothing with fixed lag

63
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Constant Space Algorithm for Smoothing (independent of 7)

- ldea: Smoothing for any particular time index k requires the simultaneous presence of
both the forward and backward messages f;., and b, .,

P(Sk ‘ Ol:t) — afl:k X bk+1:1

- Forward-Backward algorithm achieves this by storing the s computed on the forward
pass so that they are available during the backward pass.

- Instead, one can do a single pass that propagates both f and b in the same direction

» First do standard forward pass to compute f.,
- forgetting all the intermediate results

» Then run backward pass for both f and b together using a backward propagation of f as
fi., =& (T) O .

+1

64
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Online Smoothing with Fixed Lag d

+ Goal: smooth at time 1 — d when the current time is ¢, i.e. compute af|.,_; X b,_,. 1,

- Then, when a new observation arrives, we need to compute af;.,_,.{ X b,_ ..

» How to do this incrementally?
» First, we can compute f,.,_,., from f,.,_; using the standard filtering process
P(Si4110141) = aP(0,41 [S141) D, P(Sisi | 5)P(s; |0,
St
» But, there is no analogous simple relationship between new b,_,.,.,andold b,_,. ., @

- Trick: repeatedly use b, ., = TO,, b,,,., to get
[ +1

b, g1 =( H TOb 1, =B, 41,1 and b,_g5 =( H TOYb, 5.1 = B_gyr11

I=t—d+1 iI=t—d+?2

which gives the incremental update B,_;,,.,. = Ot_—ld+1T_1Bt—d+1:tTOt+l
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Online Algorithm for Smoothing with Fixed Lag d

function FIXED-LAG-SMOOTHING(¢;, hmm, d) returns a distribution over X,_ 4
inputs: ¢, the current evidence for time step ¢
hmm, a hidden Markov model with S x § transition matrix T
d, the length of the lag for smoothing
persistent: 7, the current time, initially |
f, the forward message P(X; | e|. ), initially himm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
¢;_d4-» double-ended list of evidence from r — d to ¢, initially empty
local variables: O,_,. O,, diagonal matrices containing the sensor model information

add ¢, to the end of ¢,_ 4,
O, +—diagonal matrix containing P(¢; | X;)
if 1 > d then
f < FORWARD(f,¢e,_4)
remove ¢,_4_1 from the beginning of ¢,_ 4,
O,_4 < diagonal matrix containing P(e,_4 | X;_4)
B«O, ' T 'BTO,
else B~ BTO,
[—1t+1
if 1 > d + 1 then return NORMALIZE(f x B1) else return null

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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HMM Application: Vacuum Robot Localization

HOEH BEEEE BEE B
oo AN o AN o RN o N ©

- Discrete grid where s, € 1,2,3,---42 represents the current location of the robot

» Robot can move randomly to any of the adjacent empty squares from its current location
e, P(S,.1=J|5,=1) = Tij = 1/(# of empty adjacent locations) if ] € NEIGHBORS(i) else O

» Noisy binary sensors with error rate € report whether the four adjacent NESW locations are empty or not,
i.e. O, is a 4-bit sequence taking values such as o, = 1011

sothat P(O,=o0,|S, =1i) =(0), = (1—¢e)* ek

where d;, = is the discrepancy between the true values for square i and the actual reading o,

» The robot can use filtering to estimate current location, and smoothing to get past location
67
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Limitations of HMM

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Limitations ot HMM

» Consider vacuum robot that has the policy of going straight for as long as it can
» Then the state will need to including both /ocation and heading, and so could take

42 X 8 = 168 values, so that T will be of size 168% = 28,224

- still manageable though large
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Limitations ot HMM

» Consider vacuum robot that has the policy of going straight for as long as it can
» Then the state will need to including both /ocation and heading, and so could take

42 X 8 = 168 values, so that T will be of size 168% = 28,224

- still manageable though large

- What if we add the possibility of dirt in each of the 42 squares?
» Now the number of states is multiplied by 2** and T has more than 10%° entries @
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Limitations ot HMM

» Consider vacuum robot that has the policy of going straight for as long as it can
» Then the state will need to including both /ocation and heading, and so could take

42 X 8 = 168 values, so that T will be of size 168% = 28,224

- still manageable though large

- What if we add the possibility of dirt in each of the 42 squares?
» Now the number of states is multiplied by 2** and T has more than 10*° entries @

- In general if state is composed of n discrete variables that can take at most d values
each, then the state transition matrix will have size O(d*") and the per-update

computation time will be also O(d*")

» While HMMs used a lot (e.g. speech recognition), they are fundamentally limited in their
ability to represent complex processes
» Problem: represent states as integers and don’t exploit any internal structure

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Kalman Filter

In many applications we need to reconstruct trajectory of some variable of interest (position, speed, blood
sugar level, etc.) from irregular and noisy observations

If variables are discrete, one can use HMMs

Kalman Filter targets the case when the variables of interest are continuous
» E.g. flight of incoming enemy aircraft or a pedestrian on the road may be specified by six continuous variables:

three for position (X,, Y,, Z,) and three for velocity (Xt, Y B Zt)

Uses linear-Gaussian distributions for conditional densities to represent the transition and sensor models
» next state S, | is a linear function of current state S, plus some Gaussian noise

» sensor observation O, is a linear function of current state S, plus some Gaussian noise

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Consider Tracking a Vehicle from Sporadic Observations

S, =X, Y, Z, Xt’ Yt’ Zt)
- Consider just X, coordinate and let A be the time interval
between observations
» Then, assuming constant velocity during the interval and
nonoise X,, , = X, + X,A

- Adding Gaussian noise (to account for wind variation,
etc.), we obtain a linear—Gaussian transition model:

P(X,

A =Xl X =x, X, = x) = N(x,

: ; 2

» Note: this is a specific case of linear-Gaussian, and when
generalizing to d dimensions then we need to use
multivariate Gaussian with a d-element mean andad X d
covariance matrix 2

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Updating Gaussian Distributions

» Special property of linear-Gaussian: closed under Bayesian updating
» i.e. given an observation, the posterior distribution is still in the linear-Gaussian family

- Recall filtering: p(st+1|01:t+1):aP(om|St+1)ZP(St+1|st)P(StI01:t)

5% “transiton

~ sensor o
recursion

model model

+ If current distribution P(S, ] 0,.,) is Gaussian and the transition model P(S,, | | S,) is linear-Gaussian then
the the one-step predicted distribution given by the following is also Gaussian.

P(S,;i1101.) = | PS4, [spP(s,]0;.)ds,

uSt

If the prediction P(S,, ;| 0,.,) is Gaussian and the sensor model P(0,. | S,. ) is linear-Gaussian, then,
after conditioning on the new observation 0,_ {, the updated distribution below is also Gaussian.

PSS, 110141 =aP0, S, )P, ]0;.,)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Kalman Filter in Summary

- FORWARD operator for Kalman filtering takes a Gaussian forward message f, ., specified by a mean p,
and covariance 2, and produces a new multivariate Gaussian forward message f.,. | specified by a

mean {,, ; and covariance 2, ;.
» This translates into computing a new mean and covariance from the previous mean and covariance

- So if we start with a Gaussian prior f,. = P(S;) = N(y, 2), filtering with a linear-Gaussian model

produces a Gaussian state distribution for all time

» Not only nice and elegant, but also important: except for a few special cases such as this, filtering with
continuous or hybrid (discrete and continuous) networks generates state distributions whose representation
grows without bound over time

(07 +07)ze41 + o7

: : : : : . (02 4 02)0?2
Simple univariate case: state variable X, with nosy observation Z, Pep1 = o2 = —

2 2 2 t+1 2 2 2
o, +0; + 0, o, +0; 0,

General multivariate case  p(x,,,|x;) N(x;.1;Fx,, 2,)

P(Zt xt) S N(Zt; th, 2z)7
per1 = Fu+Kiy(z — HF )
Y1 = (I-K.H)(FZ,F' +3))

where K,,; = (FZ,F' +3,)H' (HFZ,F' +2,)H' +3,)"! Kalman gain matrix 72
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Making Intuitive Sense of Kalman Filter General Case

P(xi1|%x:) = N(xe15Fx, X)
P(Zt xt) N(Zt; th, Ez)a

pe1 = Fu+Kip(2i — HF py)
Y1 = (I-K.H)(FSF +3),)

where K; = FZtFT + 2, H' (H FEtFT + 2, H' + 22, 1 Kalman gain matrix
+
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Making Intuitive Sense of Kalman Filter General Case

Predicted state at r + 1

— N(xt+1; Fxt7 Em)

— N(Zt; th, 23z)7
per = (Fu+ Kiyi (2 — HF py)
Y1 = (I-K.H)(FSF +3),)

where K; = FZtFT + 2, H' (H FEtFT + 2, H' + 22, 1 Kalman gain matrix
+

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”



Making Intuitive Sense of Kalman Filter General Case

Predicted state at # + 1 Predicted observation at t + 1

— N(xt+1; Fxt: Em)

— N(Zt; th, 23z)7
prr = |Fu+ Ko (21 — [HF )
Y1 = (I-K.H)(FSF +3),)

where K; ., = FEtFT + 2, H' (H FEtFT + 2, H' + 22, ~1 Kalman gain matrix
+
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Making Intuitive Sense of Kalman Filter General Case

Predicted state at # + 1 Predicted observation at t + 1

= N (xt+13 Fxta Em) Error in the predicted observation
— N(Zt; th, Ez)) /

pe = |[Fp+ K, 1(]Zt+1 — [HF p,)

Y1 = (I-K.H)(FSF +3),)

where Kt+1 = (FEtFT + Ex)HT (H(FEtFT + Ex)HT + Ez)_l Kalman gain matrix
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Making Intuitive Sense of Kalman Filter General Case

Measure of how seriously to take the new

observation relative to the prediction

Predicted state at # + 1 Predicted observation at t + 1

xt) (xt+1§ Fxt, Em) Error In the predicted olbservation

P(Zt (Zt; th, Ez)’ /
e = |[Fugl+ ‘Kt 1‘(]Zt 1 —‘HFp,tl)
= (I-K, H)(FI,F' +%,)

where Kt+1 = (FEtFT + E:,,)I'IT (H(FEtFT + Ex)HT + Zz)_l Kalman gain matrix

e
_|._
p—

|
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Real-time Computation of Kalman Filter

P(xi1|%x:) = N(xe15Fx, X)
P(Zt xt) N(Zt; th, Ez),

pe1 = Fu+Kip(2i — HF py)
Y1 = (I-K.H)(FSF +3),)

where K; = FZtFT + 2, H' (H FEtFT + 2, H' + 22, 1 Kalman gain matrix
+

74
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Real-time Computation of Kalman Filter

Independent of observations Z,

P(xt—|—1 xt) — N(xt—l—l; Fxta 23:z:)
P(Zt xt) _ N(Zt; th, Ez),
1 = Fu+Ki(2i — HF )
Y1 = |(I-Ko H)(FSF' +3,)
where K, =|(FZ,F' +,)H' (HFZF' +3,)H' +%,)!

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Real-time Computation of Kalman Filter

Independent of observations Z,

P(xi1]x:) = N(xp415Fxp, X5,)
P(Zt xt) — N(Zt; th, Ez),
pr1 = Fp+Ki(2 — HF )
Y1 = |[(I-K. H)(FSF +3,)
where K, =|(FZ,F' +,)H' (HFZF' +3,)H' +%,)!

The sequence of values for 2, and K, can be computed offline,
and so calculations during online tracking are modest.

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Kalman Filtering and Smoothing for Object Moving in X — Y Plane

2D filtering 2D smoothing
12 12r
—a—  rue —a— e
. observed . observed
—x—  filtered —x—  smoothed
11t 11}
10
Y ot
8»
7t R
¢ t‘
B_I_l_l e ————— A A A ' A A A i
8 10 12 14 18 18 20 22 24 2% % 10 12 14 18 18 20 22 24 26

X X

. State variables are X = (X, Y, X, Y) so that F, 2., H,and 2_ are 4 X 4 matrices

» Variance in the right plot (Kalman Smoothing) is much reduced except at the start and the end. Why?
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Applicability of Kalman Filtering

 Classical applications
» radar tracking of aircrafts and missiles, acoustic tracking of submarines and ground vehicles, visual tracking of
vehicles and people

» More esoteric applications
» reconstruct particle trajectories from bubble chamber photographs, ocean currents from satellite surface
measurements

» Applicable to any system with continuous state variables and noisy measurements
» national economies, human body, chemical plants, nuclear reactors, plant ecosystems, etc.

- But results may not be valid or useful
» strong assumption of linear-Gaussian transition and sensor models

- Extended Kalman Filter (EKF): overcome nonlinearities in the system being modeled

» models the system as locally linear in X, in the neighborhood of X, = p,

» works well for smooth, well-behaved systems
- allows the tracker to maintain and update a Gaussian state distribution that is a reasonable approximation to the
true posterior

- What about systems that are “unsmooth” and “poorly behaved”?

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Switching Kalman Filter

» Track a bird as it flies through the jungle and appears to be heading at high speed straight for a tree trunk

- The Kalman filter, whether regular or extended, can make only a Gaussian prediction of the location of the
bird, and the mean of this Gaussian will be centered on the trunk

- A reasonable model of the bird, on the other hand, would predict evasive action to one side or the other
» Such a model is highly nonlinear, because the bird’s decision varies sharply depending on its precise location

relative to the trunk ,

» Switching Kalman Filter: multiple Kalman filters run in parallel, each using a different model of the system
» E.g., one for straight flight, one for sharp left turns, and one for sharp right turns
» A weighted sum of predictions is used, where the weight depends on how well each filter fits the current data
» A special case of the aeneral dvnamic Bavesian network model

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Dynamic Bayesian Networks (DBNS)

» Special case of Bayesian Networks: infinitely many variables grouped in time slices
» Each slice can have any number of state variables S; and observation variables 0,

Rt_l P (Rtht-I)
t 0.7
1 03
Rain,_, Rain, @
Rt P (Utht)
t 0.9
f 0.2

Umbrella,_, Umbrella, Umbrella,,

» For simplicity, we assume that
» the variables, their links, and their conditional distributions are exactly replicated from
slice to slice (time-homogeneous)
» the DBN represents a first-order Markov process, i.e., each variable can have parents
only in its own slice or the immediately preceding slice.
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DBN vs. MM
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DBN vs. HMM

- Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable
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DBN vs. HMM

- Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

» Every discrete-variable DBN can be represented as an HMM
» We can combine all the state variables in the DBN into a single state variable whose values are all possible
tuples of values of the individual state variables
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DBN vs. HMM

- Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

» Every discrete-variable DBN can be represented as an HMM
» We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

- If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?
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DBN vs. HMM

- Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

» Every discrete-variable DBN can be represented as an HMM
» We can combine all the state variables in the DBN into a single state variable whose values are all possible

tuples of values of the individual state variables

- If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?

- The difference: by decomposing the state of a complex system into its constituent variables, we can take
advantage of sparseness in the temporal probability model.
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DBN vs. HMM

- Every hidden Markov model can be represented as a DBN with a single state variable and a single
evidence variable

» Every discrete-variable DBN can be represented as an HMM
» We can combine all the state variables in the DBN into a single state variable whose values are all possible
tuples of values of the individual state variables

- If every HMM is a DBN and every DBN can be translated into an HMM, what’s the difference?

- The difference: by decomposing the state of a complex system into its constituent variables, we can take
advantage of sparseness in the temporal probability model.

- Consider: a temporal process with 7 discrete variables, each with up to d values
» HMM model will need a transition matrix of size O(d*")
» DBN model has size O(nd"), assuming each node can have at most k parents
» E.g. vacuum robot with 42 possibly dirty locations: size reduces from 5 X 10%” to a few thousands
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DBN vs. Kalman Filter
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DBN vs. Kalman Filter

- Every Kalman filter model can be represented in a DBN with continuous variables and linear-Gaussian
conditional distributions
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DBN vs. Kalman Filter

- Every Kalman filter model can be represented in a DBN with continuous variables and linear—-Gaussian
conditional distributions

» However, not every DBN can be represented by a Kalman filter model
» In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution
- e.g. a single "bump” in a particular location in a position tracking system
» DBNSs, on the other hand, can model arbitrary distributions
» Many real-world applications require this
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DBN vs. Kalman Filter

- Every Kalman filter model can be represented in a DBN with continuous variables and linear—-Gaussian
conditional distributions

- However, not every DBN can be represented by a Kalman filter model
» In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution
- e.g. a single "bump” in a particular location in a position tracking system
» DBNSs, on the other hand, can model arbitrary distributions
» Many real-world applications require this

» E.g. consider a system that tracks location of my keys
» They might be in my pocket, on the bedside table, on the kitchen counter, dangling from the front door, or

locked In the car, ...
» A single Gaussian bump that included all these places would have to allocate significant probability to the keys

being in mid-air above the front garden!
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DBN vs. Kalman Filter

- Every Kalman filter model can be represented in a DBN with continuous variables and linear—-Gaussian
conditional distributions

- However, not every DBN can be represented by a Kalman filter model
» In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution
- e.g. a single "bump” in a particular location in a position tracking system
» DBNSs, on the other hand, can model arbitrary distributions
» Many real-world applications require this

» E.g. consider a system that tracks location of my keys
» They might be in my pocket, on the bedside table, on the kitchen counter, dangling from the front door, or

locked In the car, ...
» A single Gaussian bump that included all these places would have to allocate significant probability to the keys

being in mid-air above the front garden!

» Real world has purposive agents, obstacles, and pockets which introduce “nonlinearities” and require
combinations of discrete and continuous variables in order to get reasonable models

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Constructing DBNs

» Jo construct a DBN, one must specify three kinds of
information: the prior distribution over the state variables,

P(S,); the transition model, P(S,. | S,); and the sensor
model, P(O,|S,)

 To specify the transition and sensor models, one must also
specify the topology of the connections between successive
slices and between the state and evidence variables.

- Because the transition and sensor models are assumed to be
time-homogeneous—the same for all 7—one only needs to

specify P(S,.{|S,) and P(O,|S,) for the first slice
» the complete DBN with an unbounded number of time slices can
be constructed as needed by copying the first slice

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Example: Battery Powered Robot Moving in X — Y Plane

« State Variables
» Position: X, = (X, ¥))

» Velocity: X, = (X, Y))
» Battery Status: Battery,

» Topology:
» The position at the next time step depends on the current
position and velocity
» The velocity at the next step depends on the current velocity
and the state of the battery
» The battery state at the next step depends on the current
velocity and the current state of the battery

» Sensor observations
» Some method of measuring position—perhaps a fixed camera

or onboard GPS (Global Positioning System)—yielding Z,
» Battery charge meter yielding BMeter,

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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A Deeper Look at the Sensor Model BMeter,

- Assume discrete values in the range 0 to 5 for both Battery, and BMeter,

» If the meter was always accurate then the conditional probability table (CPT) for P(BMeter, | Battery,) will
have probabilities of 1.0 along the diagonal and 0 elsewhere

» Reality: noise always creeps into measurements
» For continuous measurements, a Gaussian distribution with a small variance might be used

» For our discrete variables, we can approximate a Gaussian
- using a distribution in which the probability of error drops off in the
appropriate way, so that the probability of a large error is very small

 However, Iin real world sensors also fail
» When a sensor fails, it simply sends nonsense

» Transient failure: the sensor occasionally decides to send nonsense
- model by a higher probability for large errors than gaussian noise

» Persistent failure: the sensor fails and stays failed

- model by an additional state variable BMBroken
» Other issues: sensor drift, sudden decalibration, and the effects
of exogenous conditions (such as weather) on sensor readings

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”



Exact inference in DBNs by Unrolling

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Exact inference in DBNs by Unrolling

» Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

R, P(R, R R, | P(R R, |P(R R R|R
PRy)| (O}LQ)- PR -2 (RyRo)| | Ry |P(RyIR)) P(R;|R5)
0.7 f1 03 ,

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Exact inference in DBNs by Unrolling

» Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

R.IP(R.R R.IP(R R,[PRJR)| [R[P(RJR
P(Ro) :D‘i (o.||7 = P(Ro) tv“ (o.l;R J ‘ (o.;R : ; P(o.|7 )
07| |f]| 03 07| [f]| 03 £l 03 fl 03

RLi P(U\|R,)! gl_r(ulmll R, | P(UjR,)| |R;|P(UyR;)
tl 09 t] 09 tl 09 tl 09
fl 02 fl 02 fl 02 fl 02

- But very inefficient @
» Space requires to filter or smooth on 0., would require O(¢) space and thus grown without bound
» Inference time per update will also increase as O(t)

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”



Exact inference in DBNs by Unrolling

- (Given a sequence of observations, one can construct the full Bayesian network representation of a DBN
by replicating slices until the network is large enough to accommodate the observations

R.JP(R/R R.JPR R,JPRR)| [R.JP(RYR
P(Ro) ;"‘i o.l|7 = P(Ro) tv'l o.l;R o ‘ o.;R : ' P(o.|7 :
07] [f| 03 07 | |f| 03 fl 03 | [f] 03

Raing)—(Rainp)——»Rainy—Rain) -

¥

@D -ED )

Umbrellar> mbreliayy  mbrellay mbrella
ﬁPw!lR:_) &.‘P(U.IRL) R [PUIRy)| [R.[PULR,)

[ 0.9 [ 0.9 [ 0.9 l 0.9

f 0.2 f 0.2 f 0.2 f 0.2

. But very inefficient @
» Space requires to filter or smooth on 0., would require O(¢) space and thus grown without bound
» Inference time per update will also increase as O(t)

- What about recursive algorithms with “constant” time and space complexity per filtering update?

» Unfortunately exponential: pace complexity O(d”+k) and time complexity O(nd"**)
with n state variables of domain size d and maximum number of parents k
| 84
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Approximate inference in DBNs

* |dea: randomized sampling algorithms, aka Monte Carlo algorithms
» Work by generating random events based on the probabilities in the DBN and counting up the different
answers found in those random events
» Provide approximate answers whose accuracy depends on the number of samples generated

Two families of algorithms used for general Bayes Networks

» Direct sampling
- generate each sample from scratch
- e.g. Likelihood Weighting

» Markov chain sampling

- generate a sample by making a random change to the preceding sample
- e.g. Markov Chain Monte Carlo (MCMC)

» These can be adapted for DBNs
» Require several improvements to be practical

» E.g. Particle Filtering, an adaption of Likelihood Weighting

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Particle Filtering

- First we generate a population of N samples from the prior distribution P(S)
» Then the update cycle is repeated for each time step:
» Each sample is propagated forward by sampling the next state value s, ; given the current value s, for the
sample, given the transition model P(S,, | S,)
» Each sample is weighted by the likelihood it assigns to the new observation, P(0,,|S,.)

» The population is resampled to generate a new population of N samples
- Each new sample is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN defined by P(Xj), P(X; | Xp), and P(E; | X)
persistent: S, a vector of samples of size N, initially generated from P(X)
local variables: W, a vector of weights of size N

fori=1toN do
S[i] < sample from P(X; | Xo = S[i]) // step 1
Wil P(e| X, = S[i]) // step 2
S+ WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W)
return S

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Particle Filtering

- First we generate a population of N samples from the prior distribution P(S)

» Then the update cycle is repeated for each time step:
» Each sample is propagated forward by sampling the next state value s, ; given the current value s, for the
sample, given the transition model P(S,, | S,)

» Each sample is weighted by the likelihood it assigns to the new observation, P(0,,|S,.)

» The population is resampled to generate a new population of N samples

- Each new sample is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

Rain, Rain,,, Rain,,, Rain,,
The particle filtering update cycle for the umbrella DBN with N = 10, showing the sample populations of
true m v D each state. (a) At time ¢, 8 samples indicate rain and 2 indicate —rain. Each is propagated forward by
sampling the next state through the transition model. At time ¢ + 1, 6 samples indicate rain and 4 indicate
false - E E —rain. (b) ~umbrella is observed at ¢ + 1. Each sample is weighted by its likelihood for the observation, as
indicated by the size of the circles. (c) A new set of 10 samples is generated by weighted random

selection from the current set, resulting in 2 samples that indicate rain and 8 that indicate —rain.

(a) Propagate (b) Weight  (c) Resample

87
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Particle Filtering

» Also, efficient for many practical applications and is therefore widely used
» Maintains a good approximation to the true posterior using a constant number of samples
» Handles combinations of discrete and continuous variables
» Handles nonlinear and non-Gaussian models for continuous variables

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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Revisit MM
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transition
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(a) A graphical representation of an HMM
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(b) An observation sequence of an HMM

Legend. —State transition - *Transition emission

(a) HMM states of eating
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(b) Observation sequence of an eating activity

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."
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Learning HMM Model

Supervised: Learn transition and sensor models from labeled data

» Access to both observations 0., and ground truth S,
» Ground truth via manual labeling, addition sensor etc. Costly!

Unsupervised: Learning from observations alone
» Maximum likelihood estimate of the parameters of the HMM given the set of output sequences (intractable &)

» Efficient practical approach: learning as a byproduct of inference - similar to Expectation Maximization algorithm
- Inference provides an estimate of what transitions actually occurred and of what states generated the observations
- These estimates can be used to update the models
- The updated model provides new estimates, and the process iterates to convergence

Training is also possible with prior expert-provided knowledge of some aspects of the model

individually trained HMM can be combined to construct a larger HMM model
» e.g., of a complex activities with clear sub-activities structure

Russell, Stuart J., and Peter Norvig. "Artificial Intelligence: A Modern Approach”
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A Common Algorithm: Baum-\Welch

» |t gives local optimum: gradient descent

 References:

» https://www.youtube.com/watch?v=JRsdt05pMol

- part of an excellent series on

IMM

» https://en.wikipedia.org/wiki/Baum-Welch algorithm

Algorithm 1: The Baum-Welch algorithm

» https://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-410-principles-of-autonomy-and-

decision-making-fall-2010/lecture-notes/

MIT16 410F10 lec21.pdf

https.//tex.stackexchange.com/questions/480005/baum-welch-algorithm-description

Initialization: ©g, {O,.1}

Looping:
forl=1,...,lhax do
1. Forward-Backward calculations:

(i) = mibi(01), Br(i) =1,
K K
at(i) = [Z at—l(j)aji] bj(oz), ﬁt(i) = Zaijb'(ot-H)Bt-H(j)
1=1 j=1
for1<i< K, 1<t<T-1
2. E-step:

 (4) B, (1) at(i)a,-j bj(ot-H)ﬂt-H (4)

7£(Z) - 9 gt(za]) -

S () B(5)
for1<i<K 1<j<K,1<t<T-1

3. M-step:

71(2) a. . — Zlefz(i,j)

S S a(i)aibi(Ons1B8e(3))

Z;le '7t(ks d)

W =

Sraml) T T Y el k)
for 1<i<K, 1<j<K, 1<k<K1<d<D

end
Result: {©,;};m

Wid =
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Limitations ot HMM

» Difficulty in representing multiple interacting activities (concurrent or interwoven)

* Incapable of capturing long-range or transitive dependencies of the observations due
to its very strict independence assumptions (on the observations)

- Without significant training, an HMM may not be able to recognize all of the possible
observation sequences that can be consistent with a particular activity.

* |n practice:
» Many activities are concurrent or interwoven
» Many activities may have non-deterministic natures
- some steps of the activities may be done in any order

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."
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A More Flexible Alternative: Conditional Random Field (CRF)

- Addresses practical requirements that HMM cannot
» Two types of models
» Generative: finds a joint probability distribution p(x, y) of a hidden variable y and an
observed variables x
» Discriminative: finds only the conditional probability p(y | x)
- Both can be used to find a hidden state transition from observation sequences
» What type is HMM?

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."
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A More Flexible Alternative: Conditional Random Field (CRF)

- Addresses practical requirements that HMM cannot
» Two types of models
» Generative: finds a joint probability distribution p(x, y) of a hidden variable y and an
observed variables x
» Discriminative: finds only the conditional probability p(y | x)

- Both can be used to find a hidden state transition from observation sequences
» What type is HMM? Generative!

» CRF: a conditional distribution with an associated graphical structure

» Attempts to find only the conditional probability p(y | x), i.e. discriminative approach

» Allows for arbitrary, non-independent relationships among the observation sequences
» Relaxes the independence assumptions
- the hidden state probabilities may depend on the past and even future observations
» Modeled as an undirected acyclic graph with two types of hodes: observed & unobserved

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."
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Digression: Markov Random Fields (MRFs)

https.//towardsdatascience.com/conditional-random-fields-explained-e5b8256da776
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Digression: Markov Random Fields (MRFs)

- Represented by a graph G = (V, E) ¢ (D,A)
4 J

» nodes represent random variables
» edges collectively represent the dependencies between them @ @
- The graph can be factorized into J different cliques or factors J \

» each governed by a factor function CDj with its scope being a subset of ¢ AB ¢ D
random variables D; where ®(d;) > 0Vd; € D; (AB) (CG,D)

- The unnormalized joint probability of the variables is the product of all \ /
the factor function, so that B C

¢1 (a'7 b)¢2(b> C)¢3 (Ca d)¢4 (d7 a’) Cb (B,C)
SESN¢(a), V) pa (Y, )3 (c, d)pa(d', a’) 2

a/ bl C/ dl

Pr(A=a,B=bC=c¢,D=d) =
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Digression: Markov Random Fields (MRFs)

- Represented by a graph G = (V, E) ¢ (D,A)
4 J

» nodes represent random variables
» edges collectively represent the dependencies between them @ @
- The graph can be factorized into J different cliques or factors J \

» each governed by a factor function CDj with its scope being a subset of ¢ AB ¢ D
random variables D; where ®(d;) > 0Vd; € D; (AB) (CG,D)

- The unnormalized joint probability of the variables is the product of all \ /
the factor function, so that B C

¢1 (a'7 b)¢2(b> C)¢3 (Ca d)¢4 (d7 a’) Cb (B,C)
EEEY e (0, b)) o (V, ¢ )p3(c, d)pa(d a’)| 7 2

a/ bl C/ dl

Pr(A=a,B=bC=c¢,D=d) =
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Digression: Markov Random Fields (MRFs)

- Represented by a graph G = (V, E) ¢ (D,A)
4 J

» nodes represent random variables
» edges collectively represent the dependencies between them A D
- The graph can be factorized into J different cliques or factors J k

» each governed by a factor function cI)]. with its scope being a subset of ¢ AB ¢ D
random variables D; where ®(d;) > 0Vd; € D; (AB) (CG,D)

- The unnormalized joint probability of the variables is the product of all \ /
the factor function, so that B C

¢1 (CL, b)¢2(b7 C)¢3 (C7 d) ¢4 (da a’)
Pr(A=a,B=b,C=c,D =d) = $,(B,C)
A= “P =) S0 @, V)6V, Noale i@ )| 7
- Gibb’s Notation: represent the joint as a Gibbs Energy, E(z)=—-5""_.8:(d;),d: C X
distribution by operating on factor functions in ey (:1:) _Ez(i;=1 ﬁj( J) 7=
log space by using B(d ;)= log(d(d ;) Gibbs, P(z) = © here 7 — % o—E(@)

» X is the set of all the random variables in the graph 7 e X
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Conditional Random Field Model

- Assume a MRF divides into two sets of random variables Y (unobserved) and X (observed) respectively
» CREF ia special case of this MRF wherein the graph satisfies the property:

“When we condition the graph on X globally i.e. when the values of random variables in X is fixed or
given, all the random variables in set Y follow the Markov property p(Y XY, uzv) = p(Y IX,Y, Y ~Y),
where Y ~Y signifies thatY and Y are neighbors in the graph.”

» A variable’s neighboring nodes or variables are also called the Markov Blanket of that variable

» One such graph that satisfies the above property is the chain-structured graph shared below:

¢,(Y,.Y) $,(Y,,Y,) $,(Y,,Y)
: /\ 2 3
YNNG Q

b1(Y,X) bo(Y,X,) b3(Y,X,) b 4(Y,X,)

O ® ® @

)

https.//towardsdatascience.com/conditional-random-fields-explained-e5b8256da776


https://en.wikipedia.org/wiki/Markov_blanket

Making Inferences with CRF

+ CREF is a discriminative model i.e. it models the conditional probability P(Y|X)
» i.e. X Is always given or observed

» Therefore the graph ultimately reduces to a simple chain

cb"l (Y1 ,X1) ¢'2(Y2’x2) ¢'3(Y3,X3) ¢'4(Y4,X4)

¢.(Y..Y)) $,(Y,.Y,) ¢,(Y,Y,)
' /Y\ () Y
! )\

» As we condition upon X and we are trying to find the corresponding Y, for every X., X and Y are also
called the evidence (sensor observations) and label variables respectively

» Training problem: maximizing the log likelihood wrt all model parameters
» See “Conditional Random Fields Explained” by Aditya Prasad @ the URL in left bottom footer
» Many off-the-shelf packages
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CRF Version of the Eating Activity Example

(a) CRF states of eating

~———
Hidden
Picky  [Have\ ___ ) states
food soup
_J.>
Observation
Fork Cup

(b) State transition and observation of eating

Kim, Eunju, Sumi Helal, and Diane Cook. "Human activity recognition and pattern discovery."
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Practical Resources

- scikit-learn (https://scikit-learn.org) provides many general classification and regression algorithms

- Pomegranate package for Python
» Many probabilistic models: HMM, Naive Bayes, and various others...
» Schreiber, Jacob. "Pomegranate: fast and flexible probabilistic modeling in python." The Journal of Machine

Learning Research 18, no. 1 (2017): 5992-5997.
- https://jmir.org/papers/volume18/17-636/17-636.pdf
» https://qithub.com/imschrei/pomegranate and https://pomegranate.readthedocs.io

* pgmpy python library for working with Probabilistic Graphical Models.
» Many probabillistic graphs models: Dynamic Bayesian Networks, Naive Bayes etc.
» https://github.com/pgmpy/pampy and http://pgmpy.org

* Fun with Hidden Markov Models in PyTorch (by Loren Lugosch)
» Based on: Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech

recognition.” Proceedings of the IEEE 77, no. 2 (1989): 257-286.
- https://www.cs.cmu.edu/~cga/behavior/rabiner1.pdf

» https://colab.research.google.com/drive/11Ue9lfoliQsl. 49atSOgxnCmMR zJazKI

* python-crfsuite python binding for CRFSuite
» An implementation of Conditional Random Fields (CRFs) for labeling sequential data
» https://aithub.com/chokkan/crfsuite
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Practical Resources (contd.)

* FilterPy package for Python
» Python library that implements a number of Bayesian filters, most notably Kalman filters
» https://github.com/rlabbe/filterpy

» Excellent related interactive book: Kalman and Bayesian Filter in Python
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/

- pykalman library for Python
» Kalman Filter, Kalman Smoother, and EM
» https://pykalman.github.io and https://github.com/pykalman/pykalman

» TinyEKF Lightweight C/C++ Extended Kalman Filter with Python
» https://github.com/simondlevy/TinyEKF

» tsBNgen for generating synthetic time series data in Python (from Prof. Pottie’s group)
» Python package to generate time series data based on an arbitrary Bayesian Network structures
» Tadayon, Manie, and Greg Pottie. "tsBNgen: A Python Library to Generate Time Series Data from an Arbitrary
Dynamic Bayesian Network Structure.” arXiv preprint arXiv:2009.04595 (2020).
- https://arxiv.org/pdf/2009.04595.pdf
» https://qgithub.com/manitadayon/tsBNgen#Features
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