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Data Quality Problems

- Measurement uncertainty
» resolution, accuracy, precision, bias, ...



Measurement Uncertainty

» Sensors, humans, and upstream ML algorithms always provide data that have a degree of uncertainty
» systematic and random errors

- Key concepts
» Accuracy: The error between the real and measured value (i.e. correctness)
» Precision: The random spread of measured values around the average measured values (random error)
» Resolution: The smallest to be distinguished magnitude from the measured value
» Important Note: in classification, accuracy and precision have different meanings
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Data Quality Problems

- Measurement uncertainty
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Data Quality Problems

- Measurement uncertainty
» resolution, accuracy, precision, bias, ...

180 -
* Environmental factors | ,
» temperature, humidity, biofouling, light, . . H ﬁ e
dust, wind, rain, motion, ... v
o 2 160
» Missing values
» gaps Iin time series, Missing Sensors
150 =
140 -
2015-.08-31 2015-'09-01 2015-.09-02 2015-.09-03 2015-.09-04

time

https://stackoverflow.com/questions/40087340/differentiate-missing-values-from-main-data-in-a-plot-using-r



Data Quality Problems

- Measurement uncertainty
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Missing Values



Many reasons for missing values in real-world applications

* Irregular observations

» Software crash

- Communication outage
* Energy availabllity

» Power management

» Privacy and other human factors

... and more ...
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Informative Missingness

- Missing values and patterns often provide rich information about target labels in
supervised learning tasks, e.g, time series classification
» Because they may not occur randomly, e.g. may reflect clinical care decisions

« Consider MIMIC 1lI...

https.//www.nature.com/articles/s41598-018-24271-9



MIMIC-III

» A freely accessible critical care database from MIT Lab for Computational Physiology
» https://mimic.physionet.org

1 Hospital

150
1 125

100 TN\ A e =N ML (

Heart rate
(02 BN |
o !

25
0
50
g
© 40
530-
£ 20
o
© 10
o
0
10
_ 8
g
I 6
C
3 4 ® O
* Religion/ethnicity/marital status 2 T
) | 0 & a_a P
Notes and reports
* Discharge summarics 14
« Radiology (X-ray, CT, MRI, Ultrasound) S
« Cardiology (ECHO, ECG) B 30
| ©
S
! External S 5
(2]
' >
£ oy RN
—/ .
0 10 20 30 40 50 60 70

Time (hr) since first morphine administration

https.//www.researchgate.net/publication/332669683_Deep_Reinforcement_Learning_for_Optimal_Critical_Care_Pain_Management_with_Morphine_using_Dueling_Double-Deep_Q_Networks


https://mimic.physionet.org

Informative Missingness

» Missing values and patterns often provide rich information about target labels In
supervised learning tasks, e.g, time series classification

Absolute Values of Pearson Correlations between Variable Missing Rates and Labels

(Mortality and ICD-9 Diagonsis Categories on MIMIC-III Dataset) Demonstration of informative missingness on

MIMIC-III dataset.

0.0 0.1 0.2 0.3
0 The bottom figure shows the missing rate of each
°D-9 input variable. The middle figure shows the absolute
gonsis values of Pearson correlation coefficients between
g%ge?(ry missing rate of each variable and mortality. The top
figure shows the absolute values of Pearson
o correlation coefficients between missing rate of each
;ft;“{fﬁy variable and each ICD-9 diagnosis category.

ssing
ate

0.8
Observation: The value of missing rate is correlated with the labels, and the missing rate of variables with low

missing rate are usually highly (either positive or negative) correlated with the labels. |.e., the missing rate of variables
for each patient is useful, and this information is more useful for the variables which are observed more often in the dataset.

https.//www.nature.com/articles/s41598-018-24271-9
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[raditional Approaches for Missing Data

- Omit the missing data and perform analysis only on the observed data
» Does not provide good performance when the missing rate is high and inadequate
samples are kept
» Does not work if processing algorithm cannot handle missing data

» Fill in the missing values with substituted values: known as data imputation

» Simple approaches: default value (e.g. 0), mean, median, mode, smoothing, interpolation,
spline, ...
- Do not capture variable correlations
- May not capture complex pattern when performing imputation

» Better imputation methods
- Spectral analysis, kernel methods, EM algorithm, KNN, matrix completion, matrix

factorization, ...
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Limitations of [raditional Approaches

» Two-step process of imputation followed by prediction can be suboptimal
» missing patterns are not effectively explored in the prediction model

- Most imputation methods also have other requirements which may not be satisfied in
real applications
» many of them work on data with small missing rates only
» assume the data is missing at random or completely at random
» or can not handle time series data with varying lengths

» Training and applying imputation methods are often computationally expensive

13



Strategies for RNN with Missing Data in Clinical Time Series [Lipton16]

» Zero-imputation strategy
i xl.(t) is missing then set xl.(t) =0

» Forward-filling strategy
» If there is at least one previously recorded measurement of variable i at a time ¢’ < ¢, perform forward-filling by

setting xl.(t) — xl.(t')
» If there is no previous recorded measurement (or if the variable is missing entirely), then impute the median

estimated over all measurements in the training data.
- motivated by the intuition that clinical staff record measurements at intervals proportional to rate at which they are

believed or observed to change

» |ndicator (mask) variable approach
» Augment inputs with binary variables ml.(t) for every xl.(t), W
» Through their hidden state computations, RNNs can use the indicators to learn arbitrary functions of the past
observations and missingness pattern

nere ml.(t) = 1if xl.(t) is imputed and 0 otherwise

14
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Strategies for RNN with Missing Data in Clinical Time Series [Lipton16]

» Zero-imputation strategy
» Forward-filling strategy
* |ndicator variable approach

.4 .7 I .2 .
.4 .7 .2 .

(top left) no imputation or indicators, (bottom left) imputation absent indicators, (top right)
indicators but no imputation, (bottom right) indicators and imputation. Time flows from left to right.

http.//proceedings.mir.press/v56/Lipton16.pdf



RNN with zero-filled inputs and missing data indicators
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A Better Representation of Informative Missingness Patterns:
Marking with Time Intervals

» Definitions
» X = (X1, %5, ..., x7)0 € R'™Pis a multivariate time series with D variables of length T
- foreachtr € {1,2,..., T}, X, € RP represents the 7-th measurement of all variables
while xtd denotes the measurement of the d-th variable of x,

» 5, € R denotes the time-stamp when the #-th observation is obtained
- we assume that the first observation is made at time-stamp O (i.e., s; = 0)

» Approach: indicate which variables are missing and how long they have been missing
» A masking vector m, € {0,1 P denotes which variables are missing at time step ¢

» Also maintain the time interval 5;1 € R for each variable d since its last observation

1, if x?is observed

d —
my = {0 otherwise X: Input time series (2 variables); M: Masking for X;
’ s: Timestamps for X; A: Time interval for X.
St_St—1+6;i_1a > l’m?—l — () X — [47 49 NA 40 NA 43 55 M = 1 1 0 1 0 1 1
p NA 15 14 NA NA NA 15 0 1 1 0 0 0 1 .
0y = {8 — Si-1, t>1,m? =1 100 01 05 15 0.6 09 0.6
s=[0 01 06 16 22 25 31 A=|5y 01 05 1.0 1.6 19 25

0, t=1

https.//www.nature.com/articles/s41598-018-24271-9
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Recall: GRU
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RNN with modified GRUs containing trainable decay term
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https.//www.nature.com/articles/s41598-018-24271-9
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Model performance for mortality prediction

https.//www.nature.com/articles/s41598-018-24271-9

Proposed GRU-D

Non-RNN Models RNN Models

Mortality Prediction On MIMIC-III Dataset LSTM-Mean 0.8142+0.014
LR-Mean 0.7589 +0.015 SVM-Mean 0.7908+0.006 RF-Mean 0.8293+0.004 GRU-Mean 0.8252+0.011
LR-Forward 0.7792+0.018 SVM-Forward 0.8010+£0.004 RF-Forward 0.8303+0.003 GRU-Forward 0.8192+0.013
LR-Simple 0.7715+£0.015 SVM-Simple 0.8146 +0.008 RF-Simple 0.8294 + 0.007 GRU-Simple w/o §%2 0.8367 +0.009
LR-Softimpute 0.7598 £ 0.017 SVM-Softimpute 0.7540+£0.012 RF-Softimpute 0.7855+0.0M1 GRU-Simple w/jo m 0.8266 +0.009
LR-KNN 0.6877 +0.011 SVM-KNN 0.7200+0.004 RF-KNN 0.7135+0.015 GRU-Simple 0.8380+0.008
LR-CubicSpline 0.7270+0.005 SVM-CubicSpline 0.6376+£0.018 RF-CubicSpline 0.8339+0.007 GRU-CubicSpline 0.8180+£0.01M
LR-MICE 0.6965+0.019 SVM-MICE 0.7169+0.012 RF-MICE 0.7159 + 0.005 GRU-MICE 0.7527 +0.015
LR-MF 0.7158 +0.018 SVM-MF 0.7266 +0.017 RF-MF 0.7234 +0.011 GRU-MF 0.7843+0.012
LR-PCA 0.7246 +0.014 SVM-PCA 0.7235+0.012 RF-PCA 0.7747 +0.009 GRU-PCA 0.8236 +0.007
LR-MissForest 0.7279+0.016 SVM-MissForest 0.7482+0.016 RF-MissForest 0.7858+0.010 GRU-MissForest 0.8239+0.006

Proposed GRU-D 0.8527+0.003

Mortality Prediction On PhysioNet Dataset LSTM-Mean 0.8025+0.013
LR-Mean 0.7423 +0.011 SVM-Mean 0.8131+0.018 RF-Mean 0.8183+0.015 GRU-Mean 0.8162+0.014
LR-Forward 0.7479+0.012 SVM-Forward 0.8140+0.018 RF-Forward 0.8219+0.017 GRU-Forward 0.8195+0.004
LR-Simple 0.7625+0.004 SVM-Simple 0.8277 +0.012 RF-Simple 0.8157+0.014 GRU-Simple 0.8226 +£0.010
LR-Softimpute 0.7386 +0.007 SVM-Softimpute 0.8057+0.019 RF-Softimpute 0.8100+0.016 GRU-Softimpute 0.8125+0.005
LR-KNN 0.7146 £ 0.0M SVM-KNN 0.7644 +0.018 RF-KNN 0.7567 +£0.012 GRU-KNN 0.8155+0.004
LR-CubicSpline 0.6913+0.022 SVM-CubicSpline 0.6364 +0.015 RF-CubicSpline 0.8151+0.015 GRU-CubicSpline 0.7596 +0.020
LR-MICE 0.6828 +£0.015 SVM-MICE 0.7690+0.016 RF-MICE 0.7618 + 0.007 GRU-MICE 0.81563+0.013
LR-MF 0.6513+0.014 SVM-MF 0.7515+0.022 RF-MF 0.7355+0.022 GRU-MF 0.7904 +£0.012
LR-PCA 0.6890+0.019  SVM-PCA 0.7741+0.014 RF-PCA 0.7561+0.025 GRU-PCA 0.8116 + 0.007
LR-MissForest 0.7010+£0.018 SVM-MissForest 0.7779+0.008 RF-MissForest 0.7890+0.016 GRU-MissForest 0.8244 +0.012

0.8424 +0.012

(average AUC score)
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Model performance for multi-task predictions

Models ICD-9 20 Tasks on MIMIC-Ill Dataset All 4 Tasks on PhysioNet Dataset
GRU-Mean 0.7070+0.001 0.8099+0.011

GRU-Forward 0.7077 +£0.001 0.8091+0.008

GRU-Simple 0.7105+0.001 0.8249+0.010

GRU-CubicSpline 0.6372+0.005 0.7451+0.011

GRU-MICE 0.6717 +0.005 0.7955+0.003

GRU-MF 0.6805+0.004 0.7727 +0.003

GRU-PCA 0.7040+0.002 0.8042+0.006

GRU-MissForest 0.7115+0.003 0.8076+0.009

Proposed GRU-D 0.7123 +0.003 0.8370+0.012

https.//www.nature.com/articles/s41598-018-24271-9

(average AUC score)



GRU-D Summary

» GRU-D addresses the problem that off-the-shelf RNN architectures with imputation
can only achieve performance comparable to Random Forests and SVMs, and
moreover, they do not demonstrate the full advantage of representation learning

- However, GRU-D approach has limitations
» It may fall if the missingness is not informative at all, or the inherent correlation between
the missing patterns and the prediction tasks are not clear
» Decay mechanism needs to be explicitly designed for the informative missingness
present in an application domain (e.g. traffic, climate)

» Not explicitly designed for filling in the missing values in the data, and can not be directly
used In unsupervised settings without prediction labels

https.://www.nature.comy/articles/s41598-018-24271-9
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Estimating Missing Data Using Multi-directional RNNS

- Exploits the fact that information is often correlated both within and across data streams

» Uses a hierarchical learning framework that limits the number of parameters to be learned to be linear in

the number data streams
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Imputation via Generative Adversarial Network (GAN)

« But first what is a GAN?

24



(Generative Adversarial Networks

» Generative modeling is an unsupervised learning task that involves automatically
discovering and learning the regularities or patterns in input data
» The learnt model can then be used to generate or output new examples that plausibly
could have been drawn from the original dataset

Input Data (X) W

- N
l Input Data W Input Data (X)
- Model :
Model Model Model
Update | :
model Predictions W W Predicted '
Output Data redicte : Generated
(yh“ W) Classification : Example
Error

Supervised Learning for Discriminative Modeling E Unsupervised Learning for Generative Modeling

https.://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/



Generative Adversarial Networks (GANS)

» Generative modeling is an unsupervised learning task that involves automatically
discovering and learning the regularities or patterns in input data
» The learnt model can then be used to generate or output new examples that plausibly
could have been drawn from the original dataset

» GAN is a clever approach to generative modeling using deep learning methods
» Frames the problem as a supervised learning problem with two sub-models: a generator
model that we train to generate new examples, and a discriminator model that tries to
classify examples as either real (from the domain) or fake (generated)
» The two models are trained together in a zero-sum game, adversarial, until the
discriminator model is fooled about half the time, meaning the generator model is
generating plausible examples

https.://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
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Generative Adversarial Networks (GANS)
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Modeled as a 2-party zero sum game via a Minimax
optimization strategy.

Discriminator seeks to maximize the probability of
assigning the correct label to both fraining examples

and samples from G.

The generator seeks to minimize the log of the inverse
probability predicted by the discriminator for fake
images. This has the effect of encouraging the generator

to generate samples that have a low probability of being
fake.

https.://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
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Enhancement: Conditional GANS

Random Input
Vector

N

Additional
Information

\/

Input Example

N\

Additional
Information

\/

Generator Discriminator
Model Model
- .
Generated Binary Classification
Example Real/Fake

- Additional input could be a class value
» e.g. “walking” in generation of accelerometer time series data
» Such a conditional GAN can be used to generate examples from a domain of a given type

» Can also be conditioned on an example from a domain
» This can allow GANs to do style transfer, domain translation etc.



Generative Adversarial Networks (GANS)

- Generative modeling is an unsupervised learning task that involves automatically
discovering and learning the regularities or patterns in input data
» The learnt model can then be used to generate or output new examples that plausibly
could have been drawn from the original dataset

» GAN is a clever approach to generative modeling using deep learning methods
» Frames the problem as a supervised learning problem with two sub-models: a generator
model that we train to generate new examples, and a discriminator model that tries to
classify examples as either real (from the domain) or fake (generated)
» The two models are trained together in a zero-sum game, adversarial, until the
discriminator model is fooled about half the time, meaning the generator model is
generating plausible examples

« GANs very powerful to model high-dimensional data, handle missing data etc.
» But a pain to train :-(

https.//machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
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Imputation via Generative Adversarial Network (GAN)

Generative Adversarial Imputation Nets (GAIN) Architecture

In GAIN, the generator’s goal is to accurately impute
missing data, and the discriminator’s goal is to distinguish
between observed and imputed components. The
discriminator is trained to minimize the classification loss
(when classifying which components were observed and
which have been imputed), and the generator is trained to
maximize the discriminator’s misclassification rate.

GAIN designed for non-sequential data

Yoon, Jinsung, James Jordon, and Mihaela Schaar. "Gain: Missing data imputation using generative adversarial nets."
In International Conference on Machine Learning, pp. 5689-5698. PMLR, 2018. http.//proceedings.mir.press/v80/yoon18a/yoon18a.pdf
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Table 2. Imputation performance in terms of RMSE (Average + Std of RMSE)

GAIN Performance: Imputation and Prediction

Algorithm Breast Spam Letter Credit News
GAIN 0546 + .0006 | .0513+ .0016 | .1198+ .0005 | .1858 + .0010 | .1441 + .0007
MICE 0646 + .0028 | .0699 + .0010 | .1537 £ .0006 | .2585 4+ .0011 | .1763 + .0007

MissForest 0608 £+ .0013 | .0553 £+ .0013 | .1605 £ .0004 | .1976 &+ .0015 | .1623 £ 0.012
Matrix 0946 + .0020 | .0542 + .0006 | .1442 + .0006 | .2602 4+ .0073 | .2282 + .0005

Auto-encoder | .0697 &+ .0018 | .0670 + .0030 | .1351 £ .0009 | .2388 £+ .0005 | .1667 & .0014
EM 0634 + .0021 | .0712 £+ .0012 | .1563 £ .0012 | .2604 &+ .0015 | .1912 + .0011
Table 3. Prediction performance comparison
Algorithm AUROC (Average + Std)
Breast Spam Credit News
GAIN 9930 £+ .0073 | .9529 + .0023 | .7527 £+ .0031 | .9711 £ .0027
MICE 9914 + .0034 | .9495 4+ .0031 | .7427 £ .0026 | .9451 + .0037
MissForest | .9860 £+ .0112 | .9520 £ .0061 | .7498 + .0047 | .9597 + .0043
Matrix 9897 4+ .0042 | .8639 & .0055 | .7059 £ .0150 | .8578 £ .0125
Auto-encoder | .9916 & .0059 | .9403 4 .0051 | .7485 £ .0031 | .9321 + .0058
EM 9899 + .0147 | .9217 4 .0093 | .7390 £ .0079 | .8987 £ .0157

Yoon, Jinsung, James Jordon, and Mihaela Schaar. "Gain: Missing data imputation using generative adversarial nets."
In International Conference on Machine Learning, pp. 5689-5698. PMLR, 2018. http.//proceedings.mir.press/v80/yoon18a/yoon18a.pdf
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GAN-based Imputation for Time Series Data

%
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Nnoise L . _

- The generator G learns a mapping G(z) = z — x that maps the random noise vector z to a complete time
series which contains no missing value

» Uses Gated Recurrent Unit (GRU) but is adapted to cope with varying time lags between two consecutive
valid observations due to data incompleteness

» Two part Imputation Loss function
» Masked Reconstruction Loss: masked squared errors between the original sample x and the generated sample
» Discriminative Loss: generated sample’s degree of authenticity

Luo, Yonghong, Xiangrui Cai, Ying Zhang, Jun Xu, and Xiaojie Yuan. "Multivariate time series imputation with generative adversarial networks." 32
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 1603-1614. 2018.
https.//proceedings.neurips.cc/paper/2018/file/96b9bif013acedfb1d140579e2fbeb63-Paper.pdf



Gated Recurrent Unit for data Imputation (GRUI) cell
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Performance of Imputation with GRUI-based GAN

Model Result

Neural Network model called GRUD [7] 0.8424
Hazard Markov Chain model [29]  0.8381
Regularized Logistic Regression model [25] 0.848

GAN based imputation & RNN model 0.8603

Missing-rate  Last filling Mean filling KNN filling MF filling GAN filling
90% 2.870 1.002 1.243 1.196 1.018
80% 1.689 0.937 0.873 0.860 0.837
70% 1.236 0.935 0.852 0.805 0.780
60% 1.040 0.973 0.856 0.834 0.803
50% 0.990 0.923 0.798 0.772 0.743
40% 0.901 0.914 0.776 0.787 0.753
30% 0.894 0.907 0.803 0.785 0.780
20% 1.073 0.916 0.892 0.850 0.844

The AUC score of the mortality prediction
task on the Physionet dataset.

The MSE results of the proposed method and other
imputation methods on the KDD Air Quality dataset

© GAN © Last = Mean Zero © GAN © Last = Mean

1.00
0.860 0.604
0.773 0.6

0.750.701 0.719 0.495
O K0 .41 0.346 0.356
=0.50 A 0- ' '
< =

0.25' 0.2

0.00 SVM-—RBF SVM-Linear SVM—Poly SVM-Sigmoid 0.0 ™D ecision Tree  Linear Regression  Random Forest Ron

The AUC score of mortality prediction by different
classification models trained on different imputed datasets

The MSE of air quality prediction by different regression
models trained on different imputed datasets

https.//proceedings.neurips.cc/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf



Poor Quality Temporal Metadata



Problems In time-related metadata

» Case 1. Sampling period in time series with regular sampling
» Actual sample interval may differ from configured sampling period
» Systematic errors and drifts in clock frequency

- manufacturing variations, variations due to temperature,
indeterministic software delays

» Lead to erroneous inference and control
- estimate of physical variables such as location, speed, ...
- classes distinguished by latent temporal properties

Original Signals

10 -

0 2 4 6 8 10 12
Time (s)

The blue and orange signals were recorded on two separate
devices. Their recordings are similar, but one of them is shifted in
time, and one of them is misinformed about it’'s sampling rate

(https.//blog.endaq.com/synchronizing-signals)
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Problems In time-related metadata

e <O ) O

Video Audio IMU Wearables

Time Offset ~ 2.6s

Cough Waveform-Phone

« Case 2: Timestamps in time series o

» Explicit timestamps used with events and irregular sampling ‘.

» Timestamps may be incorrect ——
- Poorly synchronized sensor clocks (sender-side time-stamping) Cough Wb ech
- Indeterminate OS & network delays (receiver-side time-stamping) g

» Lead to erroneous inference and control o
- incorrect ordering of events e
- domain shift due to temporal misaligned T w',
- estimate of physical variables such as location, speed, ... BT AL | T )
- classes distinguished by latent temporal properties o ['2‘ i 3‘ ;' 'JS" ' ‘7 '*' o “ ,,

https://dl.acm.org/doi/pdf/10.1145/3382507.3418855



Problems In time-related metadata

« Case 2: Timestamps in time series

» Explicit timestamps used with events and irregular sampling

» Timestamps may be incorrect

- Poorly synchronized sensor clocks (sender-side time-stamping)
- Indeterminate OS & network delays (receiver-side time-stamping)

» Lead to erroneous inference and control

incorrect ordering of events

domain shift due to temporal misaligned

estimate of physical variables such as location, speed, ...
classes distinguished by latent temporal properties

0.9-

Adjusted Time Delay (I Aagl)

0.0-

Video

o 0 0

Audio IMU Wearables

Time Drifts

3
> In=Clinic Study ‘ :‘g

20 30 40 50 60 70 80 90 100 110 120
Time After First Cough Event (secs)

https://dl.acm.org/doi/pdf/10.1145/3382507.3418855
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Aside: Uncertainty vs. Variability

* Uncertain: not knowable at runtime; may change
» Tradeoff between uncertainty and cost of data acquisition
» E.g., Inaccurate clock can result in data timestamp uncertainty

 Variable: not consistent but inconsistency may be measurable at runtime
» Can be measured directly/indirectly at runtime via other sensors
» E.g., Variation in sampling rate can be measured by the systems

- Temporal metadata has both of these issues
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Multimodal Fusion

Video
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Multimodal Fusion on a Single Device

* Modalities can be misalignhed
» E.g. audio and IMU data are timestamped by kernel along different software pathways
» Stack latencies can be different.

o audio imu
- ") lIDll c  Kernel layer —— | * \
Video  Audic  IMU < = S =
2
O
S Hardware
audio MU
Audio latency: ~ (10 ms - 40 ms) : :
JitheL()ingjllhe/erJC?/atency: T1SO ms r[nSStiser115] TlmeStamp fOr aUd|0 and IMU

Audio Latency: https://superpowered.com/
[Stisen15] Stisen, Allan, et al. "Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition." Proceedings of the 13th ACM conference on embedded networked sensor systems. 2015.



Multimodal Fusion across Multiple Devices (e.g. Smartphones)

7
(1)

Smart Homes

e <O [

Video Audio

AN

Wearables

Mobile Health

The most straightforward approach to align the modalities is tfo use the timestamps.

Are the timestamps across devices such as smartphones reliable ?
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A Study of System Clock Accuracy

ID Device OS Year | SIM?
I1 1iPhone 6 10S 12.14 2014 N
I2 iPad Pro 9" 10§ 12.1.4 2016 N
I3 1iPhone 7+ 10S 12.14 2016 N
[4 1Phone 6S 10§ 12.14 2015 N
I5 iPhone 6 10S 12.14 2014 Y
Al Nexus 5X Android 8.1.0 | 2015 Y
A2 | Nexux 7 Tab | Android 6.0.1 | 2012 N
A3 Huawei1 P9 Android 7.0 | 2016 N
A4 OnePlus Al Android 5.1.1 | 2014 N
A5 | Samsung GTS2 | Android 7.0 | 2015 N
A6 Nexus 5X Android 8.1.0 | 2015 Y
A7 Nexus 7 Tab Android 6.0.1 | 2012 N
A8 Pixel 3 Android 9.0 | 2018 Y

Sandha, Sandeep Singh, Joseph Noor, Fatima M. Anwar, and Mani Srivastava. "Time awareness in deep learning-based multimodal fusion across smartphone
platforms." In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (loTDI), pp. 149-156. IEEE, 2020.

The study was conducted in March 2019.
A patch was submitted to Google.
Changes have been done to new Android versions.

—~

® 0 .

e B Speaker

e

0

Speaker generates periodic chirp (~20 Seconds)
Baseline: Average of NTP clients from all phones
NTP variability: ~10 ms [Mani16].
Audio latency: ~(10 ms - 40 ms).

[Mani16] Mani, Sathiya Kumaran, et al. "Mntp: Enhancing time synchronization for mobile devices.
Proceedings of the 2016 Internet Measurement Conference. 2016.
Audio Latency: https://superpowered.com/
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Five Day Study of I0S and Android Devices
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System Clock Error (ms)
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Five Day Study of I0S and Android Devices

I0S devices

System Clock Error (ms)

System Clock Error = Recorded Timestamp of chirp - Baseline

1000} - ‘ . .3
0k i ]
1000 ' ;
> Drn‘t in the system clock
: : : » Spread of error: ~6.5 seconds
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Five Day Study of I0S and Android Devices

Cellular Adjustments
N\ _ System Clock Error = Recorded Timestamp of chirp - Baseline
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Five Day Study of I0S and Android Devices

System Clock Error (ms)
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> Drlft in the system clock
» Spread of error: ~6.5 seconds
2000] » Time:in Android is poor as compared to..|.OS ......................................
» Cellular adjustments can be wrong ‘
é » Large jumps in system time
2 7070]0 ) P RS s .. O PSSP R AUURUUNUUUNUUUNUUUUIULUUUURUUN JUR
— T — | ; : | Large Jump
4000 12 A | IR o R T NI C I TSI IR PP PLEIRE SUTRPPPRR P PITRERRI R
14 — A6 z z z ; z
5000} wee= |5 — A7 ....................................... USSR ................................... .......................................
— Al — A8 f : ' : f 3
—_ Time (Minutes)
6000 . | ! ! 1 1 !
0 1000 2000 3000 4000 5000 6000 7000

System Clock Error = Recorded Timestamp of chirp - Baseline

47



Five Day Study of I0S and Android Devices
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Why does Android exhibit high timing errors”?

NITZ (Cellular Protocol)

» Android System Time
» Two update mechanisms: NITZ and NTP
» NITZ has priority, and it directly updates
the system time.
» NTP done every 24 hour.
» NTP updates system time only if the error System Clook Error(m S)°
IS more than 5000ms = Large jJumps

TP

if (DBG) Log.d(TAG, "Ntp time is close enough = " + ntp);

» Changes in Android 10

» 5000ms i1s modified to 2000ms

-40 -30 =20 -10 0 10 20 30 40

System Clock Error (ms)
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Simple Trick: Restart all Phones

» Phones with SIM have error ranging from 300 to 800ms as they use NITZ

* Phones without SIM use NTP and so have offset < 40ms

r(ms)
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System Clock Erro
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Impact of Timestamp Errors on Multimodal Fusion

Use case: Human activity recognition

Audio from one smartphone and IMU from another
(Dataset: https://github.com/nesl/CMACctivities-DataSet)

Activity Number of Videos Duration (sec)
Go Upstairs 162 1338
Go Downstairs 161 1113
Walk 119 1143
Run 115 391
Jump 73 995
Wash Hand 73 1070
Jumping Jack 90 958

Tianwei Xing, Sandeep Singh Sandha*, Bharathan Balaji, Supriyo Chakraborty, Mani Srivastava,
“Enabling edge devices that learn from each other: Cross modal training for activity recognition,”EdgeSys-18


https://github.com/nesl/CMActivities-DataSet

Impact of Timestamp Errors on Multimodal Fusion

Feature level fusion [Ngiam11, Radu18]
Use case: Human activity recognition

Audio from one smartphone and IMU from another
(Dataset: https://github.com/nesl/CMActivities-DataSet) > > o — R o = L L,
fc fc fc fc fc conv conv  fc fc fc fc
A: Audio Network B: IMU Network
. - IMU
Baseline Accuracy ~ Branch ' Cross Sensing Layers
Networks Audio IMU  Multimodal Audio-IMU | | | I N
Test Accuracy | 91.34% 90.10% 96.12% °°’“’C°'“'fc _____________ f — |
i Output
"| | iActivities
Audio | | |
Branch L fe fe

C: Multimodal Audio-IMU Network

Multimodal fusion improves accuracy by ~5%.

[Ngiam11] Ngiam, Jiquan, et al. "Multimodal deep learning." In International Conference on Machine Learning, 2011.
[Radu18] Radu, Valentin, et al. "Multimodal deep learning for activity and context recognition." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018.


https://github.com/nesl/CMActivities-DataSet

Impact of Timing Errors on Multimodal Fusion Classifier

No time error 96.1% accuracy

Accuracy

| —— 20-Sec Period M

- 10-Sec Period

600 1000 1500 2000 2500 3000 3500 4000 4500 5000

Timing Error (ms)

”\/lU ( ) [ \

Upstairs Downstairs Run

audio
: : : '

10-Sec Period
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Impact of Timing Errors on Multimodal Fusion Classifier

9
34

Accuracy
5 8 & 88
o ©o o o wu

~
O
o

65.0

1-sec error results In ~6% accuracy drop

| =—— 20-Sec Period
- 10-Sec Period

0 600 1000 1500 2000 2500 3000 3500 4000 4500 5000

Timing Error (ms)

10-Sec 10-Sec
”\/lU ( A ) [ A \
Upstairs Downstairs Run éJack
audio
S — : : '
10-Sec Period
1-Sec
MU | 10—ASec | 10—§ec’\ |
— 8 o>
Upstairs | Downstairs Run Jack
audio ' '

10-Sec Period: 1 sec error
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Impact of Timing Errors on Multimodal Fusion Classifier

Time-Aware Fusion

1. Improve the quality of clock in and across devices
2. FIx the incorrect timestamps

3. Modify training pipeline for the impertect timestamps

O
(@)

Accuracy
8 & 88
o o o wut

~
i
o
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- 10-Sec Period

~
O
-
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0 600 1000 1500 2000 2500 3000 3500 4000 4500 5000

Timing Error (ms)
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Impact of Timing Errors on Multimodal Fusion Classifier

No time error 96.1% accuracy

Accuracy

A

1-sec error results in ~6% accuracy drop Time-Aware Fusion

1. Improve the quality of clock in and across devices

| =—— 20-Sec Period

- 10-Sec Period

2. Fix the incorrect timestamps
3. Modify training pipeline for the impertect timestamps

Time-Shift Data Augmentation

|[dea: Add controlled artificial shifts during training
(a form of domain randomization)

600 1000 1500 2000 2500 3000 3500 4000 4500 5000

Timing

Error (ms)
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Time-Shift Data Augmentation

1000ms Augmentation can

handle ~600ms time errors

Accuracy

97.5
96.5
95.5

93.5

91.5
90.0

87.5 -

85.0 -

No Augmentation: Accuracy drop by
3% with 600ms time errors

-

=

-

=

-

— Augmentation 1000ms
- No Augmentation

0 100 250 400 600 800 1000 1200 1400 1600 1800 2000
Timing Error (ms)

Time-Shift Data Augmentation

|dea: Add controlled
artificial shifts during training

Setting: Up to 1000ms shift
between modalities
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Fixing Timestamps: Post-facto Synchronizing Signals

Original Signals Sync Signal's FFT
10 - 50000 A
81 40000 -
6 30000 -
4 20000 A
2 10000 -
) . .
o | .-
0 2 - 6 8 10 12 0 50 100 150 200 250

Time (s) Frequency (Hz)

- Each sensor also produces a sine wave based on its local clock (sync signal)
- Receiver samples and records the sine wave from each source (sync data)

- Resample signals from different sources to a common sampling rate
» comparing the frequencies of the sync signals by taking FFT of sync data

- What if the sources cannot provide a sync signal?
» Algorithmically find the optimal mutual offsets between the signals

https.//blog.endaq.com/synchronizing-signals#Analysis Techniques
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Determining Offset

- Problem: Find the optimal offset for signal one ¢ € (—len(signall), len(signal2)) C Z which best

synchronizes the resampled signals by some metric (e.g. maximize normalized cross-correlation)

» When synchronizing signals with a large number of samples, the search space for the optimal offset is large,
and the computational cost of calculating how in-sync two signals are is high

» A plausible approach: synchronize ‘major’ events within the recordings, because these ‘major’ events
should be recorded within both signals, and thus their offset should align the signals.

» Generate a subset of the search space by taking ‘points of interest’ within each signal, and use the offsets
which occur when choosing a pair of points (one from each signal) to align the signals

Resampled Data with Marked POI Aligned Signals
X 10 -
10 - X
8 X 8
6 ¥ 6
4 X 4

2 X 2 -
l | |
0 0 -

-2 4 X

0 100000 200000 300000 400000 500000 600000

. 0 2 < 6 8 10 12
Time Steps (2.00792e-05 seconds) Time (s)

https.//blog.endaq.com/synchronizing-signals#Analysis Techniques



Another Application of Time-Shift Data Augmentation

Cooking Activity Recognition Challenge

¢4 accelerometers (2 wrist watches, 2 smartphones)

¢ 3 distinct macro and 10 distinct micro-activities Artificial shifts during training

Sandwich: cut, wash, take, put, other
Fruit salad: cut, take, peel, add, mix, put, other

Cereal: cut. take, pour. peel, put, open, other Accuracy Without Time aug. With Time aug.
I\ /1 o) o
eData: 288 samples, each 30 seconds long Macro activity 1% 83%
Micro activity 48% 72%
Swapnil Sayan Saha, Sandeep Singh Sandha*, Mani Srivastava, “Deep Convolutional Bidirectional LSTM for Complex Activity Recognition with Missing Data,” Human Activity Recognition °9

Challenge - Smart Innovations, Systems and Technologies, Ch. 4, Springer Singapore (2020).



Research on Algorithmic Resynchronization of Multiple Time Series

Plotz, Thomas, Chen Chen, Nils Y. Hammerla, and Gregory D. Abowd. "Automatic synchronization of wearable sensors and
video-cameras for ground truth annotation--A practical approach.” In 2012 16th international symposium on wearable

computers, pp. 100-103. IEEE, 2012.
» https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6246150

Chung, Joon Son, and Andrew Zisserman. "Out of time: automated lip sync in the wild." In Asian conference on computer
vision, pp. 251-263. Springer, Cham, 2016.
» https://ora.ox.ac.uk/objects/uuid:6bdd4768-6fbd-40ac-8efc-edca8a0325b3

Fridman, Lex, Daniel E. Brown, William Angell, Irman Abdi¢, Bryan Reimer, and Hae Young Noh. "Automated synchronization of

driving data using vibration and steering events." Pattern Recognition Letters 75 (2016): 9-15.
» https://www.sciencedirect.com/science/article/pii/S0167865516000581

- Ahmed, Tousif, Mohsin Y. Ahmed, Md Mahbubur Rahman, Ebrahim Nemati, Bashima Islam, Korosh Vatanparvar, Viswam
Nathan, Daniel McCaffrey, Jilong Kuang, and Jun Alex Gao. "Automated Time Synchronization of Cough Events from
Multimodal Sensors in Mobile Devices." In Proceedings of the 2020 International Conference on Multimodal Interaction, pp.
614-619. 2020.

» https://dl.acm.org/doi/pdf/10.1145/3382507.3418855

Zhang, Yun C., Shibo Zhang, Miao Liu, Elyse Daly, Samuel Battalio, Santosh Kumar, Bonnie Spring, James M. Rehg, and Nabil
Alshurafa. "SyncWISE: Window Induced Shift Estimation for Synchronization of Video and Accelerometry from Wearable
Sensors." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, no. 3 (2020): 1-26.

» https://dl.acm.org/doi/pdf/10.1145/3411824
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