ML for CPS/IoT: An Industry Perspective
Guest Lecture for ECE209AS

Bharathan Balaji

Research Scientist @ Amazon

AWS DeepRacer

https://aws.amazon.com/deepracer/

https://aws.amazon.com/deepracer/

Objective: Autonomously Race on a Track

Much simpler than real self-driving cars

* No people
* Traffic rules are simple: follow the track

Imitation Learning

Bojarski, Mariusz, et al. "End to end learning for self-driving cars." arXiv preprint arXiv:1604.07316 (2016).

Labels Labels

* Need a lot of labels to cover all the scenarios in the real world

* Typical form of ML used in industry today
* Autonomous driving — obstacle detection, lane keeping, etc.
* Predictive maintenance
* Activity recognition
* Defect recognition

* Labeling services exist to scale human work. E.g. SageMaker
GroundTruth

Methods to reduce labeling

* Active Learning
* Only ask to label those data points which the model is not confident about

* Transfer Learning
 Use a model trained for another task as warm start

 Domain adaptation
* Train the model to create common features for source and target domain

* Self-supervised learning
* Create artificial labels and “pre-train” a model. E.g. cut out a portion of image and
ask the model to predict the cutout portion
* Meta learning

* Train a “meta” model learns across multiple tasks, and trains with lesser labels on
new tasks

The problem with imitation learning

* Our predictions impact the data we collect

* Say the car incorrectly predicts left instead of right in one scenario, it
encounters sequence of inputs not similar to the training dataset

* Counterfactual problem: what would have happened if | had taken
left instead of right?

Reinforcement Learning

* Terminology
* State, s
* Action, a
e Reward, r
* Horizon, H

state s,

reward r,

action a,

St+1
r .
= Environment

* Policy: given input state s gives action a. Parametrized by 6
H

* Objective:

J(0) = mQaXE[

0

r(st, ar)| o]

Games — AlphaGo, Atari, Dota 2

Agent
state s,

reward r,

action a,

-
—+
+
=

* Mastering the game of Go without human knowledge — Silver et al., 2017

* Mastering the game of Go with deep neural networks and tree search —Silver et al., 2016

* *Image from Wikipedia

Robotics — Grasping, Navigation, Locomotion

state s,
reward r,

St+1

£,
Y
Y

Fis1

* Learning Dexterous In-Hand Manipulation — OpenAl, 2018

* Learning agile and dynamic motor skills for legged robots — Hwangbo et al., 2019

* Image from Wikipedia

action a,

Autonomous Racing with RL: Problem Formulation

Reward Off-Center:
:Reward 0.5

Center: :
Reward 1 Off-track:
; Reward 0

RL Algorithm - Policy Gradients

H

J(0) =maxE|Y 7r(ss,ar)|mo]
* Objective 0 0

* Initialize a policy with random 6 and collect experiences

VeJ(0) = E Kive log Wg(at|st)> (ir(st, at)mﬂ

t=0
0 <« 6 (XVQJ(Q)

* Use the updated policy to collect more data and iterate

Intuitive Version of Policy Gradients

_ “I'ry a bunch of stuff and see
what happens. Do more of the

stuff that worked in the future.”
-RL

Q Functions

e Q-function, also called action value function
Q7(s,a) = E|ri41 + rego + 13 + .8, a)
* With discounting of future rewards. Discount factor, y € [0,1]
Q" (s,a) = Elrie1 + yripe +Vrgs + ..]s, al

* Bellman equation form Q"(s,a) = E [req +79Q7(s',a'))]s, al

s’,a’

* Value function VT (s) = IEaiNR(.|Si)[ZiZtyi_trl-‘st = s]

RL Algorithm — Actor Critic

* Policy Gradients Update ~ Af = aVylogmy(als) Z r(s, ap) High

variance
t

* Actor Critic Update AO = aVy log| 7r9(a|sj X Q(S, CL)

tIh rotgte Really bad
€ plece action

ﬁ Yyt A 1(St, ar) + v max Qu(St+1, art1)

Actor Critic

@ At+1
1
Act: Critic L(Cb) — §(Q¢(Sa CL) — y(s, CL))2

Image source: Thomas Simonini
https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/

RL Algorithm — Proximal Policy Optimization
Al = aVylogmy(als) * Q(s, a)

* Advantage Actor Critic np _ v, log mg(als) * (Q(s,a) — V(s))

\

|
Advantage A(s,a)

* Importance Sampling AD = aV, my(als) « A(s, a)
lﬂ-gold(a’ls) |

,) Importance correction

* Trust Region

Al = &V@

T+ A(s,) — BE(K LIl 1) T, 50)
" Trust I%egion

RL Algorithm -- Proximal Policy Optimization

* The Temporal difference (TD) residual.
Or = Tpy1 T YV (Spy1) — VT(s¢e)
* The generalized advantage estimator (GAE):

k

A ~GAE(y,A

A, = APOD = N ()6,
[=0

e Objective for c

L°MP (@) = E, |min

ipped proximal policy optimization (Clipped PPO):

(

mg(als) .

. Ay,
6,4 (2lS)

clip (

Tg(als)

I CIDN

1—6,1+6>-/Tt>]

RL Algorithm -- Proximal Policy Optimization

1. Collect {s;, a;, s;41,7;} following gy . (al|s)

2. Fit I7¢ (s;) to sampled reward sums

3. Compute advantage estimates /Tl,/iz, ,/TT using GAE
4. Update policy network: 8 « 8,4 + aV4L P ()

Objective for proximal policy optimization (PPO)*:

min (o (a]5) A clip(o (a]5) 1—¢1 +e) -/Tt)]

* t)
Tgy4(alS) gy4(alS)

LCLIP(@) = E,

*Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

Training Procec

Value Action

Value Policy
Network Network

State State

PPO Gradient Updates

ure

Network Weights

Target Policy
Network

;
6

Experience Buffer

<

I
Action e

¢

State

1
®

State, Action, Reward, Next State

AWS RoboMaker capabilities

Cloud Extensions Development Simulation Fleet
for ROS Environment Management
AWS
re. | nve nt © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. aWS

\/‘7

@Amazon SageMaker

Build, train, tune, and host your own models

Compliance and audit capabilities

Pay as you go

End-to-end-encryption

(@) BUILD
1 &

Pre-built Built-in, high
notebooks for performance
common problems algorithms

TRAIN & TUNE

Ste T

One-click Hyperparameter
training optimization

DEPLOY
|

One-click
deployment

g

Fully managed
hosting with auto-

scaling

QL‘
Q\/ End-to-end VPC support

Metadata and experiment management capabilities

dWsS

k=
Q0o
k=
=
q0)
C
—

C
IS
4

qV)
— o

c S
— U
V) S

-
Q
4
qu)
>
O
O
O
o

Gazebo — Simulation Orchestrator

User
PhyS|cs\ Rendering Interfaces Interfaces

v | -

N/
ngld Body OpenGL Pluglns and IPC GUI
Dynamlcs OGRE Google Protobuf QT

ODE Boost ASIO CEGUI
Bullet*

What is a Robot (Model)?

A collection of links, joints, sensors, actuators and plugins.

DeepRacer in Simulator mﬁ @ﬂﬁ

_ mit-racecar [racecar-simulator

<> Code Issues 6 Pull requests 2

e Unified Robot Description Format

* Ackerman steering model

* Match DeepRacer specs
* Wheel size
 Camera height, angle
* Camera field of view
* Friction

Ackerman Steering

Calculating Rewards in Simulator

Track Width

Waypoints

* Waypoints mark progress along the track
e Off-track if car position is away from center by track width

Why Physics Matters

Decoupled Distributed Training

Train with
Amazon SageMaker

Agent Training

RL Coach

Tensorflow

—>

S3 Bucket:
Share Policy Model

-

Redis: Experience
Replay Buffer

Simulate with
AWS RoboMaker

Agent
(RL Coach)

Environment
(Gazebo)

Distributed

<t -.\ y rh:—-m-n_\ R

Rollouts S - QR

Successful Sim2Real with just % f E
5 minutes of training ' :'

n

Progress %

_ W

16 rollout workers o, Ny
-8 rollout workers E \
— 4 rollout workers I
- 1 rollout worker

0O 10 20 30 40 50 o0 70 80 90 100110
Training Time (minutes)

(¢) Training with Track B and maximum
throttle of 1.67 m/s

Sim Time:

What if we have no simulator?

* Create an ML model that acts like a simulator: Model based RL
e Learn from historical data: Offline RL

 Learn directly from real world interactions (but safety is an issue)
e https://www.youtube.com/watch?v=eRwTbRtnT1l

https://www.youtube.com/watch?v=eRwTbRtnT1I

AWS DeepRacer Car Specifications

CAR 18th scale 4WD with monster
truck chassis

CPU Intel Atom™ Processor

MEMORY 4GB RAM

STORAGE 32GB (expandable)

WI-FI 802.11ac

CAMERA 4 MP camera with MJPEG

DRIVE BATTERY 7.4V/1100mAh lithium polymer

\ \ . COMPUTE BATTERY 13600mAh USB-C PD
- SENSORS Integrated accelerometer and
gyroscope
: PORTS 4x USB-A, 1x USB-C, 1x Micro-USB,
> " n 1x HDMI

@ SOFTWARE Ubuntu OS 16.04.3 LTS, Intel®
] OpenVINO™ toolkit, ROS Kinetic

AWS DeepRacer Software Architecture

ROS Nodes

ROS Message Node

Viodel _ 5 | Optimized Stored File

Camera

Optimizer
Medi

: ia
engine

Model

Video

I
M-JPEG l

Control
Node

Inference Navigation Autonomous
Inference Results Node Drive
engine
Web. Server Web Server Manual
Video Publisher Drive

Servo & Motor

ROS in a Nutshell

ROS Master

Registration Registration

Node 1 Node 2
Publisher Subscriber
Publish : Subscribe
» topic .
Subscribe
*msg | Message definition

More info
http://wiki.ros.org/Messages

Components of a typical Edge ML deployment

e GreenGrass

[
Q SR
\ : —-— Device Type 01
|
-+ ,
N PL: Device Type 02
) AWS loT Greengrass Core .

Enables the local
execution of AWS Lambda, >
messaging, device shadows,)

Device Type 03

Cloud and security. AWS loT Any device using Amazon
Greengrass Core interacts FreeRTOS or AWS loT Device
directly with the cloud and SDK can be configured
works locally, even with to interact with AWS loT
intermittent connectivity

Greengrass Core via the
local network

Lambda runtime, Shadows implementation, Message manager, Group management, Discovery service, Over-the-air update
agent, Stream manager, Local resource access, Local machine learning inference, Local secrets manager

Components of a typical Edge ML deployment

* Green(@Grass

* Model compilation — SageMaker Neo, Apache TVM, Tensorflow XLA

Apache MXNet
TensorFlow
PyTorch
XGBoost

Build a ML model with the
framework of your choice

Train and tune the model
using Amazon SageMaker

W Eg% i

Amazon
Choose target SageMaker Neo
hardware platform SageMaker Neo will optimize

the trained model for the
target hardware platform

You can then deploy your
models on the cloud
or at the edge

Components of a typical Edge ML deployment

e GreenGrass

* Model compilation
* Kind of like going from Python to C++

* Neural network accelerator — NVIDIA Xavier, Google TPU, AWS Inferentia
* Small GPU like hardware specialized for dot product, convolutions, etc.

* Model compression - network distillation, architecture pruning
e Quantization (e.g. 16 bits)

e Latency (e.g. 10 ms)
* Memory (e.g. 100 MB)

Simulation-to-Real Domain

7
/{\////,//
SIM-to-REAL CHALLENGE //‘;/\?/
Train model using simulated images, but race car V({\\//
using real world images />
STRATEGIES

Environment Control
Domain Randomization

Train and evaluate on
a variety of tracks

* Different
backgrounds

* Colors
* Textures

* Printed and duct
tape tracks

Track A Track B Track C

(a) Simulation tracks

Track A Track B Track C

(b) Camera view of simulation tracks

.‘—-« o ‘ '

Track A Replica Track A without barriers Tape Track on Office Carpet

(c) Camera view of real world tracks

Poor Sim2Real Transfer

Calibration of Car Model

L] mit-racecar / racecar-simulator

<> Code Issues 6 Pull requests 2

e Unified Robot Description Format
* Ackerman steering model

* Match DeepRacer specs
* Wheel size
 Camera height, angle
Camera field of view
Friction
* Mass

Domain Randomization

e Perception: color (brightness, hue, contrast, saturation), noise, shift,
shadow

* Dynamics: action noise, driving directions, starting points, tracks
* Regularization: L2, batch normalization, dropout

Train on

multiple tracks
with
distributed
rollouts

Il Real Time Factor: Sim Time: - Sim Time:

100 1

80 1

60 1

40 -

20 1

Robust Evaluation — When should we stop

training?

Track A + Action noise

f\r
4 hu',
,'\/\ ‘,L’t* ' ‘
' 'l'V '
A
/
.rJ

5 10 15 20 25 30
Checkpoints

Track A + Reverse + Action noise
100 -

80 -

60 -

40 -

20 -

5 10 15 20 25 30
Checkpoints

Naive eval
Robust eval

- Training progress

Sim2real success rate

Robust Sim2Real
Transfer

* High speed
* Low light

* Shadows

* Obstacles
* No barrier

Robust
Sim2Real
Transfer

* Bright light
e Tape track

e Camera Blur
and Shake

* Multiple
surfaces

Next Challenge:
Multi Car Racing

DeepRacer Evo

STEREO
CAMERA
LEFT

STEREO
CAMERA
RIGHT

LIDAR
SENSOR

Zhang, Kaiqing, et al. "Robust Multi-Agent Reinforcement Learning with Model Uncertainty." Advances in Neural Information Processing
Systems 33 (2020).

Thank youl!

Questions?

