
ML for CPS/IoT: An Industry Perspective
Guest Lecture for ECE209AS

Bharathan Balaji

Research Scientist @ Amazon

AWS DeepRacer

https://aws.amazon.com/deepracer/

https://aws.amazon.com/deepracer/

Objective: Autonomously Race on a Track

Much simpler than real self-driving cars

• No people
• Traffic rules are simple: follow the track

Imitation Learning

Bojarski, Mariusz, et al. "End to end learning for self-driving cars." arXiv preprint arXiv:1604.07316 (2016).

160 x 120 image
Observation Action

Throttle: 1, 2 (m/s)
Steering: 0, ±15, ±30
(degrees)

Labels Labels

• Need a lot of labels to cover all the scenarios in the real world
• Typical form of ML used in industry today
• Autonomous driving – obstacle detection, lane keeping, etc.
• Predictive maintenance
• Activity recognition
• Defect recognition

• Labeling services exist to scale human work. E.g. SageMaker
GroundTruth

Methods to reduce labeling

• Active Learning
• Only ask to label those data points which the model is not confident about

• Transfer Learning
• Use a model trained for another task as warm start

• Domain adaptation
• Train the model to create common features for source and target domain

• Self-supervised learning
• Create artificial labels and “pre-train” a model. E.g. cut out a portion of image and

ask the model to predict the cutout portion
• Meta learning

• Train a “meta” model learns across multiple tasks, and trains with lesser labels on
new tasks

The problem with imitation learning

• Our predictions impact the data we collect
• Say the car incorrectly predicts left instead of right in one scenario, it

encounters sequence of inputs not similar to the training dataset
• Counterfactual problem: what would have happened if I had taken

left instead of right?

Reinforcement Learning

• Terminology
• State, s
• Action, a
• Reward, r
• Horizon, H

• Policy: 𝜋 given input state s gives action a. Parametrized by 𝜃
• Objective:

Agent

Environment

action at

state st
reward rt

st+1
rt+1

Games – AlphaGo, Atari, Dota 2

Agent

action at

state st
reward rt

st+1
rt+1

• Mastering the game of Go without human knowledge – Silver et al., 2017

• Mastering the game of Go with deep neural networks and tree search – Silver et al., 2016
• * Image from Wikipedia

Robotics – Grasping, Navigation, Locomotion

Agent

action at

state st
reward rt

st+1
rt+1

• Learning Dexterous In-Hand Manipulation – OpenAI, 2018

• Learning agile and dynamic motor skills for legged robots – Hwangbo et al., 2019
* Image from Wikipedia

160 x 120 image
Observation

Reward

Off-track:
Reward 0

Center:
Reward 1

Off-Center:
Reward 0.5

Action

Throttle: 1, 2 (m/s)
Steering: 0, ±15, ±30
(degrees)

Autonomous Racing with RL: Problem Formulation

RL Algorithm - Policy Gradients

• Objective

• Initialize a policy with random 𝜃 and collect experiences

• Use the updated policy to collect more data and iterate

Intuitive Version of Policy Gradients

Slide inspired by Andrej Karpathy

Q Functions
• Q-function, also called action value function

• With discounting of future rewards. Discount factor, 𝛾 ∈ [0,1]

• Bellman equation form

• Value function 𝑉! 𝑠 ≔ 𝔼"!~!) 𝑠$ *∑$%& 𝛾$'&𝑟𝑖 𝑠& = 𝑠

RL Algorithm – Actor Critic

• Policy Gradients Update

• Actor Critic Update

Actor Critic

High
variance

Image source: Thomas Simonini
https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/

RL Algorithm – Proximal Policy Optimization

• Advantage Actor Critic

• Importance Sampling

• Trust Region

Trust Region

Importance correction

Advantage A(s,a)

RL Algorithm -- Proximal Policy Optimization

• The Temporal difference (TD) residual:
𝛿& = 𝑟&() + 𝛾𝑉! 𝑠&() − 𝑉!(𝑠&)

• The generalized advantage estimator (GAE):

3𝐴& = 3𝐴&
*+,(.,0) ≔ 5

234

5

𝛾𝜆 2𝛿&(2

• Objective for clipped proximal policy optimization (Clipped PPO):

𝐿!"#$ 𝜃 = 𝔼% min
𝜋&(𝑎|𝑠)
𝜋&!"#(𝑎|𝑠)

. /𝐴%, clip
𝜋&(𝑎|𝑠)
𝜋&!"#(𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖 . /𝐴%

RL Algorithm -- Proximal Policy Optimization

1. Collect 𝑠$, 𝑎$, 𝑠$(), 𝑟$ following 𝜋6"#$(𝑎|𝑠)
2. Fit :𝑉7(𝑠$) to sampled reward sums
3. Compute advantage estimates 3𝐴), 3𝐴8, … , 3𝐴9 using GAE
4. Update policy network: 𝜃 ← 𝜃:;< + 𝛼∇6𝐿=>?@ 𝜃
Objective for proximal policy optimization (PPO)*:

𝐿!"#$ 𝜃 = 𝔼% min
𝜋&(𝑎|𝑠)
𝜋&!"#(𝑎|𝑠)

. /𝐴%, clip
𝜋&(𝑎|𝑠)
𝜋&!"#(𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖 . /𝐴%

*Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

Training Procedure

Value
Network

State

Value

Policy
Network

State

Action

Target Policy
Network

State

Action

Env

Experience Buffer

PPO Gradient Updates

Network Weights

State, Action, Reward, Next State

1

2 3

4

5
6

Fu l ly m an aged
h ost in g with au to-

sca l in g

O n e-c l ick
d ep loym en t

Pre-b u i l t
n oteb ooks for

com m on p rob lem s

Bu i l t - in , h igh
p erform an ce

a lgor ith m s

O n e-c l ick
t ra in in g

B U I L D T R A I N & T U N E D E P L O Y

Build, train, tune, and host your own models

H yp erp aram eter
op t im izat ion

End-to-end-encryption

End-to-end VPC support

Compliance and audit capabilities

Metadata and experiment management capabilities

Pay as you go

Amazon SageMaker

Training in
Simulation
using
RoboMaker

Gazebo – Simulation Orchestrator

February 17, 2021 DeepRacer Talk - RL Reading Group 25

DeepRacer in Simulator

• Unified Robot Description Format
• Ackerman steering model
• Match DeepRacer specs
• Wheel size
• Camera height, angle
• Camera field of view
• Friction

Ackerman Steering

Calculating Rewards in Simulator

• Waypoints mark progress along the track
• Off-track if car position is away from center by track width

Waypoints

Track Width

Why Physics Matters

Redis: Experience
Replay Buffer

S3 Bucket:
Share Policy Model

Agent
(RL Coach)

Environment
(Gazebo)

Agent Training

Simulate with
AWS RoboMaker

Train with
Amazon SageMaker

RL Coach

Tensorflow

Gym API

Decoupled Distributed Training

Distributed
Rollouts

Successful Sim2Real with just
5 minutes of training

What if we have no simulator?

• Create an ML model that acts like a simulator: Model based RL
• Learn from historical data: Offline RL
• Learn directly from real world interactions (but safety is an issue)
• https://www.youtube.com/watch?v=eRwTbRtnT1I

https://www.youtube.com/watch?v=eRwTbRtnT1I

AWS DeepRacer Car Specifications
CAR 18th scale 4WD with monster

truck chassis
CPU Intel Atom™ Processor
MEMORY 4GB RAM
STORAGE 32GB (expandable)
WI-FI 802.11ac
CAMERA 4 MP camera with MJPEG
DRIVE BATTERY 7.4V/1100mAh lithium polymer
COMPUTE BATTERY 13600mAh USB-C PD
SENSORS Integrated accelerometer and

gyroscope
PORTS 4x USB-A, 1x USB-C, 1x Micro-USB,

1x HDMI
SOFTWARE Ubuntu OS 16.04.3 LTS, Intel®

OpenVINO™ toolkit, ROS Kinetic

ROS Message Node

Stored File

ROS Nodes

Web Server
Publisher

Model
Optimizer

Video
M-JPEG

Web Server
Video

Inference
Results

Autonomous
Drive

Control
Node

Optimized
Model

Media
engine

Camera

Model

Inference
engine

Manual
Drive

Navigation
Node

Servo & Motor

AWS DeepRacer Software Architecture

ROS in a Nutshell

Components of a typical Edge ML deployment

• GreenGrass

Lambda runtime, Shadows implementation, Message manager, Group management, Discovery service, Over-the-air update
agent, Stream manager, Local resource access, Local machine learning inference, Local secrets manager

Components of a typical Edge ML deployment

• GreenGrass
• Model compilation – SageMaker Neo, Apache TVM, Tensorflow XLA

Components of a typical Edge ML deployment

• GreenGrass
• Model compilation
• Kind of like going from Python to C++

• Neural network accelerator – NVIDIA Xavier, Google TPU, AWS Inferentia
• Small GPU like hardware specialized for dot product, convolutions, etc.

• Model compression - network distillation, architecture pruning
• Quantization (e.g. 16 bits)
• Latency (e.g. 10 ms)
• Memory (e.g. 100 MB)

Simulation-to-Real Domain Transfer

SIM-to-REAL CHALLENGE
Train model using simulated images, but race car
using real world images

STRATEGIES
Environment Control
Domain Randomization

Train and evaluate on
a variety of tracks

• Different
backgrounds
• Colors
• Textures
• Printed and duct

tape tracks

Poor Sim2Real Transfer

Calibration of Car Model

• Unified Robot Description Format
• Ackerman steering model
• Match DeepRacer specs
• Wheel size
• Camera height, angle
• Camera field of view
• Friction
• Mass

Domain Randomization

• Perception: color (brightness, hue, contrast, saturation), noise, shift,
shadow

• Dynamics: action noise, driving directions, starting points, tracks
• Regularization: L2, batch normalization, dropout

Train on
multiple tracks
with
distributed
rollouts

Robust Evaluation – When should we stop
training?

Robust Sim2Real
Transfer

• High speed
• Low light
• Shadows
• Obstacles
• No barrier

• Bright light
• Tape track
• Camera Blur

and Shake
• Multiple

surfaces

Robust
Sim2Real
Transfer

Next Challenge:
Multi Car Racing

DeepRacer Evo

Zhang, Kaiqing, et al. "Robust Multi-Agent Reinforcement Learning with Model Uncertainty." Advances in Neural Information Processing
Systems 33 (2020).

Thank you!

Questions?

