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Regularly and Irregularly Sampled Time Series
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Can we learn classification models on irregularly sampled fime series without prior imputation?
(imputation can be unreliable and sacrifice (which sacrifices interpretability)

https://arxiv.org/pdf/2012.00168.pdf



Why do we get Irregular Sampling?



Why do we get Irregular Sampling?

» Availability of sensors
» energy, mobility, multi-tenancy, human operator



Why do we get Irregular Sampling?

» Availability of sensors
» energy, mobility, multi-tenancy, human operator

« Samples are lost or dropped
» network outage, bit corruption



Why do we get Irregular Sampling?

» Availability of sensors
» energy, mobility, multi-tenancy, human operator

« Samples are lost or dropped
» network outage, bit corruption

» Sensors report asynchronous events
» €.g. motion sensors, event-oriented imagers



Why do we get Irregular Sampling?

» Availability of sensors
» energy, mobility, multi-tenancy, human operator

« Samples are lost or dropped
» network outage, bit corruption

» Sensors report asynchronous events
» €.g. motion sensors, event-oriented imagers

« Sensors sampling intervals are adapted
» state of the process being sampled (e.g. patient’s health)



Sampling Adaptively

Command J Motor Motor Drive
(position in degrees) Controller

A

Position Encoder

» |dea: Instead of sampling periodically as is traditionally done, could we sample only
when the position of the motor changes sufficiently?
» sample more frequently if position changes more rapidly

» This sampling policy is called Lebesgue Sampling



Riemann Sampling vs. Lebesgue Sampling

Lebesgue Sampling
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From:Roy McCann, Anil Kumar Gunda, Suchit Reddy Damugatla, “Improved
Operation of Networked Control Systems using Lebesgue Sampling”



Riemann Sampling vs. Lebesgue Sampling

Lebesgue Sampling
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Event-Triggered Control System

Command ) Motor Motor Drive
(position in degrees) Controller

Event
Controller Position Encoder

x(2)

» Introduce an Event Controller that monitors the Position Encoder signal continuously
and determines the optimal sampling time

- x(?) is the continuous-time analog position encoder signal

- x|t,] is the last sample produced by the ADC



Event-Triggered Control System

Command ) Motor Motor Drive
(position in degrees) Controller

Event
Controller Position Encoder

x(2)

* Theorem [Anta-Tabuada]: Sampling is optimal and the system is guaranteed stability
If the Event Controller produces a sampling trigger whenever:

[1x(®) = x[g ]| > ollx(D)]]

» 0 IS a design parameter that trades off average sampling rate and performance
» Intuition: Lebesgue interval must be the “error” relative to size of signal



Self-Triggered Control System

- Event Controller needs to check the inequality at ALL times. Can one do better?
» Motor controller is designed with a model of the motor in mind

» Given the current state of the motor and the command input, control theory provides
an estimate of the next state

* One can extend this estimation to predict when the state of the motor will violate the
sampling inequality

» Thus, one can predict when the sample should be taken and schedule the ADC

CurrentMeasurement + SystemDynamics = NextSampleTime

 No continuous time check needed

 However, this does not work well when the model has uncertainties or when
perturbations to the system cannot be bounded



Self-Triggered Control System

o = a4, x[5])



Self-Triggered Control System
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/

Next transmission time
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Self-Triggered Control System

= a0

Next transmission time .
Next transmission time [ SRS RN
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Why do we get Irregular Sampling?

» Availability of sensors
» energy, mobility, multi-tenancy, human operator

« Samples are lost or dropped
» network outage, bit corruption

» Sensors report asynchronous events
» €.g. motion sensors, event-oriented imagers

« Sensors sampling intervals are adapted
» state of the process being sampled (e.g. patient’s health)

» Compressive sampling of sensors

10



Sampling a Signal

Steve Brunton, “Shannon Nyquist Sampling Theorem”
https.//www.youtube.com/watch ?v=FcXZ28BX-xE&t=449s

11
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Sampling a Signal

» Shannon-Nyquist Sampling Theorem:
» To resolve all frequencies in a function, it must be sampled
at twice the highest frequency present

» A function containing no frequency > @ Hz is completely
1

20

determined by sampling at 2w Hz (Nyquist Rate)Ar =

» Aliasing if we sample at a rate lower than 2w

Steve Brunton, “Shannon Nyquist Sampling Theorem”
https.//www.youtube.com/watch ?v=FcXZ28BX-xE&t=449s
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Sampling a Signal

» Shannon-Nyquist Sampling Theorem:
» To resolve all frequencies in a function, it must be sampled
at twice the highest frequency present

» A function containing no frequency > @ Hz is completely

|
determined by sampling at 2w Hz (Nyquist Rate)At = —

20

» Aliasing if we sample at a rate lower than 2w

» Beating Shannon-Nyquist Sampling Theorem
» Advances In applied mathematics, statistics, and
optimization have changed how we thinks about sampling
» Technically, the Shannon-Nyquist Sampling Theorem is
necessary only signals that are broadband, i.e. densely

packed with energy in all the frequencies from 0 to @
» But if the signal is sparse in frequency domain, one can

beat th e 26() Sam p | | f g rate req U | reme nt Steve Brunton, “Shannon Nyquist Sampling Theorem”
https.//www.youtube.com/watch ?v=FcXZ28BX-xE&t=449s



https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s

Motivating Compressive Sampling

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGWJs JC
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0.2 T r
0.1
20
0

-0.1F ol

-0.2 +

-0'30 0,15 1l 1.¢ 00 500 1000 1500 2000 2500 3000 3500 4001

Time [3) Frequency[Hz)

Real world signals are sparse in Fourier domain
(or some other such universal domain, such as Wavelet)
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Motivating Compressive Sampling

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGWJs JC
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Real world signals are sparse in Fourier domain
(or some other such universal domain, such as Wavelet)

- Fourier basis

Dense signal

(e.g. image, audio) Sparse 12



Motivating Compressive Sampling

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGWJs
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Loss compression methods exploit sparsity by retaining only top
few coefficients that carry most of the signal energy.

-0.1
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Motivating Compressive Sampling

If we throw away most of the information during compression, why do we collect it
to begin with? Can we not just starts with a massively downsampled signal?

Collect only
a few samples

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGW.Js

14



Motivating Compressive Sampling

If we throw away most of the information during compression, why do we collect it
to begin with? Can we not just starts with a massively downsampled signal?

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGW.Js

Collect only . Fourier basis

a few samples

Dense signal
~ Sparse

Infer nonzero
coefficients

Measurement matrix

Measurements
v << x| -

CWs
s

15



Inferring s from y

Infer nonzero
coefficients

Note: once we have s we can get X via inverse-FFT

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGW.Js

y =Cx =CWs =0s

Undetermined Inverse Problem
Solution for s given y and ©® is not unique.

16



Adding the Sparsity Requirement to Infer S

Infer nonzero
coefficients

y = Cx =CWs = ®s
s = argmin_, |[|[CWs"—y]||, + A][s']],

alternatively:
s =argmin [[s']||y, S.t. [|[C¥s" —y|], <er



Adding the Sparsity Requirement to Infer S

Infer nonzero
coefficients

|[s’||g = [pb—norm of §’
— # of non-zero entries in s’

y = Cx =CWs = ®s
s = argmin_, ||[CW¥s"—y]||, + 4[Is]

alternatively:
s =argmin [[s']|y, S.t. [|[C¥s"—y|], <€

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGW.Js



Adding the Sparsity Requirement to Infer S

Infer nonzero

A Showstopper Issue !!!
This optimization problem is intractable.

y =Cx =CWs = 0s

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGW.Js




A Big Applied Math Breakthrough to the Rescue
(~ 2004-2005 @ CalTech, Rice, UCLA)

§ = argmin, ||C¥s’—y||, + A||s']]

.f!

8 = argmins HC‘PS —yH2+/1||S Ho

|
1

|

alternatively: alternatively: w
!s—argmm HSHO,S’[ HC‘I’s—yH2<€ 's—argmln HsHl,St HCWS—YH2<€
Computationally Intractable Compufa’rlonally EFﬁClen’r

(Convex Optimization)

Gives the exact solution for s
with probability close to 1 if
certain conditions are satisfied

20



A Big Applied Math Breakthrough to the Rescue

(~ 2004-2005 @ CalTech, Rice, UCLA)

& =argmin,, [|C¥s'— y||, + Alls]l,

* a\ternative\y'

Compu’rahonally In’rrac’rable

» C should be incoherent w.r.t. W (i.e. rows of
C should not be too parallel to columns of

» # of measurements p ~ O(klog(n/k)) w
k= lsllgand n = |s| = |x]

alternatively:

s = argmin,, ||CWs' — y||, + A[|s']],

|

' S = argmin,, HSHI,S’[ | |CWs’ —yH2<€

.%ﬁ — — — Eea— : e —

Compufa’rlonally EFﬁcuen’r
(Convex Optimization)

Gives the exact solution for s
with probability close to 1 if

- ~certain conditions are satisfied
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A Big Applied Math Breakthrough to the Rescue
(~ 2004-2005 @ CalTech, Rice, UCLA)

A

- s=argmin , [|[C¥s"—yl], + A][s']|,

‘1
|

& =argmin,, [|C¥s' — y||, + Alls]l,

1 !

| ,‘ .}1
- alternatively: ‘ » alternatively:

s—argmm HSHO,S’[ HC‘Ps—yH2<€ 's—argmm HSHI,S’[ HC‘Ps—yH2<€
. _ . I . , . —
Computationally Intractable Compufa’rlonally EFﬁcuen’r

(Convex Optimization)

» C should be incoherent w.r.t. W (i.e. rows of
C should not be too parallel to columns of

» # of measurements p ~ O(klog(n/k)) w
k= lsllgand n = |s| = |x]

Gives the exact solution for s
with probability close to 1 if
~ ~certain conditions are satisfied

Restricted Isometry Property (RIP)

i.e. C¥ acts like a unitary matrix on sparse vector s 20



Fxample of Bad Measurement Matrix C

C has rows that are
the same as a subset*”

of columns of W

® only picks up
information only from

a part of s

Steve Brunton, https.//www.youtube.com/watch?v=hmBTACBGW.Js



Measurement Matrix C in Practice

- Random 0-1 mask matrix: each element in y is a random sample picked from X

» rows of C have exactly one 1 to indicate the sample picked by that measurement
» must be causal in case of real-time sampling of a time-series

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGW.Js

- Random real-numbers: each element in y is an incoherent random projection of x
» commonly used: Gaussian, Bernoulli

g TR
d-al' Qg S "

b S,

22



Causal Random Sampling of a Time Series

Signal to be
acquired

23



Causal Random Sampling of a Time Series

< VWYV
- I

Signal to be
acquired

100 x 100 identity matrix with
75 rows uniformly randomly
selected and thrown out

23



Causal Random Sampling of a Time Series

Signal to be
X acquired

100 x 100 identity matrix with
75 rows uniformly randomly
selected and thrown out

y 'l; ..."'-, '."". \ i ,u"-. |I | "l, Il| \ '| M easurements
¥ N YRS BT actually acquired




Taking Incoherent Projections of a Time Series - Gaussian

VT ATV TTAY (-

24



Taking Incoherent Projections of a Time Series - (Gaussian

Signal to be
X acquired

1
25 x 100 matrix of Gaussian ./ (0,—)
n

distributed random numbers

24



Taking Incoherent Projections of a Time Series - (Gaussian

Signal to be
X acquired

1
25 x 100 matrix of Gaussian ./ (0,—)
n

distributed random numbers

Measurements
actually acquired

24



Taking Incoherent Projections of a Time Series - Bernoulli

VT ATV TTAY (-

25



Taking Incoherent Projections of a Time Series - Bernoulli

Signal to be
X acquired

25 x 100 Bernoulli distributed (p = 0.5)
1 1
C random numbers € { : J
vV A/n

25



Taking Incoherent Projections of a Time Series - Bernoulli

Signal to be
X acquired

25 x 100 Bernoulli distributed (p = 0.5)

1 1
: }
vV A/n

random numbers € |

y y ¢ \/ N/ Measurements
¥ actually acquired

25



Compressed Sensing Example

Original signal

RN

- | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Ry

Reconstructed signal from 3 samples (red dots above)

- | | | | | | | | |
0 100 200 300 400 =00 600 700 a00 900 1000

Difference bebween signals, Ermror nomm = 0.745143

- | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Original signal

MNV
4 [

I
Il

BRI

I‘ﬂf
)

- | | | | | | | | |
0 100 200 300 400 >00 600 700 800 900 1000

Reconstructed signal from 11 samples (red dots above)

i

IR

il

- | | | | | | | | |
0 100 200 300 400 =00 600 700 800 900 1000

Difference bebtween signals, Error norm = 0.000000

- | | | | | | | | |
0 100 200 300 400 >00 600 700 800 900 1000
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Compressive Sampling to Save Energy on Edge Devices

40

« ADC and associated analog amplifier

may be power hungry g
= 20
=

» Lossy compression may be power - 10

hungry (doing FFT, DCT etc.) 0

. . . _ 1000
* In compressive sampling, the hllghest % o
cost iIs random number generation E o
L . S 950

» To maximize benefit, may also need to Ec"

)

duty cycle analog circuitry

B Rnd B ADC | FFT M Radio TX

1024Hz
NyqgS

1024Hz
NS/FFT

10Hz 20Hz 30Hz 250Hz
CS CS CS CS

B Rnd B ADC [ FFT M RadioTX

1024Hz
NygS

1024Hz
NS/FFT

10Hz 20Hz 30Hz 250Hz
CS CS CS CS

27



Learning from lrregularly Sampled Time Series



Irregularly Sampled Time Series Data

» Present fundamental challenges to many classical models
o N N from machine learning and statistics

-----

x(t)
LY
Il
v
x(t)
~
i
P

» Consider supervised learning task where a model takes as

Univariate regularly sampled Univarite irregulalry sampled ) ) i i )
input an irregularly sampled time series and must predict a
. " scalar output
g _____ o .- e % ______ o« ‘.. » Training set & with samples (S;, y;) where S.’s are irregularly
‘. Sa
_ . _ samples time series, and y;’s are corresponding labels
% hhhh 0""‘.— e, ) - P - :;3 """" - s /'ﬁ.,‘,/'
>< Mg >
t t
» Problems:
Multivariate regularly sampled Multivariate irregularly sampled (aligned) . . . . .
» Variable gaps between successive observation time points
| el » Variable number of observations: the total # of
< p® N e observations across dimensions can vary across samples
= , » Lack of alignment: Different dimensions of a single
= [e-— 7 . : : . : .
= N multivariate time series can be observed at a different
‘ collection of time points. The collection of observation times

Multivariate irregularly sampled (unaligned) across dimensions can also differ between samples.

29

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf



Irregularly Sampled Time Series Data

» Present fundamental challenges to many classical models
SN AN from machine learning and statistics

PPPP

x(t)
LY
v
v
¢
x(t)
Y
i
P

-----

» Consider supervised learning task where a model takes as

Univariate regularly sampled Univarite irregulalry sampled ) ) i i )
input an irregularly sampled time series and must predict a
. " scalar output
f—;‘j _____ e NP S g ______ o« ... » Training set & with samples (S;, y;) where S.’s are irregularly
_ . _ samples time series, and y;’s are corresponding labels
=T NP ®. o = e o ® Ty .
¢ . s > . s
These features of irregularly  Problems:

d (aligned) - . . . .
» Variable gaps between successive observation time points
» Variable number of observations: the total # of
observations across dimensions can vary across samples

, , , ‘ » Lack of alignment: Different dimensions of a single
which underlies most basic multivariate time series can be observed at a different

supervised and un-supervised collection of time points. The collection of observation times
learning models. across dimensions can also differ between samples.

sampled time series data invalidate
the assumption of a coherent
fixed-dimensional feature space,

30

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf



Data Representations for Irregularly Sampled Time Series

» There are several possible data representations for multivariate irregularly sampled
time series.

» These representations are equivalent, but expose different properties and suggest
different approaches to modeling

Series-based Representation

-------------- N | sampled time
= PR s = (t,x;) S =[Sy, ...,Sp] 1s represented as a collection of univariate
R @ e - ¢ ¢ t] irregularly sampled time series, one per dimension.
__________________________________________ 1 — [Y11y---5 U041 - . , , .
T e %y = @11, .., &L, 1] - S, = (t;, X,;) indicates the time series for dimension d.
= g Oy & 5y = (ta,X) - t, indicates the collection of time points with observed
> ‘\ s : . 5
L %ty = [t1a, ..., Ly values for dimension d.

t Xy = |12, ..., ZTL,2] - X, indicates the corresponding collection of observed

values.

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

A D-dimensional multivariate irregularly sampled time series



Data Representations for Irregularly Sampled Time Series

» There are several possible data representations for multivariate irregularly sampled
time series.

» These representations are equivalent, but expose different properties and suggest
different approaches to modeling

Vector-based Representation

In this representation, there 1s a single collection of time

R R - N - . fttl’x’r) . points t. At each time point #;, there is a D-dimensional
- 11 l\-”/: :: : \ : : n : — (U1 g ey 4 .
;._.’ ] ‘br ERERNEEES S I X = [x1, -, X] vector-valued observation X;.

e e L LT P In the general case, not all dimensions of X; are observed,

SRR L . ::::::::/ | za . _ J ®ia, itz isobserve . . . : . .
= | ui L L X = 2] 2 {N A, otherwise leading to the need to explicitly represent which dimensions
N[ e L 0 T - . are observed and which are missing.
X | v RN A R R E R i mw - {1, if x4 is observed

- " t ) T Ti2 0, otherwise A D-dimensional binary response indicator vector I; at each

Multivariate irregularly sampled (unaligned) time point #; indicates which dimensions are observed and

which are missing.

32
Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf



Data Representations for Irregularly Sampled Time Series

» There are several possible data representations for multivariate irregularly sampled
time series.

» These representations are equivalent, but expose different properties and suggest
different approaches to modeling

Set-based Representation

Multivariate irregularly sampled (unaligned)

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

p— = ’*:\\
s o i 1\ e
,x_g ) s:fl_a(tj,l,xj) ; ‘ .
In this representation, a D-dimensional multivariate

| (ti;2,2) - .o s={(t1,2,71),(t2,1,22), (t3,1,23),---} irregularly sampled time series is represented as a set of
;:. e gl T (time, dimension, value) tuples, one for each observation.

- \\‘-:" -

t
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INnference Tasks

* Detection: Inferring prediction target values
y[:] at time . conditioning on the observations
S[: t.] available up to and including time t..

* Prediction: Inferring prediction target values
y[t. 4+ O] at time t. 4+ o (for 6 > 0) conditioning
on the observations S[: ] available up to and
iIncluding time f.

e Forecasting: Inferring X[« + 0] (for 6 > 0) by
conditioning on the observations §|: %] up to an
iIncluding time ...

e Filtering: Inferring missing variables X[ %] at
time 7. by conditioning on the observations
S|: %] up to an including time ..

e Smoothing: Inferring the values of X[ #.] at time
I+ using the observed data in 8.

e Interpolation: Inferring the values of X[ ;] at
time f.. using the observed data in S.

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

Note that in machine learning, the inference for any quantity that is not known is
often referred to as a “prediction”, but here we use the term “prediction” to refer
to a task where the inference is for the value of the output variable at a time that

IS In the relative future of the time point .. at which the inference is made.

® Inferred value

@® Inferred value ® Inferred value

<
—~
[
N—
L
*
<
~
~+
—

,
—

i
p—— lW\\ II
s I K 1 —
= o” A0 -g =
S S .l N ¢
5 ,
= . | P
i &--" ,/'q‘."- -" %
> N ¢
i R  ——
t ty
(a) Detection (b) Prediction (c) Forecasting
@® Inferred values ® Inferredvalues _Qr__lr_1f_e_r_r§<_j_\{e}ly_e_s ________
_ . | -, ! — | =
= 5 N A S N\ — -9
— 6 N = st ® N — (] g
% | L d ® o L & ity X< |- 1 : .
: ; , Z
— | . |
= | - - Ol R ! = | . :
~ & "«‘(‘ :'J... ».__ ‘ ‘—’N - I'/,* Y g ! - | .«.(‘ v & B .«g
)( \\\_g/ >< "-,_Q’ . >< 1 \.\_QJ
{ t t
> 1, > 1, < —> T, <
(d) Filtering (e) Smoothing (f) Interpolation
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Modeling Primitives for Irregularly Sampled Time Series

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

Discretization

Deterministic
Interpolation

Interpolation

Modeling
Primitives

Recurrence [~

Probabilistic
Interpolation

Similarity |

RNN-based

Attention

Structural
Invariance

ODE-based

35



Discretization

. " N .
- &1 N :
— o ! | -~
<[ : L -
! : ! ! Irregularly sampled
= — E o | &
Sl Al
> 1 I \‘_."l 1
t
l Discretization
I 1 ol o W : : : ,
Tip + Loy &gy + Ly Ty 1 111 T
m' : : w’ : w’ : m’ : : : 1 : 1
L12:NA-32:42-524 L1:0-1: !
x’ r

Regularly sampled with missing values

» Reduces to a regularly sampled multivariate time series with missing values
» vector-based representation with missing data indicator

» Approach: divide the time axis into equal sized non-overlapping intervals and define a value within each

time interval based on the observed values falling within that interval
» €.9. average or median

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf



INnterpolation

— J. \\ “ ’_,‘ .‘s“
. E— ' S - -
= L RN S < | .-® e
< [ b e
“= Linear Interpolation
s ’ —
—— ’
I e — 4 - R
— .~~‘ ..... \s\ ’.\“ ' S— *‘~-b ”‘b‘—-.
N ‘ - s - - N ‘—-“
x \\ .’l x 'b-‘-‘-q ',,I
\‘__ -
» Approach:

1. Define a set of K reference time points 7 = [z}, ..., T¢]

2. Use a a basic kernel smoother to produce interpolated values at the reference time points
- kernel typically puts higher weights (learnable parameters) to points that are closer to the reference points
- for multivariate case, can account for both correlation in time and correlation across different dimensions
- deterministic: e.g., squared exponential kernel, stochastic: e.g., Gaussian process regression

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf
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Example: Interpolation-Prediction Networks (IP-Net)

Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series

representation with samples at a set of reference time points
» The parameters of the interpolation network are trained with the classifier in an end-to-end setup

» Prediction Network can be any standard supervised neural network architecture such as fully-connected
feedforward, convolutional, or recurrent network.

' l ;1 I AT

X: Cross-channel Interpolatlon

v: High-pass Interpolation

Interpolation Network Prediction Network

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019).
https.//arxiv.org/pdf/1909.07782
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Example: Interpolation-Prediction Networks (IP-Net)

» Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series

representation with samples at a set of reference time points
» The parameters of the interpolation network are trained with the classifier in an end-to-end setup

» Prediction Network can be any standard supervised neural network architecture such as fully-connected
feedforward, convolutional, or recurrent network.

, capture smooth trends
capture where observations occur =~

o: Low-pass Interpolation

v: High-pass Interpolation

Interpolation Network Prediction Network

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). ca Pfure fren d s
https.//arxiv.org/pdf/1909.07782
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Output of Interpolation Network

e irregularly sampled points e irregularly sampled points
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Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019).
https.//arxiv.org/pdf/1909.07782
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Recurrence

» Use a RNN cell with the ability to explicitly represent time to
integrate the input at each time point with the latent state from
the previous time point

e o o » e.g. append the time points or inter-observation intervals to the
vector-valued observations [x. , ¢, | or [x. ¢, —1_,, ]

i = fo(hi—1,Zin)

S| ihigeAr bR Yin = g9 (hi)

5 "J‘ ""H‘:bk”.. - Recent work on ordinary differential equation (ODE) models in
I ML provides an alternative recurrence-based solution

el BRI N R SRRV » In these ODE-RNN models, ODEs are used to evolve the hidden

o """J' q"‘ : :,f'.'E‘.,i%-;-:--'H state between continuous time observations.

>< SR RO S » Better properties than traditional RNNs in terms of their ability to

t accommodate irregularly sampled data.

Multivariate irregularly sampled (unaligned)

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

h,,b — ODESOlve(gfy, hz’—l, (tz’—lna tzn))
hz' — fO(hgaxin)
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Attention

tion

Self-Atten
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Multivariate irregularly sampled (unaligned)

Shukla & Matrlin, https.//arxiv.org/pdf/2012.00168.pdf

Self-Attention module learns which regions of an input time
series to attend to when computing outputs at different points
INn time by leveraging positional or time encodings.

_ QKT)
Attn(Q,K,V)—softmax( Jo Vv

There Is no recurrent structure, which allows parallel processing
go the entire time series instead of sequentially as in RNN

Time values can be converted into a vector representation
using positional encoding and concatenated with the
observation value (as in RNN)

Missing values in vector-valued observations are also
problematic for attention-based modules, which (like standard
RNNs) expect fully observed vectors as input

» imputation solutions can be used
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Structural Invariance
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Multivariate irregularly sampled (unaligned)

- Inspired by the set-based view of a multivariate irregularly sampled time series s, = (¢, ,d..,x. )|l < i < L,

» Set-based neural network approach processes individual (time, value, dimension) tuples via an encoding
function and then pools over the output of all such tuples
» such approaches (i) produce an encoding of an input irregularly sampled time series by applying an initial encoder
foto individual time-dimension-value tuples, (i) then perform a pooling operation (e.g. max, mean and sum) over all
initial encodings in a way that is completely invariant to the temporal structure of the data, and (iii) map the output

of pooling through one additional set of encoding layers g, 10 produce the final representation
h = g (pool(fy(t;,, d;p. X;,) | 1 <1 < L)

mn? —"in’ i
42
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Example Approach: Set Functions for Time Series (SefFT)

Medical Time Series

B Challenge
o = 120 4 ( ( f | ( [ | . . .
S @ 100 '\f : ! u‘\:/g | Imputation requires solving the harder
- . . . .
g < 80 3 g ' 1 : & ; problem of learning the time series
dynamics, and also sacrifices
5 s : . E) o : : interpretability of the inference.
£ 0 I J\/\’MW '
O | | | I
@ 60 ! ! 1 > Problem Statement
w Can we learn classification models on
é 37 : . e N R irregularlysampled fime series without
é’ 36.5 : : : l prior imputation?
o 1 1 1 o)
N % » Set Functions for Time Series
250 ' . . . ' . . . . . .
g ; \F;/ ! | = Time series classification as set classification
= . | ! | | .
TR 1 1 ! ! . (based on recent advances in
: 4 i o differentiable set function learning)
Hours

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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https://slideslive.com/38928275/set-functions-for-time-series

SeF T Architecture Overview
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Irregularly Sampled
Multivariate Time Series

Embedding, Attention,

Classificati
and Aggregation assteation

Set Encoding

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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Key Idea in SeFT: Time Series as Set of Observations

A 90 -
66

64
62
60 @
58

89 — @

Heart rate
Mean arterial
blood pressure

30 ®

Hours Hours

Each observation s; is represented as a tuple (t;,zj, m;)

S = {(0.5,60,1), (1.5, 65, 1), (0.5, 80, 2), (1.7, 85, 2), (3, 87, 2)}

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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Background: Deep Sets Framework (Zaheer et. al., NeurlPS 2017)

* Neural network architectures that operate over sets
» encountered in many applications: compute statistics over sets (e.g. sum of digits in a set
of images), classify sets (e.g. LIDAR or RADAR point cloud classification)

» Key requirement:
» permutation invariance if the task is f : 24 7Y/ (i.e. regression or classification)

» permutation equivariance of the task is f : M _, ?M (I.e. transduction)
- Key Results

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3. x ¢(z)), for suitable transformations ¢ and p.

fo(x) = o(Ox) is restricted to standard neural network layer

Lemma 3 The function fg : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O=X+~(11") AyeR 1=[1,...,1]" eRM I € RM*Mis the identity matrix

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017).
https./7arxiv.org/pdf/1703.06114
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Background: Architecture of DeepsSets Invariant Model

+ Optional

s conditioning

t based on meta-
.Einformation

| ek

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017).
https.//arxiv.org/pdf/1703.06114

5(X)

¢
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Background: Architecture of DeepSets Equivariant Model

'EOptionaI

s conditioning

t based on meta-
'.:infomwation

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017).
https.//arxiv.org/pdf/1703.06114
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Background: Architecture of DeepSets Equivariant Model

‘EOptionaI

s conditioning

t based on meta-
‘.:information

Using multiple permutation equivariant layers.
(Since permutation equivariance compose we can stack multiple such layers.)

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017).
https.//arxiv.org/pdf/1703.06114
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Applying Deep Sets to SeFT

» Sum-decompose the set function to achieve permutation invariance

1 .
fis)=9| 5 > _h(s))

5,€ES

where h: Q@ = R% and g: RY — R¢ are neural networks

Problem
Influence of an element shrinks as |S| grows!

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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Time Encoding In SeFT

» Employs a variant of positional encoding seen earlier with transformer

» The time encoding converts the 1-dimensional time axis into a multi-dimensional input

by passing the time 7 of each observation through multiple trigonometric functions of
varying frequencies

- Given a dimensionality 7 € N™ of the time encoding, SeFT encodes the position as
x € R*, where

Tok(t) := sin (t25/7>
Zok+1(t) 1= cos (tz,f/,r) k & {0,...,7/2}

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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Attention-based Aggregation
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Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine

http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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SeFT Evaluation

Dataset Model Accuracy ¥ AUPRC  AUROC S/epoch
GRU-D 770 =15 52.0 =08 85.7 0.2 133 1+ 8
GRU-SIMPLE 781 xx13 436 1+04 828 =0.0 1407

M3M IP-NETS 783 = 0.7 483 =04 83.2 0.5 81.2 8.5
PHASED-LSTM 73.8 =3.3 37.1 =05 80.3x04 166 =7
TRANSFORMER 774 5.6 426 =1.0 82.1 =03 20.1 = 0.1
LATENT-ODET 728 +1.7 39.54+ 0.5 80.9 + 0.2 4622
SEFT-ATTN 790 2.2 463 1+=05 83904 14.5 1 0.5
GRU-D 80.0 =29 53.7x09 863 0.3 8.67 =0.49
GRU-SIMPLE 822102 422 0.6 80.8 =1.1 30.0=x2.5

519 IP-NETS 794 == 0.3 51.0x=0.6 8.0 =02 253 x1.8
PHASED-LSTM 76.8 =5.2 38715 79010 44.6 = 2.3
TRANSFORMER 83.7 =3.5 52.8 2.2 86.3 = 0.8 6.06 & 0.06
LATENT-ODET 76,0 £0.1 50.7 4+ 1.7 857 +0.6 3500
SEFT-ATTN 753 1+35 524 1.1 8.1 =04 7.62 1 0.10

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Ma

http.//proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series

chine Learning, pp. 4353-4363. PMLR, 2020.
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SeFT Result: Performance vs. Runtime

MIMIC-III Mortality Prediction Task Physionet 2012 Mortality Prediction Task
M3-Mortality P-Mortality
PHASED-LSTM IP-NETS
150 o 50 e
GRU-D
- PHASED-LSTM @
5 GRU-SIMPLE 40 ® GRU-SIMPLE
8 * ®
— 100
=
O GRU-D 30
g - TRANSF.ORM[R
-
3 50 20
SEFT-ATTN
@
TRANSFORMER ﬁm 10 SEFT-ATTN
a ]
0
35 40 45 50 40 42 44 46 48 50 52 54 56
AUPRC AUPRC
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Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
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SeFT’s Outputs are Explainable

NIDiasABP NISysABP SysABP

70 170
65 160
60 150
T 55 =
E E 140
50 130
45 120
40 110
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time in hours Time in hours Time in hours

Allows a per-observation quantification of importance

95

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.
http://proceedings.mir.press/v119/horn20a/horn20a.pdf & https.//slideslive.com/38928275/set-functions-for-time-series
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Combining Compressed Sensing and Machine Learning



Recall: Compressed Sensing

Original signal
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Combining Compressive Sensing and Machine Learning

Option 1
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Combining Compressive Sensing and Machine Learning

Option 1

Iﬂ'| Ir.lll'l Ilhli'l A |'flhll| l'lﬁ |'|! | |ﬁ| |ﬁ'| Ilhlll'l IIﬁI"I r ' \ .---A*_*'"'l . 9% f Ifjﬂ A ."I’I'l = ( \
]; | I, RNRNE IllI | Ill || l'l ||| IIII Illl ,'I l'nl lnll l', | IIII ; II"LH_. I,."'I IIIII ' [,I'I '||I[ I."‘l 'II"', IIIIII Il'ul I."ll
TRTRIRTRTATRIRTATRTRTA} Compressive B B ML tor Does not work

—_ Sampling  f———-— Irregular Time F—> C

. y=CX | Y | Series well as |y| < [x]

Option 2

L[ IIH',I I."I lll'l Ir'ﬁ.l AN il ( . \ “w_*".,ll s ’« ."ﬁ‘. l."rwllhl A ."Iﬂ", - ( \ ( \
| Il'l I'll | | | l'. J Hll'l., II'III ll'l,ll I'f ll'llﬁ '! II'. .I CO m p ressive v ‘ ‘. 4 lll,.-"'t"x,_il'll Il'l.llll."lll &‘l ll"lll ll,l"lll quO N St ru Ct I\/l f or q e g U | ar

\ I'*...u Iu Y A VR VY . ¥ + ¥ ; T l
—>X Sam_pllgg;( —»y . tgs[ngtl > Time Series > C Costly!
oy = y _ Optimization | | y

argmin_|[s|[; , s.t. [[C¥s —y]|, <€ 58




Could we Combine
Compressive Sensing and
Deep Learning?



Compressed Learning with Deep Neural Networks

Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https://arxiv.org/pdf/1610.09615
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Compressed Learning with Deep Neural Networks

» Compressed Learning: direct inference from compressive measurements is feasible

with high classification accuracies

» Calderbank, Jafarpour, and Schapire. "Compressed learning: Universal sparse
dimensionality reduction and learning in the measurement domain." preprint (2009).

» Proved that under certain conditions the performance of a linear SVM classifier operating

in the compressed sensing domain y = Cx is almost equivalent to the performance of
the best linear threshold classifier operating in the signal domain x

Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https://arxiv.org/pdf/1610.09615
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Compressed Learning with Deep Neural Networks

» Compressed Learning: direct inference from compressive measurements is feasible

with high classification accuracies

» Calderbank, Jafarpour, and Schapire. "Compressed learning: Universal sparse
dimensionality reduction and learning in the measurement domain." preprint (2009).

» Proved that under certain conditions the performance of a linear SVM classifier operating

in the compressed sensing domain y = Cx is almost equivalent to the performance of
the best linear threshold classifier operating in the signal domain x

« Subsequent work combined CL with DNNSs: projected measurement vector z = CTy

(same shape as X) as the input to a convolutional neural network

» Lohit, Kulkarni, and Turaga. "Direct inference on compressive measurements using
convolutional neural networks." IEEE Intl Conf on Image Proc. (ICIP), pp. 1913-1917.

» Showed pretty good results on MNIST and ImageNet classification by training on

projected measurement z = CTy instead of on the original signal X

Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https.//arxiv.org/pdf/1610.09615
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Direct Inference on Compressive Measurements using CNN

CS Measurements

Convolutional Neural Network

Seene From SPC ~
OX  Linear
Projection "_"'. Cl
t > | | softmax g (1SS
' E *%3* - Label
M x 1 conv max-pool  conv  max-pool fc fc
Note: specific CNN architecture is for illustration only - specific architecture will depend on application.
Architecture
Measurement| Number of Test Error
S hed
Rate (MR) | Measurements Fi?tl:rss F4] M(e)tllllro d Measurement Rate | No. of Measurements | Accuracy
1 (Oracle) 784 13.86% 0.89% 1 (Oracle) 65536 56.88%
0.25 196 27.42% 1.63% 0.25 16384 39.22%
0.10 78 43.55% 2.99% 0.10 6554 29.84%
0.05 39 53.21% 5.18%
0.01 8 63.03% 41.06%

Lohit, Suhas, Kuldeep Kulkarni, and Pavan Turaga. "Direct inference on compressive measurements using convolutional neural networks." In 2016 IEEE International Conference on Image Processing (ICIP), pp. 1913-1917. IEEE, 2016.

MNIST Classification

https://ieeexplore.ieee.org/iel7/7527113/7532277/07532691.pdf

ImageNet Classification

60

50

40

Test Error (%)
w
o

——MR = 1
*—MR = 0.25
MR = 0.10
—o—MR = 0.05
< MR =0.01] |
\'-1"::*(:-"\“?/"\#/ — —_— — — . - N —
© O )
1 1 1 | 1 1
2.5 3 3.5 4 4.5 5
Iteration %104
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End-to-end Deep Learning Solution for Compressed Learning

- |dea: jointly optimize the sensing matrix Cand the inference operator (i.e. the CNN)

» Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach.”
arXiv preprint arXiv:1610.09615 (2016).

» Approach

» T
» T

» T
» T

ne first layer learns and performs the sensing matrix C
ne subsequent layers (a fully-connected layer followed by a CNN) perform the non-linear inference stage

ne second fully-connected layer performs operation similar to z = CTy but a different matrix C is learnt

ne first and second layers are followed by Rel.U

» The two components of end-to-end CL detached after training

> softmax Class ¢
Label :

fc fc /

]
00000000000000000000000000000000000000000000000000
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End-to-end Deep Learning Solution for Compressed Learning

- |dea: jointly optimize the sensing matrix Cand the inference operator (i.e. the CNN)
» Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach.”

arXiv preprint arXiv:1610.09615 (2016).
» Approach

» The first layer learns and performs the sensing matrix C

» The subsequent layers (a fully-connected layer followed by a CNN) perform the non-linear inference stage
» The second fully-connected layer performs operation similar to z = CTy but a different matrix C is learnt

» The first and second layers are followed by RelLU

» The two components of end-to-end CL detached after training

Sensing Rate  No. of Measurements Smashed Filters [12] Random Sensing + CNN [4] Proposed

0.25 196 27.42%

0.1 78 43.55%
0.05 39 53.21%
0.01 8 63.03%

1.63% 1.56%
2.99% 1.91%
5.18% 2.86%
41.06% 6.46%

Classification Error (%) for the MNIST handwritten digits dataset vs. sensing rate R = M/N (averaged over 10,000 test images)

https.//arxiv.org/pdf/1610.09615
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Compressed Sensing Using Generative Models

» CS compresses by taking random linear projections (measurement matrix) of the
original signal, and reconstructs by exploiting sparsity present in “natural” signals

» Instead of relying on sparsity, one can use structure from a generative model.
» GANs and VAEs

s Discriminator Network  m) Predicted Labels |
D-d mensional

noise vector

I -
3 X Encoder N
‘ Generator Network e, ol

Generative Adversarial Networks Variational Auto Encoder

Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. "Compressed sensing using generative models." In International Conference on Machine Learning, pp. 537-546. PMLR, 2017.
http://proceedings.mir.press/v70/borai7a/boral7a.pdf



Compressed Sensing Using Generative Models

» CS compresses by taking random linear projections (measurement matrix) of the original
signal, and reconstructs by exploiting sparsity present in “natural” signals

» Instead of relying on sparsity, one can use structure from a generative model.
» GANs and VAEs

» A generative model is given by a deterministic function G : |

over 7 € |

k

— R", and a distribution P,
k

» To generate a sample from the generator, we draw z ~ P, and the sample then is G(2)

* Approach: find a vector in representation space s.t. the corresponding vector in the
sample space matches the observed measurements, i.e. optimize

loss(z) = [|AG(z) — V] \% (highly non-convex, approximated using gradient descent)

» If the optimization procedure gives Z, then reconstruct by computing X = G(2)

65

Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. "Compressed sensing using generative models." In International Conference on Machine Learning, pp. 537-546. PMLR, 2017.

http://proceedings.mir.press/v70/borai7a/boral7a.pdf



Compressed Sensing Using Generative Models
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