
Copyright (c) 2021

Mani Srivastava

mbs@ucla.edu

Networked & Embedded Systems Lab

ECE & CS Departments

UCLA

Lecture 5: Learning with Irregularly Sampled Time Series Data

ECE209AS (Winter 2021)

mailto:mbs@ucla.edu


2

Regularly and Irregularly Sampled Time Series

https://arxiv.org/pdf/2012.00168.pdf

Can we learn classification models on irregularly sampled time series without prior imputation?

(imputation can be unreliable and sacrifice (which sacrifices interpretability)



3

Why do we get Irregular Sampling?



3

Why do we get Irregular Sampling?

• Availability of sensors

‣ energy, mobility, multi-tenancy, human operator




3

Why do we get Irregular Sampling?

• Availability of sensors

‣ energy, mobility, multi-tenancy, human operator


• Samples are lost or dropped

‣ network outage, bit corruption




3

Why do we get Irregular Sampling?

• Availability of sensors

‣ energy, mobility, multi-tenancy, human operator


• Samples are lost or dropped

‣ network outage, bit corruption


• Sensors report asynchronous events

‣ e.g. motion sensors, event-oriented imagers




3

Why do we get Irregular Sampling?

• Availability of sensors

‣ energy, mobility, multi-tenancy, human operator


• Samples are lost or dropped

‣ network outage, bit corruption


• Sensors report asynchronous events

‣ e.g. motion sensors, event-oriented imagers


• Sensors sampling intervals are adapted

‣ state of the process being sampled (e.g. patient’s health) 



4

Sampling Adaptively

• Idea: Instead of sampling periodically as is traditionally done, could we sample only 
when the position of the motor changes sufficiently?

‣ sample more frequently if position changes more rapidly


• This sampling policy is called Lebesgue Sampling

Motor 
Controller

�
`

M

Position Encoder 

Motor Drive

ADC

Command
(position  in degrees)



From:Roy McCann, Anil Kumar Gunda, Suchit Reddy Damugatla, “Improved 
Operation of Networked Control Systems using Lebesgue Sampling” 

5

Riemann Sampling vs. Lebesgue Sampling

primary output with sufficient feedback gain that the 

command level can be enforced for each output regardless of 

disturbance effects from other inputs. Both centralized and 

decentralized control architectures require communication 

between sensors and actuators. The communication can be 

implemented with dedicated channels or through a common 

network with shared resources. There is increasing attention to 

decentralized network control systems for performing safety 

and mission critical tasks. Compared to centralized control 

with dedicated communication lines, the advantages of 

decentralized network control include robustness to changes in 

plant characteristics, fault detectability and recovery, low 

implementation cost and flexibility for configuration changes. 

However, there are certain characteristics of large scale 

systems that should be considered when selecting the controls 

architecture. The following are factors that would encourage 

the selection of a networked architecture: 

• Each control loop possesses significant stability margins. 

This implies that some variability in the time delay of 

feedback signals can be tolerated. 

• The control activity is temporally diffused throughout the 

system. That is, the system does not inherently behave in 

a manner where all nodes tend to be active at the same 

time.   
For example, a military tactical aircraft with fly-by-wire 

control is less of a candidate for network interfaces since the 
flight dynamics are marginally stable by design and during 
aggressive maneuvers most of the flight control surfaces 
become active at the same time. In contrast, robotic and 
automated assembly equipment might be a good application for 
network control because the components are typically well 
damped and the actuators often become active in a sequential 
manner, e.g., the robot base first swivels to position, then the 
arm moves to position, then the gripper actuates to operate 
upon the work piece. 

B. Lebesgue Samplings 

Sampled data control systems employ periodic sampling of 

signals for communication between sensors, controllers and 

actuator elements. Reminiscent of integration theory, the 

conventional method of sampling signals will be referred to as 

Riemann sampling. For digital system designs, the sampled 

signal is made available to a microprocessor through a sample-

and-hold circuit. However, this method results in a time-delay 

of the signal on average of one-half the sample period. Figure 

1 shows an analog signal and its corresponding signal from a 

periodic sample-and-hold function. For physical systems, this 

delay reduces the gain and phase stability margins. 

Consequently, for safety critical systems it is often required to 

implement Riemann sampling at relatively fast periodic 

sample rates to insure adequate stability margins in the 

presence of noise and parametric uncertainty ([10], [11]).  

Alternatively, the function space may be evenly partitioned 

into intervals. This is shown in Figure 2 for the example signal 

considered previously in Figure 1. Each of the intervals may 

be assigned a state value si as a member of a discretized state-

space S. The transition between states is defined as an event ei 

that is a member of an event space E.  Each transition time and 

its associated event create a timed-event sequence (t0,e0i), 

(t1,e1i), (t2,e2i), … (tn ,eni). From this sequence the state of the 

signal may be derived with a run-time algorithm as (t0,s0i), 

(t1,s1i), (t2, s2i),…, (tn ,sni). Borrowing from integration and 

measure theory, this form of sampling has been introduced by 

Astrom and Bernhardsson in [12] as Lebesgue sampling. 
It is noted that Lebesgue sampling employs the similar 

time resolution and accuracy requirements for the network as 
Riemann sampling. The purpose of Lebesgue sampling is to 
minimize the number of communication events needed to 
support stable feedback control operation. There can be some 
reduction in the message occurrences with Riemann sampling 
by implementing an algorithm based on “only transmit if 
present value has changed from previous.”  With this in mind, 
we consider the example waveforms given in Figures 1 and 2. 
The root-mean-square (RMS) error between the reference and 
sampled signals is 0.46 for Riemann sampling and 0.28 for 
Lebesgue sampling. The number of communication messages 
is 18 for Riemann and 13 for Lebesgue. To summarize, the 
communication burden has been reduced by 28% and the 
mean-square signal error has been improved by 39% with 
Lebesgue sampling for the same time measurement resolution. 

C. Timed-Event Architecture 

This paper presents an improvement to the conventional 
constant sample rate TTP/C architecture.  Using Lebesgue 
sampling theory, this new architecture is referred to as a timed-
event architecture (TEA), it includes a timed-event interface 
(TEI) supported by a timed-event protocol (TEP).  A TEP 
based network for an automated manufacturing plant is shown 
in Figure 3. A TEI is shown in Figure 4, where the signal under 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

R
ie

m
an

n 
S

am
pl

ed
 S

ig
na

l

Riemann Sampling 

Reference Signal 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

Le
be

sg
ue

 S
am

pl
ed

 S
ig

na
l Lebesgue Sampling 

Reference Signal 

Figure 1. Riemann sampling. Figure 2. Lebesgue sampling. 

1212IAS 2004 0-7803-8486-5/04/$20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 29, 2009 at 20:32 from IEEE Xplore.  Restrictions apply. 

primary output with sufficient feedback gain that the 

command level can be enforced for each output regardless of 

disturbance effects from other inputs. Both centralized and 

decentralized control architectures require communication 

between sensors and actuators. The communication can be 

implemented with dedicated channels or through a common 

network with shared resources. There is increasing attention to 

decentralized network control systems for performing safety 

and mission critical tasks. Compared to centralized control 

with dedicated communication lines, the advantages of 

decentralized network control include robustness to changes in 

plant characteristics, fault detectability and recovery, low 

implementation cost and flexibility for configuration changes. 

However, there are certain characteristics of large scale 

systems that should be considered when selecting the controls 

architecture. The following are factors that would encourage 

the selection of a networked architecture: 

• Each control loop possesses significant stability margins. 

This implies that some variability in the time delay of 

feedback signals can be tolerated. 

• The control activity is temporally diffused throughout the 

system. That is, the system does not inherently behave in 

a manner where all nodes tend to be active at the same 

time.   
For example, a military tactical aircraft with fly-by-wire 

control is less of a candidate for network interfaces since the 
flight dynamics are marginally stable by design and during 
aggressive maneuvers most of the flight control surfaces 
become active at the same time. In contrast, robotic and 
automated assembly equipment might be a good application for 
network control because the components are typically well 
damped and the actuators often become active in a sequential 
manner, e.g., the robot base first swivels to position, then the 
arm moves to position, then the gripper actuates to operate 
upon the work piece. 

B. Lebesgue Samplings 

Sampled data control systems employ periodic sampling of 

signals for communication between sensors, controllers and 

actuator elements. Reminiscent of integration theory, the 

conventional method of sampling signals will be referred to as 

Riemann sampling. For digital system designs, the sampled 

signal is made available to a microprocessor through a sample-

and-hold circuit. However, this method results in a time-delay 

of the signal on average of one-half the sample period. Figure 

1 shows an analog signal and its corresponding signal from a 

periodic sample-and-hold function. For physical systems, this 

delay reduces the gain and phase stability margins. 

Consequently, for safety critical systems it is often required to 

implement Riemann sampling at relatively fast periodic 

sample rates to insure adequate stability margins in the 

presence of noise and parametric uncertainty ([10], [11]).  

Alternatively, the function space may be evenly partitioned 

into intervals. This is shown in Figure 2 for the example signal 

considered previously in Figure 1. Each of the intervals may 

be assigned a state value si as a member of a discretized state-

space S. The transition between states is defined as an event ei 

that is a member of an event space E.  Each transition time and 

its associated event create a timed-event sequence (t0,e0i), 

(t1,e1i), (t2,e2i), … (tn ,eni). From this sequence the state of the 

signal may be derived with a run-time algorithm as (t0,s0i), 

(t1,s1i), (t2, s2i),…, (tn ,sni). Borrowing from integration and 

measure theory, this form of sampling has been introduced by 

Astrom and Bernhardsson in [12] as Lebesgue sampling. 
It is noted that Lebesgue sampling employs the similar 

time resolution and accuracy requirements for the network as 
Riemann sampling. The purpose of Lebesgue sampling is to 
minimize the number of communication events needed to 
support stable feedback control operation. There can be some 
reduction in the message occurrences with Riemann sampling 
by implementing an algorithm based on “only transmit if 
present value has changed from previous.”  With this in mind, 
we consider the example waveforms given in Figures 1 and 2. 
The root-mean-square (RMS) error between the reference and 
sampled signals is 0.46 for Riemann sampling and 0.28 for 
Lebesgue sampling. The number of communication messages 
is 18 for Riemann and 13 for Lebesgue. To summarize, the 
communication burden has been reduced by 28% and the 
mean-square signal error has been improved by 39% with 
Lebesgue sampling for the same time measurement resolution. 

C. Timed-Event Architecture 

This paper presents an improvement to the conventional 
constant sample rate TTP/C architecture.  Using Lebesgue 
sampling theory, this new architecture is referred to as a timed-
event architecture (TEA), it includes a timed-event interface 
(TEI) supported by a timed-event protocol (TEP).  A TEP 
based network for an automated manufacturing plant is shown 
in Figure 3. A TEI is shown in Figure 4, where the signal under 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

R
ie

m
an

n 
S

am
pl

ed
 S

ig
na

l

Riemann Sampling 

Reference Signal 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

Le
be

sg
ue

 S
am

pl
ed

 S
ig

na
l Lebesgue Sampling 

Reference Signal 

Figure 1. Riemann sampling. Figure 2. Lebesgue sampling. 

1212IAS 2004 0-7803-8486-5/04/$20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 29, 2009 at 20:32 from IEEE Xplore.  Restrictions apply. 



From:Roy McCann, Anil Kumar Gunda, Suchit Reddy Damugatla, “Improved 
Operation of Networked Control Systems using Lebesgue Sampling” 

5

Riemann Sampling vs. Lebesgue Sampling

primary output with sufficient feedback gain that the 

command level can be enforced for each output regardless of 

disturbance effects from other inputs. Both centralized and 

decentralized control architectures require communication 

between sensors and actuators. The communication can be 

implemented with dedicated channels or through a common 

network with shared resources. There is increasing attention to 

decentralized network control systems for performing safety 

and mission critical tasks. Compared to centralized control 

with dedicated communication lines, the advantages of 

decentralized network control include robustness to changes in 

plant characteristics, fault detectability and recovery, low 

implementation cost and flexibility for configuration changes. 

However, there are certain characteristics of large scale 

systems that should be considered when selecting the controls 

architecture. The following are factors that would encourage 

the selection of a networked architecture: 

• Each control loop possesses significant stability margins. 

This implies that some variability in the time delay of 

feedback signals can be tolerated. 

• The control activity is temporally diffused throughout the 

system. That is, the system does not inherently behave in 

a manner where all nodes tend to be active at the same 

time.   
For example, a military tactical aircraft with fly-by-wire 

control is less of a candidate for network interfaces since the 
flight dynamics are marginally stable by design and during 
aggressive maneuvers most of the flight control surfaces 
become active at the same time. In contrast, robotic and 
automated assembly equipment might be a good application for 
network control because the components are typically well 
damped and the actuators often become active in a sequential 
manner, e.g., the robot base first swivels to position, then the 
arm moves to position, then the gripper actuates to operate 
upon the work piece. 

B. Lebesgue Samplings 

Sampled data control systems employ periodic sampling of 

signals for communication between sensors, controllers and 

actuator elements. Reminiscent of integration theory, the 

conventional method of sampling signals will be referred to as 

Riemann sampling. For digital system designs, the sampled 

signal is made available to a microprocessor through a sample-

and-hold circuit. However, this method results in a time-delay 

of the signal on average of one-half the sample period. Figure 

1 shows an analog signal and its corresponding signal from a 

periodic sample-and-hold function. For physical systems, this 

delay reduces the gain and phase stability margins. 

Consequently, for safety critical systems it is often required to 

implement Riemann sampling at relatively fast periodic 

sample rates to insure adequate stability margins in the 

presence of noise and parametric uncertainty ([10], [11]).  

Alternatively, the function space may be evenly partitioned 

into intervals. This is shown in Figure 2 for the example signal 

considered previously in Figure 1. Each of the intervals may 

be assigned a state value si as a member of a discretized state-

space S. The transition between states is defined as an event ei 

that is a member of an event space E.  Each transition time and 

its associated event create a timed-event sequence (t0,e0i), 

(t1,e1i), (t2,e2i), … (tn ,eni). From this sequence the state of the 

signal may be derived with a run-time algorithm as (t0,s0i), 

(t1,s1i), (t2, s2i),…, (tn ,sni). Borrowing from integration and 

measure theory, this form of sampling has been introduced by 

Astrom and Bernhardsson in [12] as Lebesgue sampling. 
It is noted that Lebesgue sampling employs the similar 

time resolution and accuracy requirements for the network as 
Riemann sampling. The purpose of Lebesgue sampling is to 
minimize the number of communication events needed to 
support stable feedback control operation. There can be some 
reduction in the message occurrences with Riemann sampling 
by implementing an algorithm based on “only transmit if 
present value has changed from previous.”  With this in mind, 
we consider the example waveforms given in Figures 1 and 2. 
The root-mean-square (RMS) error between the reference and 
sampled signals is 0.46 for Riemann sampling and 0.28 for 
Lebesgue sampling. The number of communication messages 
is 18 for Riemann and 13 for Lebesgue. To summarize, the 
communication burden has been reduced by 28% and the 
mean-square signal error has been improved by 39% with 
Lebesgue sampling for the same time measurement resolution. 

C. Timed-Event Architecture 

This paper presents an improvement to the conventional 
constant sample rate TTP/C architecture.  Using Lebesgue 
sampling theory, this new architecture is referred to as a timed-
event architecture (TEA), it includes a timed-event interface 
(TEI) supported by a timed-event protocol (TEP).  A TEP 
based network for an automated manufacturing plant is shown 
in Figure 3. A TEI is shown in Figure 4, where the signal under 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

R
ie

m
an

n 
S

am
pl

ed
 S

ig
na

l

Riemann Sampling 

Reference Signal 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

Le
be

sg
ue

 S
am

pl
ed

 S
ig

na
l Lebesgue Sampling 

Reference Signal 

Figure 1. Riemann sampling. Figure 2. Lebesgue sampling. 

1212IAS 2004 0-7803-8486-5/04/$20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 29, 2009 at 20:32 from IEEE Xplore.  Restrictions apply. 

primary output with sufficient feedback gain that the 

command level can be enforced for each output regardless of 

disturbance effects from other inputs. Both centralized and 

decentralized control architectures require communication 

between sensors and actuators. The communication can be 

implemented with dedicated channels or through a common 

network with shared resources. There is increasing attention to 

decentralized network control systems for performing safety 

and mission critical tasks. Compared to centralized control 

with dedicated communication lines, the advantages of 

decentralized network control include robustness to changes in 

plant characteristics, fault detectability and recovery, low 

implementation cost and flexibility for configuration changes. 

However, there are certain characteristics of large scale 

systems that should be considered when selecting the controls 

architecture. The following are factors that would encourage 

the selection of a networked architecture: 

• Each control loop possesses significant stability margins. 

This implies that some variability in the time delay of 

feedback signals can be tolerated. 

• The control activity is temporally diffused throughout the 

system. That is, the system does not inherently behave in 

a manner where all nodes tend to be active at the same 

time.   
For example, a military tactical aircraft with fly-by-wire 

control is less of a candidate for network interfaces since the 
flight dynamics are marginally stable by design and during 
aggressive maneuvers most of the flight control surfaces 
become active at the same time. In contrast, robotic and 
automated assembly equipment might be a good application for 
network control because the components are typically well 
damped and the actuators often become active in a sequential 
manner, e.g., the robot base first swivels to position, then the 
arm moves to position, then the gripper actuates to operate 
upon the work piece. 

B. Lebesgue Samplings 

Sampled data control systems employ periodic sampling of 

signals for communication between sensors, controllers and 

actuator elements. Reminiscent of integration theory, the 

conventional method of sampling signals will be referred to as 

Riemann sampling. For digital system designs, the sampled 

signal is made available to a microprocessor through a sample-

and-hold circuit. However, this method results in a time-delay 

of the signal on average of one-half the sample period. Figure 

1 shows an analog signal and its corresponding signal from a 

periodic sample-and-hold function. For physical systems, this 

delay reduces the gain and phase stability margins. 

Consequently, for safety critical systems it is often required to 

implement Riemann sampling at relatively fast periodic 

sample rates to insure adequate stability margins in the 

presence of noise and parametric uncertainty ([10], [11]).  

Alternatively, the function space may be evenly partitioned 

into intervals. This is shown in Figure 2 for the example signal 

considered previously in Figure 1. Each of the intervals may 

be assigned a state value si as a member of a discretized state-

space S. The transition between states is defined as an event ei 

that is a member of an event space E.  Each transition time and 

its associated event create a timed-event sequence (t0,e0i), 

(t1,e1i), (t2,e2i), … (tn ,eni). From this sequence the state of the 

signal may be derived with a run-time algorithm as (t0,s0i), 

(t1,s1i), (t2, s2i),…, (tn ,sni). Borrowing from integration and 

measure theory, this form of sampling has been introduced by 

Astrom and Bernhardsson in [12] as Lebesgue sampling. 
It is noted that Lebesgue sampling employs the similar 

time resolution and accuracy requirements for the network as 
Riemann sampling. The purpose of Lebesgue sampling is to 
minimize the number of communication events needed to 
support stable feedback control operation. There can be some 
reduction in the message occurrences with Riemann sampling 
by implementing an algorithm based on “only transmit if 
present value has changed from previous.”  With this in mind, 
we consider the example waveforms given in Figures 1 and 2. 
The root-mean-square (RMS) error between the reference and 
sampled signals is 0.46 for Riemann sampling and 0.28 for 
Lebesgue sampling. The number of communication messages 
is 18 for Riemann and 13 for Lebesgue. To summarize, the 
communication burden has been reduced by 28% and the 
mean-square signal error has been improved by 39% with 
Lebesgue sampling for the same time measurement resolution. 

C. Timed-Event Architecture 

This paper presents an improvement to the conventional 
constant sample rate TTP/C architecture.  Using Lebesgue 
sampling theory, this new architecture is referred to as a timed-
event architecture (TEA), it includes a timed-event interface 
(TEI) supported by a timed-event protocol (TEP).  A TEP 
based network for an automated manufacturing plant is shown 
in Figure 3. A TEI is shown in Figure 4, where the signal under 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

R
ie

m
an

n 
S

am
pl

ed
 S

ig
na

l

Riemann Sampling 

Reference Signal 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time (seconds)

Le
be

sg
ue

 S
am

pl
ed

 S
ig

na
l Lebesgue Sampling 

Reference Signal 

Figure 1. Riemann sampling. Figure 2. Lebesgue sampling. 

1212IAS 2004 0-7803-8486-5/04/$20.00 © 2004 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 29, 2009 at 20:32 from IEEE Xplore.  Restrictions apply. 

How do we decide the Lebesgue interval?



6

Event-Triggered Control System

• Introduce an Event Controller that monitors the Position Encoder signal continuously 
and determines the optimal sampling time


•  is the continuous-time analog position encoder signal

•  is the last sample produced by the ADC

x(t)
x[tk]

Motor 
Controller

�
`

M

Position Encoder 

Motor Drive

ADC

Command
(position  in degrees)

Event 
Controller

x(t)
x[tk]



7

Event-Triggered Control System

• Theorem [Anta-Tabuada]: Sampling is optimal and the system is guaranteed stability 
if the Event Controller produces a sampling trigger whenever: 
                                        

‣  is a design parameter that trades off average sampling rate and performance

‣ Intuition: Lebesgue interval must be the “error” relative to size of signal

||x(t) − x[tk]|| > σ||x(t)||
σ

Motor 
Controller

�
`

M

Position Encoder 

Motor Drive

ADC

Command
(position  in degrees)

Event 
Controller

x(t)
x[tk]



8

Self-Triggered Control System

• Event Controller needs to check the inequality at ALL times. Can one do better?

• Motor controller is designed with a model of the motor in mind

• Given the current state of the motor and the command input, control theory provides 

an estimate of the next state

• One can extend this estimation to predict when the state of the motor will violate the 

sampling inequality

• Thus, one can predict when the sample should be taken and schedule the ADC  
 
               

• No continuous time check needed

• However, this does not work well when the model has uncertainties or when 

perturbations to the system cannot be bounded

CurrentMeasurement + SystemDynamics ⇒ NextSampleTime



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t)



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t) x[tk]



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t) x[tk]

tk+1



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t) x[tk]

x[tk+1]

tk+1



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t) x[tk]

x[tk+1]

tk+1 tk+2



9

Self-Triggered Control System

tk+1 = α(λ, x[tk])

Next transmission time Desired performance

Measured state

time

x(t) x[tk]

x[tk+1]

tk+1 tk+2

x[tk+2]



10

Why do we get Irregular Sampling?

• Availability of sensors

‣ energy, mobility, multi-tenancy, human operator


• Samples are lost or dropped

‣ network outage, bit corruption


• Sensors report asynchronous events

‣ e.g. motion sensors, event-oriented imagers


• Sensors sampling intervals are adapted

‣ state of the process being sampled (e.g. patient’s health)


• Compressive sampling of sensors



11

Sampling a Signal

Steve Brunton, “Shannon Nyquist Sampling Theorem” 
https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s

https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s


11

Sampling a Signal

• Shannon-Nyquist Sampling Theorem:

‣ To resolve all frequencies in a function, it must be sampled 

at twice the highest frequency present

‣ A function containing no frequency >  Hz is completely 

determined by sampling at  Hz (Nyquist Rate) 


‣ Aliasing if we sample at a rate lower than 


ω
2ω Δt =

1
2ω

2ω

Steve Brunton, “Shannon Nyquist Sampling Theorem” 
https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s

https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s


11

Sampling a Signal

• Shannon-Nyquist Sampling Theorem:

‣ To resolve all frequencies in a function, it must be sampled 

at twice the highest frequency present

‣ A function containing no frequency >  Hz is completely 

determined by sampling at  Hz (Nyquist Rate) 


‣ Aliasing if we sample at a rate lower than 


ω
2ω Δt =

1
2ω

2ω

• Beating Shannon-Nyquist Sampling Theorem

‣ Advances in applied mathematics, statistics, and 

optimization have changed how we thinks about sampling

‣ Technically, the Shannon-Nyquist Sampling Theorem is 

necessary only signals that are broadband, i.e. densely 
packed with energy in all the frequencies from 0 to 


‣ But if the signal is sparse in frequency domain, one can 
beat the  sampling rate requirement

ω

2ω Steve Brunton, “Shannon Nyquist Sampling Theorem” 
https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s

https://www.youtube.com/watch?v=FcXZ28BX-xE&t=449s


12

Motivating Compressive Sampling

Real world signals are sparse in Fourier domain 
(or some other such universal domain, such as Wavelet)

ℱSteve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



12

Motivating Compressive Sampling

Real world signals are sparse in Fourier domain 
(or some other such universal domain, such as Wavelet)

𝗑 = Ψ𝗌Dense signal

(e.g. image, audio) Sparse

Fourier basis

ℱSteve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



13

Motivating Compressive Sampling

Loss compression methods exploit sparsity by retaining only top 
few coefficients that carry most of the signal energy.

ℱ

ℱ−1

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



14

Motivating Compressive Sampling

If we throw away most of the information during compression, why do we collect it 
to begin with? Can we not just starts with a massively downsampled signal?

Collect only

a few samples

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



15

Motivating Compressive Sampling

If we throw away most of the information during compression, why do we collect it 
to begin with? Can we not just starts with a massively downsampled signal?

𝗒 = 𝖢𝗑
= 𝖢Ψ𝗌
= Θ𝗌

Dense signal
Sparse

Fourier basis

𝖲

𝗒

𝗑 = Ψ𝗌

Measurements

 |y| ≪ |x|

Measurement matrix 

Collect only

a few samples

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



16

Inferring  from 𝗌 𝗒

𝖲

𝗒

Undetermined Inverse Problem 

Solution for  given  and  is not unique.𝗌 𝗒 Θ

𝗒 = 𝖢𝗑 = 𝖢Ψ𝗌 = Θ𝗌

Note: once we have  we can get  via inverse-FFT𝗌 𝗑

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



17

Adding the Sparsity Requirement to Infer 𝗌

𝖲

𝗒

𝗒 = 𝖢𝗑 = 𝖢Ψ𝗌 = Θ𝗌

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ



18

Adding the Sparsity Requirement to Infer 𝗌

𝖲

𝗒

𝗒 = 𝖢𝗑 = 𝖢Ψ𝗌 = Θ𝗌

 = norm of   
= # of non-zero entries in  

||𝗌′ ||0 l0− 𝗌′ 

𝗌′ 

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ



19

Adding the Sparsity Requirement to Infer 𝗌

𝖲

𝗒

𝗒 = 𝖢𝗑 = 𝖢Ψ𝗌 = Θ𝗌

A Showstopper Issue !!!

This optimization problem is intractable.

Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ



20

A Big Applied Math Breakthrough to the Rescue 
(~ 2004-2005 @ CalTech, Rice, UCLA)

Computationally Intractable Computationally Efficient

(Convex Optimization)

Gives the exact solution for  
with probability close to 1 if 

certain conditions are satisfied

𝗌

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||1 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||1



20

A Big Applied Math Breakthrough to the Rescue 
(~ 2004-2005 @ CalTech, Rice, UCLA)

Computationally Intractable Computationally Efficient

(Convex Optimization)

Gives the exact solution for  
with probability close to 1 if 

certain conditions are satisfied

𝗌
‣  should be incoherent w.r.t.  (i.e. rows of  

 should not be too parallel to columns of ) 
‣ # of measurements  where 

 and 

𝖢 Ψ
𝖢 Ψ

p ∼ O(k𝗅𝗈𝗀(n/k))
k = ||𝗌||0 n = |𝗌| = |𝗑|

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||1 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||1



20

A Big Applied Math Breakthrough to the Rescue 
(~ 2004-2005 @ CalTech, Rice, UCLA)

Computationally Intractable Computationally Efficient

(Convex Optimization)

Gives the exact solution for  
with probability close to 1 if 

certain conditions are satisfied

𝗌
‣  should be incoherent w.r.t.  (i.e. rows of  

 should not be too parallel to columns of ) 
‣ # of measurements  where 

 and 

𝖢 Ψ
𝖢 Ψ

p ∼ O(k𝗅𝗈𝗀(n/k))
k = ||𝗌||0 n = |𝗌| = |𝗑|

Restricted Isometry Property (RIP) 
i.e.  acts like a unitary matrix on sparse vector 𝖢Ψ 𝗌

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||0 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||0

alternatively:
̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 

||𝗌′ ||1 , s.t. ||𝖢Ψ𝗌′ − 𝗒||2 < ϵ

̂𝗌 = 𝖺𝗋𝗀𝗆𝗂𝗇s′ 
||𝖢Ψ𝗌′ − 𝗒||2 + λ||𝗌′ ||1



21

Example of Bad Measurement Matrix 𝖢

 has rows that are 
the same as a subset 

of columns of 

𝖢

Ψ

 only picks up 
information only from 

a part of 

Θ

𝗌
Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



22

Measurement Matrix  in Practice𝖢

• Random 0-1 mask matrix: each element in  is a random sample picked from 

‣ rows of  have exactly one  to indicate the sample picked by that measurement

‣must be causal in case of real-time sampling of a time-series


• Random real-numbers: each element in  is an incoherent random projection of 

‣ commonly used: Gaussian, Bernoulli

𝗒 𝗑
𝖢 1

𝗒 𝗑
Steve Brunton, https://www.youtube.com/watch?v=hmBTACBGWJs



23

Causal Random Sampling of a Time Series

Signal to be 
acquired𝗑



23

Causal Random Sampling of a Time Series

Signal to be 
acquired𝗑

100 x 100 identity matrix with 
75 rows uniformly randomly 

selected and thrown out
𝖢



23

Causal Random Sampling of a Time Series

Signal to be 
acquired𝗑

100 x 100 identity matrix with 
75 rows uniformly randomly 

selected and thrown out
𝖢

Measurements 
actually acquired 

𝗒



24

Taking Incoherent Projections of a Time Series - Gaussian

Signal to be 
acquired𝗑



24

Taking Incoherent Projections of a Time Series - Gaussian

Signal to be 
acquired𝗑

25 x 100 matrix of Gaussian  

distributed random numbers 

𝒩(0,
1
n

)𝖢



24

Taking Incoherent Projections of a Time Series - Gaussian

Signal to be 
acquired𝗑

Measurements 
actually acquired 

𝗒

25 x 100 matrix of Gaussian  

distributed random numbers 

𝒩(0,
1
n

)𝖢



25

Taking Incoherent Projections of a Time Series - Bernoulli

Signal to be 
acquired𝗑



25

Taking Incoherent Projections of a Time Series - Bernoulli

Signal to be 
acquired𝗑

25 x 100 Bernoulli distributed ( ) 

random numbers 

p = 0.5
∈ {−

1

n
,

1

n
}𝖢



25

Taking Incoherent Projections of a Time Series - Bernoulli

Signal to be 
acquired𝗑

25 x 100 Bernoulli distributed ( ) 

random numbers 

p = 0.5
∈ {−

1

n
,

1

n
}𝖢

Measurements 
actually acquired 

𝗒



26

Compressed Sensing Example



27

Compressive Sampling to Save Energy on Edge Devices

• ADC and associated analog amplifier 
may be power hungry


• Lossy compression may be power 
hungry (doing FFT, DCT etc.)


• In compressive sampling, the highest 
cost is random number generation


• To maximize benefit, may also need to 
duty cycle analog circuitry







ŷ

H     

Figure 2: Schematic representation of detection pro-
cess with MicaZ motes and in simulation

each block with simple first order linear functions that de-

pend on the data rate flowing through them. Model pa-

rameters were extracted using a cycle and energy accurate

instruction-level simulator available for the MicaZ [18]. The

Gaussian random variable for causal randomized sampling is

computed by approximating it to an order-12 Irwin-Hall dis-

tribution using a 16-bit MLCG [19] based uniform random

number generator. FFT processing was performed using an

1024-point implementation optimized for 16-bit operation.

The FFT library routines occupy 2KB of the 4KB RAM

available on the ATMEGA128.

4. RESULTS
Figure 2 depicts a schematic representation of the com-

pressive detection process used for evaluation. A host ma-

chine generates the 450Hz signal and white noise at a specific

SNR at a high sampling rate. This audio stream is played

out over a speaker and recorded through the microphone of a

sensing MicaZ mote using random projections as described

in Section 3.1. One second long segments of recorded sam-

ples are then wirelessly transmitted to a basestation mote

connected to the fusion center, which performs weighted ba-

sis pursuit to recover the signal in the frequency domain

using 1024-point FFT. The FFT coe⇧cients are fed into

the detection function alongwith the indices � to produce

the hypothesis decision. We also run a simulation version

of the process, which emulates the recording and collection

process by applying the same random projection matrix as

would have been computed on the sensing mote.

Figure 3 reports results for the resource costs incurred by

the sensing MicaZ node. While the numbers are specific to

this platform, the insight from these results can be applied

more generally. The top plot shows the power consumed by

each block for di⇥erent sampling rates. Also included are the

simulated power consumption numbers when periodic sam-

pling is applied above the Nyquist rate and when the FFT

detection procedure is performed on the node itself. Per-

forming local detection, while computationally expensive,

reduces the radio transmission burden, which is especially

beneficial in a multi-hop network scenario. For example, in

this case, the relatively favorable results for the radio trans-

mission power would overshadow FFT computation cost if

the basestation was further than two hops away.

For the compressive sensing cases shown left most, the

biggest power consumer is the random number generator

and, in particular, the MLCG implementation, which uses

software emulated 32-bit arithmetic extensively. If a lower

cost LFSR based implementation was used instead, the con-

sumption would be substantially educed at the cost of fewer

unique random numbers [19]. In terms of energy, using 30Hz

CS is over 10� more e⇧cient than sampling and communi-

cating at 1024Hz over a one-hop wireless link. For compar-

ison purposes, a 250Hz CS implementation was also simu-

lated and found to result in 30% reduction in power.

The bottom plot of Figure 3 illustrates the running time







































   












































   

Figure 3: Power and Duty Cycle costs for Compres-
sive Sensing versus Nyquist Sampling w/ local FFT.

of each block for every one second window. This equates to

the achievable duty cycle of the node, lower values for which

further improve the overall energy e⇧ciency. The ADC la-

tency is clearly visible here as the dominant component for

high rate sampling. This stems from the lack of a DMA

unit, which causes the CPU to be interrupted constantly.

The interrupt latency at high sampling rates is responsible

for a large fraction of the running time being reported.

While Figure 3 emphatically demonstrates that using low

rate compressive sensing can achieve long node lifetimes,

Figure 4 shows that detection performance is also exception-

ally good. Since di⇥erent applications have di⇥erent prior-

ities for missed detections (PMD) and false alarms (PFA),

we report both independently. These can be combined us-

ing prior probabilities of hypotheses to compute the overall

error probability. We show results from Monte Carlo sim-

ulations and experiments at three di⇥erent sampling rates

(10, 20 and 30 Hz) and at three di⇥erent SNRs (-10, 0 and

10 dB). The set of plots on the left illustrate experimental

performance and on the right, from simulation. To select

the thresholds �� (in (7)), we use a 10-fold cross validation

approach with Neyman-Pearson detection [13] setting the

maximum false alarm rates to 10%.

Instead of using training, we could have used a fixed SNR

dependent threshold value, as is commonly done in likeli-

hood ratio testing and this has an interesting e⇥ect as the pa-

rameter w� is varied. It can be shown that PMD is a mono-

tonically non-decreasing function of w for fixed SNR and

sampling rate and PFA is a monotonically non-increasing
function of w. This conclusion is intuitive, owing to the fact

that as w reduces, so does the penalty on the indices �, pro-

moting those indices in the solution (even if the signal was

not present). However, when the threshold is set using the

cross-validation approach, there is no statistically significant

di⇥erence in the detection performance as w� is varied. The

results reported in Figure 4 use w� = 0.1.
We evaluate whether using a biased weighting approach

(WBP) enhances performance compared to a conventional

basis pursuit (BP) technique and while using the iterative

reweighting technique (IRBP) described in [11]. We observe

some general trends right away – increasing SNR or sampling

rate reduces both PMD and PFA for all three techniques.

This is expected, since a higher quality signal (or the lack of

it) as well as additional samples improve both the detection

and rejection performance of the system. Comparing first



Learning from Irregularly Sampled Time Series 



29

Irregularly Sampled Time Series Data 

• Present fundamental challenges to many classical models 
from machine learning and statistics 


• Consider supervised learning task where a model takes as 
input an irregularly sampled time series and must predict a 
scalar output 

‣ Training set  with samples  where  ’s are irregularly 

samples time series, and ’s are corresponding labels


• Problems:

‣ Variable gaps between successive observation time points

‣ Variable number of observations: the total # of 

observations across dimensions can vary across samples

‣ Lack of alignment: Different dimensions of a single 

multivariate time series can be observed at a different 
collection of time points. The collection of observation times 
across dimensions can also differ between samples.

𝒟 (si, yi) si
yi

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



30

Irregularly Sampled Time Series Data 

• Present fundamental challenges to many classical models 
from machine learning and statistics 


• Consider supervised learning task where a model takes as 
input an irregularly sampled time series and must predict a 
scalar output 

‣ Training set  with samples  where  ’s are irregularly 

samples time series, and ’s are corresponding labels


• Problems:

‣ Variable gaps between successive observation time points

‣ Variable number of observations: the total # of 

observations across dimensions can vary across samples

‣ Lack of alignment: Different dimensions of a single 

multivariate time series can be observed at a different 
collection of time points. The collection of observation times 
across dimensions can also differ between samples.

𝒟 (si, yi) si
yi

These features of irregularly 
sampled time series data invalidate 

the assumption of a coherent 
fixed-dimensional feature space, 

which underlies most basic 
supervised and un-supervised 

learning models.

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



31

Data Representations for Irregularly Sampled Time Series 

• There are several possible data representations for multivariate irregularly sampled 
time series. 


• These representations are equivalent, but expose different properties and suggest 
different approaches to modeling

Series-based Representation 

A -dimensional multivariate irregularly sampled time series 
 is represented as a collection of univariate 

irregularly sampled time series, one per dimension. 
-  indicates the time series for dimension . 

-  indicates the collection of time points with observed 
values for dimension .

-  indicates the corresponding collection of observed 
values. 

D
s = [s1, …, sD]

sd = (td, xd) d
td

d
xd

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



32

Data Representations for Irregularly Sampled Time Series 

• There are several possible data representations for multivariate irregularly sampled 
time series. 


• These representations are equivalent, but expose different properties and suggest 
different approaches to modeling

Vector-based Representation 

In this representation, there is a single collection of time 
points . At each time point , there is a -dimensional 
vector-valued observation . 
In the general case, not all dimensions of  are observed, 
leading to the need to explicitly represent which dimensions 
are observed and which are missing. 
A -dimensional binary response indicator vector  at each 
time point  indicates which dimensions are observed and 
which are missing. 

t ti D
xi

xi

D ri
ti

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



33

Data Representations for Irregularly Sampled Time Series 

• There are several possible data representations for multivariate irregularly sampled 
time series. 


• These representations are equivalent, but expose different properties and suggest 
different approaches to modeling

Set-based Representation 

In this representation, a -dimensional multivariate 
irregularly sampled time series is represented as a set of 

 tuples, one for each observation. 

D

(time, dimension, value)

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



34

Inference Tasks

• Detection: Inferring prediction target values 
 at time  conditioning on the observations 
 available up to and including time . 

• Prediction: Inferring prediction target values 
 at time  (for ) conditioning 

on the observations  available up to and 
including time   

• Forecasting: Inferring  (for ) by 
conditioning on the observations  up to an 
including time .  

• Filtering: Inferring missing variables  at 
time  by conditioning on the observations 

 up to an including time .  

• Smoothing: Inferring the values of  at time 
 using the observed data in .  

• Interpolation: Inferring the values of  at 
time  using the observed data in . 

y[t*] t*
s[: t*] t*

y[t* + δ] t* + δ δ > 0
s[: t*]

t*
x[t* + δ] δ > 0

s[: t*]
t*

xm[t*]
t*

s[: t*] t*
xm[t*]

t* s
x[t*]

t* s

Note that in machine learning, the inference for any quantity that is not known is 
often referred to as a “prediction”, but here we use the term “prediction” to refer 
to a task where the inference is for the value of the output variable at a time that 

is in the relative future of the time point  at which the inference is made.t*

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



35

Modeling Primitives for Irregularly Sampled Time Series 

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



36

Discretization

• Reduces to a regularly sampled multivariate time series with missing values

‣ vector-based representation with missing data indicator 


• Approach: divide the time axis into equal sized non-overlapping intervals and define a value within each 
time interval based on the observed values falling within that interval 

‣ e.g. average or median

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



37

Interpolation

• Approach:

1. Define a set of  reference time points 

2. Use a a basic kernel smoother to produce interpolated values at the reference time points


- kernel typically puts higher weights (learnable parameters) to points that are closer to the reference points

- for multivariate case, can account for both correlation in time and correlation across different dimensions 

- deterministic: e.g., squared exponential kernel, stochastic: e.g., Gaussian process regression

K τ = [τ1, …, τK]

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf

Linear Interpolation



38

Example: Interpolation-Prediction Networks (IP-Net)

• Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series 
representation with samples at a set of reference time points

‣ The parameters of the interpolation network are trained with the classifier in an end-to-end setup 


• Prediction Network can be any standard supervised neural network architecture such as fully-connected 
feedforward, convolutional, or recurrent network.

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). 
https://arxiv.org/pdf/1909.07782



38

Example: Interpolation-Prediction Networks (IP-Net)

• Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series 
representation with samples at a set of reference time points

‣ The parameters of the interpolation network are trained with the classifier in an end-to-end setup 


• Prediction Network can be any standard supervised neural network architecture such as fully-connected 
feedforward, convolutional, or recurrent network.

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). 
https://arxiv.org/pdf/1909.07782

capture smooth trends



38

Example: Interpolation-Prediction Networks (IP-Net)

• Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series 
representation with samples at a set of reference time points

‣ The parameters of the interpolation network are trained with the classifier in an end-to-end setup 


• Prediction Network can be any standard supervised neural network architecture such as fully-connected 
feedforward, convolutional, or recurrent network.

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). 
https://arxiv.org/pdf/1909.07782

capture smooth trends

capture trends



38

Example: Interpolation-Prediction Networks (IP-Net)

• Applies multiple semi-parametric interpolation schemes to obtain a regularly-sampled time series 
representation with samples at a set of reference time points

‣ The parameters of the interpolation network are trained with the classifier in an end-to-end setup 


• Prediction Network can be any standard supervised neural network architecture such as fully-connected 
feedforward, convolutional, or recurrent network.

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). 
https://arxiv.org/pdf/1909.07782

capture smooth trends

capture trends

capture where observations occur



39

Output of Interpolation Network

Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled time series." arXiv preprint arXiv:1909.07782 (2019). 
https://arxiv.org/pdf/1909.07782



40

Recurrence

• Use a RNN cell with the ability to explicitly represent time to 
integrate the input at each time point with the latent state from 
the previous time point 

‣ e.g. append the time points or inter-observation intervals to the 

vector-valued observations  or 


• Recent work on ordinary differential equation (ODE) models in 
ML provides an alternative recurrence-based solution

‣ In these ODE-RNN models, ODEs are used to evolve the hidden 

state between continuous time observations. 

‣ Better properties than traditional RNNs in terms of their ability to 

accommodate irregularly sampled data. 

[xin, tin] [xin, tin − ti−1n]

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



41

Attention

• Self-Attention module learns which regions of an input time 
series to attend to when computing outputs at different points 
in time by leveraging positional or time encodings. 


• There is no recurrent structure, which allows parallel processing 
go the entire time series instead of sequentially as in RNN


• Time values can be converted into a vector representation 
using positional encoding and concatenated with the 
observation value (as in RNN) 


• Missing values in vector-valued observations are also 
problematic for attention-based modules, which (like standard 
RNNs) expect fully observed vectors as input 

‣ imputation solutions can be used

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



42

Structural Invariance

• Inspired by the set-based view of a multivariate irregularly sampled time series 

• Set-based neural network approach processes individual (time, value, dimension) tuples via an encoding 

function and then pools over the output of all such tuples

‣ such approaches (i) produce an encoding of an input irregularly sampled time series by applying an initial encoder 

to individual time-dimension-value tuples, (ii) then perform a pooling operation (e.g. max, mean and sum) over all 
initial encodings in a way that is completely invariant to the temporal structure of the data, and (iii) map the output 
of pooling through one additional set of encoding layers  to produce the final representation  
                                         

sn = (tin, din, xin) |1 ≤ i ≤ Ln

fθ

gφ
h = gφ(𝗉𝗈𝗈𝗅( fθ(tin, din, xin) |1 ≤ i ≤ Ln)

Shukla & Marlin, https://arxiv.org/pdf/2012.00168.pdf



43

Example Approach: Set Functions for Time Series (SeFT)

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

Problem Statement

Can we learn classification models on 

irregularlysampled time series without 
prior imputation?

Medical Time Series

Set Functions for Time Series 
➡ Time series classification as set classification

Challenge

Imputation requires solving the harder 
problem of learning the time series 

dynamics, and also sacrifices 
interpretability of the inference.

(based on recent advances in 
differentiable set function learning)

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


44

SeFT Architecture Overview

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

Irregularly Sampled 
Multivariate Time Series

Set Encoding Embedding, Attention, 
and Aggregation

Classification

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


45

Key Idea in SeFT: Time Series as Set of Observations

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


46

Background: Deep Sets Framework (Zaheer et. al., NeurIPS 2017)

• Neural network architectures that operate over sets

‣ encountered in many applications: compute statistics over sets (e.g. sum of digits in a set 

of images), classify sets (e.g. LIDAR or RADAR point cloud classification)

• Key requirement:

‣ permutation invariance if the task is  (i.e. regression or classification)

‣ permutation equivariance of the task is  (i.e. transduction)


• Key Results

f : 2𝒳 → 𝒴
f : 𝒳M → 𝒴M

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017). 
https://arxiv.org/pdf/1703.06114

is restricted to standard neural network layer



47

Background: Architecture of DeepSets Invariant Model

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017). 
https://arxiv.org/pdf/1703.06114



48

Background: Architecture of DeepSets Equivariant Model

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017). 
https://arxiv.org/pdf/1703.06114



49

Background: Architecture of DeepSets Equivariant Model

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017). 
https://arxiv.org/pdf/1703.06114

Using multiple permutation equivariant layers. 
(Since permutation equivariance compose we can stack multiple such layers.)



50

Applying Deep Sets to SeFT

‣ Sum-decompose the set function to achieve permutation invariance

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


51

Time Encoding in SeFT

• Employs a variant of positional encoding seen earlier with transformer


• The time encoding converts the 1-dimensional time axis into a multi-dimensional input 
by passing the time  of each observation through multiple trigonometric functions of 
varying frequencies


• Given a dimensionality  of the time encoding, SeFT encodes the position as 
, where 

t

τ ∈ ℕ+

x ∈ ℝτ

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


52

Attention-based Aggregation

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


53

SeFT Evaluation

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


54

SeFT Result: Performance vs. Runtime

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

MIMIC-III Mortality Prediction Task Physionet 2012 Mortality Prediction Task

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


55

SeFT’s Outputs are Explainable

Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020. 
http://proceedings.mlr.press/v119/horn20a/horn20a.pdf & https://slideslive.com/38928275/set-functions-for-time-series

Allows a per-observation quantification of importance

http://proceedings.mlr.press/v119/horn20a/horn20a.pdf
https://slideslive.com/38928275/set-functions-for-time-series


Combining Compressed Sensing and Machine Learning



57

Recall: Compressed Sensing



58

Combining Compressive Sensing and Machine Learning

Compressive  
Sampling 

𝗒 = 𝖢𝖷

ML for 
Irregular Time 

Series𝗑 𝗒 𝖼 Does not work 
well as |𝗒| ≪ |𝗑|

Option 1



58

Combining Compressive Sensing and Machine Learning

Compressive  
Sampling 

𝗒 = 𝖢𝖷

ML for 
Irregular Time 

Series𝗑 𝗒 𝖼 Does not work 
well as |𝗒| ≪ |𝗑|

Option 1

Option 2

Compressive  
Sampling 

𝗒 = 𝖢𝖷
ML for Regular 

Time Series𝗑 𝗒 𝖼
Reconstruct 

using 
Optimization

Costly!

𝖺𝗋𝗀𝗆𝗂𝗇s ||𝗌||1 , s.t. ||𝖢Ψ𝗌 − 𝗒||2 < ϵ



59

Could we Combine 
Compressive Sensing and 

Deep Learning?
🤔



60

Compressed Learning with Deep Neural Networks

Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https://arxiv.org/pdf/1610.09615



60

Compressed Learning with Deep Neural Networks

• Compressed Learning: direct inference from compressive measurements is feasible 
with high classification accuracies 

‣Calderbank, Jafarpour, and Schapire. "Compressed learning: Universal sparse 

dimensionality reduction and learning in the measurement domain." preprint (2009).

‣ Proved that under certain conditions the performance of a linear SVM classifier operating 

in the compressed sensing domain  is almost equivalent to the performance of 
the best linear threshold classifier operating in the signal domain 


𝗒 = 𝖢𝗑
𝗑

Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https://arxiv.org/pdf/1610.09615



60

Compressed Learning with Deep Neural Networks

• Compressed Learning: direct inference from compressive measurements is feasible 
with high classification accuracies 

‣Calderbank, Jafarpour, and Schapire. "Compressed learning: Universal sparse 

dimensionality reduction and learning in the measurement domain." preprint (2009).

‣ Proved that under certain conditions the performance of a linear SVM classifier operating 

in the compressed sensing domain  is almost equivalent to the performance of 
the best linear threshold classifier operating in the signal domain 


𝗒 = 𝖢𝗑
𝗑

• Subsequent work combined CL with DNNs: projected measurement vector  
(same shape as ) as the input to a convolutional neural network

‣ Lohit, Kulkarni, and Turaga. "Direct inference on compressive measurements using 

convolutional neural networks." IEEE Intl Conf on Image Proc. (ICIP), pp. 1913-1917.

‣ Showed pretty good results on MNIST and ImageNet classification by training on 

projected measurement  instead of on the original signal 

𝗓 = 𝖢𝖳𝗒
𝗑

𝗓 = 𝖢𝖳𝗒 𝗑
Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." arXiv preprint arXiv:1610.09615 (2016).
https://arxiv.org/pdf/1610.09615



61

Direct Inference on Compressive Measurements using CNN

Lohit, Suhas, Kuldeep Kulkarni, and Pavan Turaga. "Direct inference on compressive measurements using convolutional neural networks." In 2016 IEEE International Conference on Image Processing (ICIP), pp. 1913-1917. IEEE, 2016. 
https://ieeexplore.ieee.org/iel7/7527113/7532277/07532691.pdf

Note: specific CNN architecture is for illustration only - specific architecture will depend on application.

MNIST Classification ImageNet Classification Convergence of Test Error

Architecture



62

End-to-end Deep Learning Solution for Compressed Learning

• Idea: jointly optimize the sensing matrix and the inference operator (i.e. the CNN)

‣ Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." 

arXiv preprint arXiv:1610.09615 (2016).

• Approach

‣ The first layer learns and performs the sensing matrix 

‣ The subsequent layers (a fully-connected layer followed by a CNN) perform the non-linear inference stage

‣ The second fully-connected layer performs operation similar to  but a different matrix  is learnt

‣ The first and second layers are followed by ReLU

‣ The two components of end-to-end CL detached after training

𝖢

𝖢

𝗓 = 𝖢𝖳𝗒 �̃�

https://arxiv.org/pdf/1610.09615

𝗑 𝗓
𝖼

�̃� 𝗏 Ψ̃



63

End-to-end Deep Learning Solution for Compressed Learning

• Idea: jointly optimize the sensing matrix and the inference operator (i.e. the CNN)

‣ Adler, Amir, Michael Elad, and Michael Zibulevsky. "Compressed learning: A deep neural network approach." 

arXiv preprint arXiv:1610.09615 (2016).

• Approach

‣ The first layer learns and performs the sensing matrix 

‣ The subsequent layers (a fully-connected layer followed by a CNN) perform the non-linear inference stage

‣ The second fully-connected layer performs operation similar to  but a different matrix  is learnt

‣ The first and second layers are followed by ReLU

‣ The two components of end-to-end CL detached after training

𝖢

𝖢

𝗓 = 𝖢𝖳𝗒 �̃�

https://arxiv.org/pdf/1610.09615

Classification Error (%) for the MNIST handwritten digits dataset vs. sensing rate R = M/N (averaged over 10,000 test images) 



Encoder Decoder

64

Compressed Sensing Using Generative Models

• CS compresses by taking random linear projections (measurement matrix) of the 
original signal, and reconstructs by exploiting sparsity present in “natural” signals


• Instead of relying on sparsity, one can use structure from a generative model. 

‣ GANs and VAEs

Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. "Compressed sensing using generative models." In International Conference on Machine Learning, pp. 537-546. PMLR, 2017. 
http://proceedings.mlr.press/v70/bora17a/bora17a.pdf

Variational Auto EncoderGenerative Adversarial Networks



65

Compressed Sensing Using Generative Models

• CS compresses by taking random linear projections (measurement matrix) of the original 
signal, and reconstructs by exploiting sparsity present in “natural” signals


• Instead of relying on sparsity, one can use structure from a generative model. 

‣ GANs and VAEs

‣ A generative model is given by a deterministic function , and a distribution   

over . 

‣ To generate a sample from the generator, we draw  and the sample then is 


• Approach: find a vector in representation space s.t. the corresponding vector in the 
sample space matches the observed measurements, i.e. optimize 

 (highly non-convex, approximated using gradient descent)

‣ If the optimization procedure gives , then reconstruct by computing 

G : ℝk → ℝn PZ
z ∈ ℝk

z ∼ PZ G(z)

loss(z) = ||AG(z) − y||2
2

̂z ̂x = G( ̂z)
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. "Compressed sensing using generative models." In International Conference on Machine Learning, pp. 537-546. PMLR, 2017. 
http://proceedings.mlr.press/v70/bora17a/bora17a.pdf



66

Compressed Sensing Using Generative Models

• CS compresses by taking random linear projections (measurement matrix) of the original 
signal, and reconstructs by exploiting sparsity present in “natural” signals


• Instead of relying on sparsity, one can use structure from a generative model. 

‣ GANs and VAEs

‣ A generative model is given by a deterministic function , and a distribution   

over . 

‣ To generate a sample from the generator, we draw  and the sample then is 


• Approach: find a vector in representation space s.t. the corresponding vector in the 
signal space matches the observed measurements, i.e. optimize 

 (highly non-convex, approximated using gradient descent)

‣ If the optimization procedure gives , then reconstruct by computing 

G : ℝk → ℝn PZ
z ∈ ℝk

z ∼ PZ G(z)

loss(z) = ||AG(z) − y||2
2

̂z ̂x = G( ̂z)
Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. "Compressed sensing using generative models." In International Conference on Machine Learning, pp. 537-546. PMLR, 2017. 
http://proceedings.mlr.press/v70/bora17a/bora17a.pdf



67

References

• Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and 
Alexander Smola. "Deep sets." arXiv preprint arXiv:1703.06114 (2017).


• Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. "Neural ordinary differential 
equations." arXiv preprint arXiv:1806.07366 (2018).


• Shukla, Satya Narayan, and Benjamin M. Marlin. "Interpolation-prediction networks for irregularly sampled 
time series." arXiv preprint arXiv:1909.07782 (2019).


• Rubanova, Yulia, Ricky TQ Chen, and David Duvenaud. "Latent ODEs for irregularly-sampled time series." 
arXiv preprint arXiv:1907.03907 (2019).


• Horn, Max, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. "Set functions for time 
series." In International Conference on Machine Learning, pp. 4353-4363. PMLR, 2020.


• Shukla, Satya Narayan, and Benjamin M. Marlin. "A Survey on Principles, Models and Methods for 
Learning from Irregularly Sampled Time Series: From Discretization to Attention and Invariance." arXiv 
preprint arXiv:2012.00168 (2020).


• Shukla, Satya Narayan, and Benjamin M. Marlin. "Multi-Time Attention Networks for Irregularly Sampled 
Time Series." arXiv preprint arXiv:2101.10318 (2021).



The End


