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Recap from Bharathan Balaji’s Lecture
Reinforcement learning is assumed to be trained and evaluated in a discrete time.
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The impact of Timing on Closed-Loop System
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Delays in Deep RL
• Delay stochasticity & its impact

Related works in control systems and RL

Proposed Approach & evaluation: Time-in-State RL

Discussion
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Delays in a typical Deep RL: Sensing to Actuation Pipeline
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Execution Latency = Data Processing + Inference Latency
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Stochastic Delays in Deep RL

• Multitenancy
• Hardware heterogeneity
• Complexity of NN/Policy
• Thermal throttling
• Cloud & Network state

Multitude of ReasonsSensing to Actuation Pipeline
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Multitenancy on Intel neural compute stick
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Variations in Delay can be Large

No. of CNN layers 2 3 4

Network parameters 54k 157k 267k

Execution Latency 7.5ms 19.75ms 55.85ms

Complexity of NN on GAP8 edge device

Choices on 1/18th scale autonomous car
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Policies can Fail due to Delay Variations!!
Training setting: Simulator default for HalfCheetah
• Sampling interval: 4.12 ms
• Execution latency: 0 ms
• State =  26 variables (positions, angles, velocities angular velocities) describing different joints.
• Action =  6 continuous variables (torque set for 6 joints, each between -1 and 1).
• Reward = based on the progress made by the robot.

HalfCheetah robot: 
https://github.com/bulletphysics/bullet3/blob/afa4fb54505fd071103b8e2e8793c38fd40f6fb6/examples/pybullet/gym/pybullet_envs/robot_locomotors.py

HalfCheetah
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Policies can Fail due to Delay Variations!!

Latency = 20.6ms

Testing with delays: HalfCheetah
Vanilla Policy doesn’t work with latencies

20.6 ms delay
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Policies can Fail due to Delay Variations!!

[Peng18] Peng, Xue Bin, et al. "Sim-to-real transfer of robotic control with dynamics randomization." 2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2018.

Policy success drops from 89% to 29%. 
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Related work Remarks
Real-time control 

[Lu15, Lee16, 
Rajkumar16] 

v Need carefully engineered hardware and software stack.
v Delays can vary on commodity platforms across different hardware, network variations, environmental 

factors, multitenancy, and cloud.
Control systems 

[Nilsson98, 
Bequette03, Ryu04, 

Liberzon15, 
Stefano19]

v Classical controllers can be compensated for fixed and stochastic delays.
v Delay compensation using damping components, energy-based controllers [Ryu04, Stefano19] or 

Lyapunov-based controllers [Nilsson98, Bequette03, Liberzon15].
v The DNN-based controller trained via RL is a black box with no known mechanisms to compensate for 

delays.

Delay Handling in Control Systems

[Nilsson98] Nilsson, Johan. "Real-time control systems with delays." (1998).
[Bequette03] Bequette, B. Wayne. Process control: modeling, design, and simulation. Prentice Hall Professional, 2003.
[Ryu04] Ryu, Jee-Hwan, et al. "Stability guaranteed control: Time domain passivity approach." IEEE Transactions on Control Systems Technology 12.6 (2004): 860-868.
[Liberzon15] Liberzon, Daniel. "Quantization, time delays, and nonlinear stabilization." IEEE Transactions on Automatic Control 51.7 (2006): 1190-1195.
[Lu15] Lu, Chenyang, et al. "Real-time wireless sensor-actuator networks for industrial cyber-physical systems." Proceedings of the IEEE 104.5 (2015): 1013-1024.
[Lee16] Lee, Edward Ashford, and Sanjit A. Seshia. Introduction to embedded systems: A cyber-physical systems approach. Mit Press, 2016.
[Rajkumar16] Rajkumar, Raj, Dionisio De Niz, and Mark Klein. Cyber-physical systems. Addison-Wesley Professional, 2016.
[Stefano19] De Stefano, Marco, et al. "Time-delay Compensation Using Energy Tank for Satellite Dynamics Robotic Simulators." IEEE International Conference on Intelligent Robots and Systems. 2019.
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[Xie18] Xie, Zhaoming, et al. "Feedback control for cassie with deep reinforcement learning." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
[Mahmood18] Mahmood, A. Rupam, et al. "Setting up a reinforcement learning task with a real-world robot." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
[Tan18] Tan, Jie, et al. "Sim-to-real: Learning agile locomotion for quadruped robots." arXiv preprint arXiv:1804.10332 (2018).
[Andrychowicz20] Andrychowicz, OpenAI: Marcin, et al. "Learning dexterous in-hand manipulation." The International Journal of Robotics Research 39.1 (2020): 3-20.
[Peng18] Peng, Xue Bin, et al. "Sim-to-real transfer of robotic control with dynamics randomization." 2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2018.
[Ramstedt19] Ramstedt, Simon, and Chris Pal. "Real-time reinforcement learning." Advances in Neural Information Processing Systems. 2019.
[Chen20] Chen, Baiming, et al. "Delay-Aware Model-Based Reinforcement Learning for Continuous Control." arXiv preprint arXiv:2005.05440 (2020).

Related work Remarks
Xie et. al [Xie18], 

Mahmood et. Al.[Mahmood18]
v Observe variable delays have detrimental impact on the deep RL controllers.
v Doesn’t propose any solution.

Ramstedt et. al [Ramstedt19],
Chen et. Al [Chen20]

v Modify state with the past action.
v Assumes fixed discrete delay during training.
v Cannot handle continuous delay variations.

Domain Randomization [Peng18, 
Tan18, Andrychowicz20]

v Shows success of domain randomization to handle variable delays for real robots.
v We use domain randomization as a baseline.

Delay Handling in RL



State transition model gives us the consequence of action taken by agent.

Delays impact the consequence of action, thereby results in distribution mismatch 
between domain.

Delay Variations impact the State Transitions

[Peng18] Peng, Xue Bin, et al. "Sim-to-real transfer of robotic control with dynamics randomization." 2018 IEEE international conference 
on robotics and automation (ICRA). IEEE, 2018.
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Existing Approach: Domain Randomization

Domain randomization: 
Train a policy over a distribution of parameters.

Delays: Expose policy to variable delays during training.

Training
Domain

Deployment
Domain

Domain Randomization

We use domain randomization as our baseline
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Agent

State: 𝒔𝒕

Action: 𝒂𝒕
Delays

Environment

Equivalent to the domain randomization approach.

Subsume Delays in the Environment
Or if variable delays are present inherently in the training environment
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Application can monitor and adapt to the continuous changes in 
the temporal properties at runtime.

Our Approach: Time-in-State RL

Time-in-State:
• Domain randomization (vary delays during training) +
• Include delays as part of state.

Adaptive actions

Agent

Augmented State
["!, 
Execution Latency, 
Sampling Interval]

State:	"! Action: %!Sampling Interval
Sensors Actuators

Environment

Execution Latency
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Application can monitor and adapt to the continuous changes in 
the temporal properties at runtime.

Our Approach: Time-in-State RL

Adaptive actions

Agent

Augmented State
["!, 
Execution Latency, 
Sampling Interval]

State:	"! Action: %!Sampling Interval
Sensors Actuators

Environment

Execution Latency

Action adaptation driven by time and state both.
E.g., At turns car can slow down significantly if delays are higher.
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Autonomous car

Evaluation of Time-in-State RL

Ant task HalfCheetah task

[Balaji19] Balaji, Bharathan, et al. "DeepRacer: Educational autonomous racing platform for experimentation with sim2real reinforcement learning." arXiv preprint arXiv:1911.01562 (2019).

Low dimensional: PyBullet simulator High dimensional: Gazebo simulator & 
1/18th scale car 
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Autonomous car

High Dimensional: Autonomous car in Gazebo simulator & on a real car.
• Fuse delays as another modality: Multimodal fusion
• Reward = Stay close to the center-line

Evaluation of Time-in-State RL

Low Dimensional: Ant and HalfCheetah in Pybullet simulator.
• Delays directly added to state.
• Reward = Progress made by robot

Ant task HalfCheetah task



• Ant
• State space: 28 variables.
• Action: 8 variables (torque control of 8 joints).
• Reward: progress made by the robot.

• Deepracer
• State space: 120 X 160 image

track width
• Action: 15 discrete (3 speeds, 5 angles).

• Speed: 1.2, 1.5, 1.8 m/s
• Angles: 30, 15, 0, -15, -30 

• Reward: Distance from the center line.
• 1.0 max reward (Car-center on the track center-line)
• 0.001 (Car center - track center > 0.4% of track width).
• -30 (Crash: when outside the track, or Car center - track center > track width)

20

Ant and Deepracer

https://pybullet.org/
[Balaji19] Balaji, Bharathan, et al. "DeepRacer: Educational autonomous racing platform for experimentation with sim2real reinforcement learning." arXiv preprint arXiv:1911.01562 (2019).
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Autonomous car

High Dimensional: Autonomous car in Gazebo simulator & on a real car.
• Fuse delays as another modality: Multimodal fusion
• Reward = Stay close to the center-line

Evaluation of Time-in-State RL

Low Dimensional: Ant and HalfCheetah in Pybullet simulator.
• Delays directly added to state.
• Reward = Progress made by robot

Ant task HalfCheetah task

CNNs

FF

Output

Delays

Images

FF
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Autonomous car

High Dimensional: Autonomous car in Gazebo simulator & on a real car.
• Execution latency: ~10ms (depends on server machine)
• Sampling interval: 66ms (camera is running at 15hz)

Default Delays in Simulators

Low Dimensional: Ant and HalfCheetah in Pybullet simulator.
• Execution latency: 0 ms
• Sampling interval:  4.12 ms

https://pybullet.org/
[Balaji19] Balaji, Bharathan, et al. "DeepRacer: Educational autonomous racing platform for experimentation with sim2real reinforcement learning." arXiv preprint arXiv:1911.01562 (2019).

Ant task HalfCheetah task
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Autonomous car

High Dimensional: Autonomous car in Gazebo simulator & on a real car.
• Execution latency: (20 ms – 120 ms)
• Sampling interval: (33 ms – 120 ms), max(33 ms, Ex. latency)
• Jitter of ~5 ms.

Delay Variations

Low Dimensional: Ant and HalfCheetah in Pybullet simulator.
• Execution latency: (0 ms – 41.2 ms)
• Sampling interval:  (4.12 ms – 41.2 ms), max(4.12 ms, Ex. latency)
• Jitter of 4.12 ms. 

Ant task HalfCheetah task
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Learning Curves of Policies

HalfCheetah task Ant task Autonomous car

Time-in-State policies achieve higher training reward.

Training Algorithm: Proximal Policy Optimization 
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HalfCheetah task

Results: TS vs DR in PyBullet Simulator
Ant task

TS TS

DR DR

Ex. Latency = 20.6 ms
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Kuka robot [Bai19]

Hand manipulation 
[Andrychowicz20]

• Training on real robot [Bai19]: 7 KUKA robots running for 2-3 months.
• 608,000 real-world grasps to achieve best performance.

[Bai19] https://sim2real.github.io/assets/slides/bai-Learning_to_Grasp_Using_Simulation_Yunfei_Bai_Google_X.pdf
[Andrychowicz20] Andrychowicz, OpenAI: Marcin, et al. "Learning dexterous in-hand manipulation." The International Journal of Robotics Research 39.1 (2020): 3-20.

Policies for the Real Robots

Training using simulator
• Faster, cheap and safe.

Autonomous car

https://sim2real.github.io/assets/slides/bai-Learning_to_Grasp_Using_Simulation_Yunfei_Bai_Google_X.pdf
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Gazebo Simulator Real Track

Real Car

OptiTrack Cameras

Simulated Car

Sim2Real: Experimental Setup
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System identification
• Match simulator and the real world.
• Mass, friction, joint properties, actuator forces.

Domain randomization
• Account for the differences in parameters.
• Sensing gap, temporal variations.
• We propose using Time-in-State RL for temporal variations.

Kuka robot

Hand manipulation

Autonomous car

Policies for the Real Robots: Challenges

Sim

Real

Domain Randomization
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Simulator Track Real Track

Domain randomization on camera images in simulator.
Brightness Shadows Sharpness Salt and Paper

Autonomous Car: Sensing GAP
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Latency 20ms 60ms 100ms

DR 20 11 7

TS 20 17 13

Laps Completed (out of 24)

Evaluation on 1/18th Car

TS

DR

Latency 20ms 60ms 100ms

DR 1.45m/s 1.44m/s 1.45m/s

TS 1.50m/s 1.45m/s 1.40m/s

Action Adaptation

Actions: Steering and speed
Car camera: 30 Hz, sampling interval = (27 ms – 37 ms)
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Latency 20ms 60ms 100ms

DR 20 11 7

TS 20 17 13

Laps Completed (out of 24)

Evaluation on 1/18th Car

TS

DR

Latency 20ms 60ms 100ms

DR 1.45m/s 1.44m/s 1.45m/s

TS 1.50m/s 1.45m/s 1.40m/s

Action Adaptation

Actions: Steering and speed
Car camera: 30 Hz, sampling interval = (27 ms – 37 ms)
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Evaluation on 1/18th Car

TS

DR

Actions: Steering and speed
Car camera: 30 Hz, sampling interval = (27 ms – 37 ms)

Distance measured



• When does delay variation impact significantly?
• Environment is time evolving such that delay has an impact on the 

outcome (State-Transitions) of an action.

• What if we add more timing noises/jitters to the Time-in-State?
• TS policy becomes closer to the DR. 

TS policy also learns to be robust than being adaptive.
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Discussion
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Future Work

• Delay estimation using previous delays

• Delay indicators as inputs to network
• CPU’s load, network state, Resource availability
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Q & A

TS
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Backup: Evaluation for Simulated Multitenancy Setting

This behavior can be explained from degradation of policies with higher latencies.
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Backup: Evaluation of Recurrent Policies: HalfCheetah

TS is still a better approach.



• Expected return

Where                   represents, the log likelihood of the trajectory

• Finally, goal of agent is to learn optimal policy            = Max(J)

:  Log likelihood of trajectory.  

Backup: Mathematical Formulation



Log likelihood of trajectory                     when following a 
particular policy.              

An assumption which is  often made: 
Observation (o) = State of the system (s).

: State transition model. 

Backup: Mathematical Formulation



State transition model gives us the consequence of action taken by 
agent and is determined by dynamics and sensing of the 
environment[*].

The sampling rate and inferencing latencies are one of the important  
factors deciding the time for the agent to act and hence the 
consequence of action, thereby impacting State transition model.
Peng, Xue Bin, et al. "Sim-to-real transfer of robotic control with dynamics randomization." 2018 IEEE international conference on 
robotics and automation (ICRA). IEEE, 2018.

Backup: Mathematical Formulation



Source domain Target domain

Source domain: Sim Target domain: Sim/Real
sr and il of target domain are usedsr and il Varied  during runtime

Source domain: Sim Target domain: Sim/Real

Problem

Domain 
Randomization

Time-in-State

Parameterizes the
dynamics of simulation

Backup: Mathematical Formulation


