ECE209AS (Winter 2021)

| ecture 6: Miscellaneous lopics

Mani Srivastava

mbs@ucla.edu

Networked & Embedded Systems Lab
ECE & CS Departments

UCLA

[NESL

Samueli

School of Engineering

UCLA

Copyright (c) 2021


mailto:mbs@ucla.edu

Beyond Temporal: Spatial and Spatiotemporal



Deep Learning typically on Euclidean Data

» Data sampled on a grid in 1D (speech), 2D
(image), or 3D (video)

» Deep learning leverages statistical
properties such as:
» stationarity (due to shift invariance)
» locality (local connectivity), and
» compositionally (multiresolution structure)

/
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* CNNs exploit these properties
» extract local features that are shared
across space or time to reduce parameters
» Impose some priors about natural data

Text Audio

https.//flawnsontong.medium.com/what-is-geometric-deep-learning-b2adb662d91d



Sensors often distributed in and moving through space

SONYC @ NYU Wireless BAN Aerial Urban Monitoring UUV Swarm @ WHOI

- Measurements at (x, y, z, t) that do not fall on a regular grid in space or time

» data may be on some underlying complex low-dimensional structure
e.g. sensors on body, reports by people, measurements from sensors in cars on roads



Deep Learning for Distributed Sensors
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https://towardsdatascience.com/geometric-deep-learning-convolutional-neural-networks-on-graphs-and-manifolds-c6908d95b975

One Approach: Consider Measurements as a Set

» We saw this in Set Functions for Time Series (SeFT) for irregularly samples time series
» Can generalize to spatial or spatiotemporal

» Measurements in the most general case as (v, X, y,2, 0,0, @, t)

» Desired properties
» Unordered
- must be permutation invariant
» Interaction among measurements
- model should capture local spatial or spatiotemporal structures,
and combinatorial interactions among local structures
» Invariance under spatial transformations
- the learned representation should be variant to spatial transformations such as rotation and
translation



Another Approach: Geometric Deep Learning (GDL)

« Generalizes convolution neural networks to
data that is over non-Euclidean spaces
such as manifolds, graphs etc

» Perform tasks such as
» classify nodes with similar characteristics
» classify graphs, e.g. dangerous molecules,

Bacteria Archaea Eucarya

buggy circuit, 3D objects from point clouds Molecules Trees
» 3D shape correspondence to 2D images g .
- Data with inherent relationships, SN
connections, and shared properties N/ g W\ d 2
O
+ Useful for DL on sensor networks, social o] & o \

networks, genetics, brain, 3D structures etc.

» Of interest in loT/CPS: data on a graph
» graphs provide a relational inductive bias

Networks Manifolds

https.//flawnsontong.medium.com/what-is-geometric-deep-learning-b2adb662d91d



Example: Traffic Prediction via Neural Networks on Graph Data

» Forecasting traffic speed, volume or the
density of roads in traffic networks is
fundamentally important in a smart
transportation system
» e.g. ETA in Google Maps

» Traffic network as a spatial-temporal graph
» nodes are sensors installed on roads
» edges are measured by the distance
between pairs of nodes jv
» each node has the average traffic speed

within a window as dynamic input features

O J

Google Maps Candidate Google Maps

R user routes giek
system A-B

Analysed Training

data

https.//deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks



Deep Learning on Static Graphs: Graph Embedding Approach

- A static graph & = (7, &) comprises nodes 7 = {1,...,n} and edges
& C 7" X 7', which are endowed with features v. and e;; for all ,j=1,...,n
respectively

» Idea: convert an arbitrary graph into a form that ML algorithms can digest, namely
vectors Iin a continuous space

* Graph Embedding: transform nodes, edges, and their features into vector space (a
lower dimension) whilst maximally preserving properties like graph structure and

information

» Variety of ways to go about embedding graphs, at different levels of granularity
- node level, sub graph level, and via strategies such as graph walks

» E.g. DeepWalk, Node2Vec, Graph2Vec, Structural Deep Network Embedding (SDNE),
Large-scale Information Network Embedding (LINE), and many others

https.//towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4



The Graph Embedding ldea

T

Goal: similarity(u,v) ~ z,, z,

'Need to define!

Input network

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

d-dimensional
embedding space
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Deep Learning on Static Graphs: Graph Convolution Approach

- A static graph & = (7, &) comprises nodes 7 = {1,...,n} and edges
& C 7" X 7', which are endowed with features v. and e;; for all ,j=1,...,n
respectively

» |dea: generalize convolution so that it can directly operate on a representation of the
graph that retains its structure and features

* Intuition: At a high level, convolutions use . < W =
“kernels” to aggregate information from |7‘ §§C . ® \,
surrounding or adjacent entities ]\ / |‘><| 3 VA

. : | »’\-/ T;K—/F'{_— J/‘k )\

* Two approaches to generalizing convolutions a2\ TN

to graphs: Spectral vs. Spatial b U 2ab v s

https.//towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008



Spectral Graph Convolutional Networks

- Based on ideas from a field called Graph Signal Processing which applies methods

such as Fourier Transforms to graphs to create spectral domain representation
» allows talking about properties of graphs such as bandwidth, smoothness, etc.

» Definition: Laplacian matrix of a simple (one edge or no edge between a pair of
vertices) graph L = D — A where D is the degree matrix and A is the adjacency
matrix

L;; = deg(v) if i = j; — 1 ifi # jand v; is adjacent to v;; 0 otherwise

« Convolutions over graphs computed by:

1. Finding the Eigen decomposition of L to convert the graph into spectral domain (GFT)

2. Apply Eigen decomposition to the specified kernel
3. Multiply the spectral graph and the spectral kernel
4. Return results to the original spatial domain (inverse GFT)

» Many spectral methods: ChebNets, Kipf and Welling’s GCNs, CayleyNets, MotifNets

https.//towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Spatial Graph Convolutional Networks

- Basic approach: Create an embedding Z; on the nodes by learning a local aggregation
rule of the form

Z, = Z h(mij, V) m;; = msg(V;, Vi, el-j)
JEN;
which is interpreted as message passing from the neighbors j of 1.

Here . = {J : (i,j) € &} denotes the neighborhood of node i and msg and 4 are
learnable functions

- Embeddings can then be used for various tasks
- Handle cycles by iterating multiple times till embedding converge
» Hybrids that combine ideas from spatial and spectral approaches

https.//towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Example of Spatial Graph Convolution: GraphSage

» Three steps:

1. Neighborhood Sampling: Find immediate neighborhood of depth k
2. Aggregate Features of Neighbors: Mean aggregation, LSTM aggregation (in random
order), Pooling aggregation (Max pooling does the best)

3. Prediction: e.g. node class, structure/context

» Target node uses the aggregated neighborhood node features to make a prediction via a
neural network (whose weiahts are learnt durina supervised trainina)

; v _l
\ / _» | 1abet |

—
-

i

i

k=2 .

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information 14

https.//towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008



Predictions on Dynamic Graphs

- Traditional Graph Neural Networks (GNNs)

developed for static graphs that do not
change over time

» However often graph structure changes over

time, e.g. mobile nodes, transient nodes,
changing attributes

12.5

15
https.//towardsdatascience.com/temporal-graph-networks-ab8f327f2efe



Representing Dynamic Graphs

* Discrete-time dynamic graphs (DTDG)
» Sequences of static graph snapshots taken at intervals in time

» Continuous-time dynamic graphs (CTDG)
» More general
» Represented as timed lists of events
- edge addition or deletion
- node addition or deletion
- node or edge feature transformations

16



Temporal Graph Networks (TGNs) for Dynamic Graphs

A general encoder architecture developed at Twitter for tasks such as predicting future
interaction among nodes. It has the following main components

» Memory: stores compressed representations S,(f) of every node’s past interactions

- When a new node appears, we add a corresponding state initialized as a vector of zeros

» Message Function: analogous to message passing GNN, upon interaction between two
nodes, generates messages for them

» Memory Updater: uses a RNN to update the state of a node with the new message

» Node Embedding: obtained by a graph aggregation over the spatiotemporal neighbors

@\ - \ 29 (tg)
\CSX ﬁ TGN » 2(:) >[ D&‘fg‘)"" } > p((2,4)]ts)
% | ” Z4\18

Rossi, Emanuele, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein. "Temporal graph networks for deep learning on dynamic graphs." arXiv preprint arXiv:2006.10637 (2020).
.//arxiv.or i

1/



https://arxiv.org/pdf/2006.10637

Neurosymbolic Models: Data + First Principles Knowledge



Sensing with Models Learnt from Data Very Successtul
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But Face Challenges Too

* Models are opaque, I.e. not inherently interpretable
» generating satisfactory explanations is hard

» Difficult to adapt to changed operating environment (“domain shift”)
» different sensor, different sensing modality, different weather condition, different platform

* Need a lot of data (usually labeled) and time to train
» becomes a problem when operating in dynamic or novel environments
» rare and complex events (i.e. higher order spatial and temporal interactions)

» May fail to obey external constraints and expectations
» relating to scientific theories, safety, bias, privacy, and similar properties
» worse, may even amplify the bad

20



Models based on First Principles Knowledge

» First principles knowledge can take many forms
» Models from fundamental sciences (physics, chemistry, biology)
» Rules provided by subject matter experts
» Laws and regulations

* It may be represented in many ways
» Program, simulators, logic formulae, hardware

- But models based on first principles knowledge alone unsatisfactory
» Incomplete, approximate, slow (e.g. solve PDES)

21



Example: Detecting Complex Events (CE)

e

Unsanitary Operation Coordinated Attack Unattended Bag

Detecting Complex Event (CE) is a challenging task:

e Lack of large scale dataset to train an end-to-end model
e Requires raw data processing ability to extract informative features

e Need high-level reasoning ability for analyzing larger spatial and temporal dependencies

22



Example: Detecting Complex Events (CE)

B-¥-27-¢ &

Having Processing Preparing Checking Having Processing
Meeting Patient A Medication Inventory Meeting Patient B

Violation of Sanitary

Protocol! Disinfection
process

Example:

C lex Event:
Unsanitary Nursing Operation omplex Lven

| e Pattern of simpler events taking place over a long span of time
A nurse forgets to wash their hands

between processing different e Look for pattern in the large number of events:: needle in the
patients. haystack problem

e Involve events from many different sensors
23



CE Detection with Deep Learning Models

IS ™

The Stanford Question Answering Dataset

= A=A\ WIKIPEDIA
U - The Tree Eneyclopedia
rbl WOF:US kipedia
[2! words)

Work well but:

e Require large amount of labeled data which is a challenge with sensors that cannot be
labeled retrospectively via crowdsourcing

e Despite advances such as LSTM, Attention etc. the memory remains limited for purposes
of complex event sensing (high rate, long time spans)

24



CE Detection with Deep Learning Models is Challenging

Modeling long-term dependencies requires memory...

" Wodels | RelatodWork mput Longr

RNN / LSTM and Variants Bi-LSTM[Singh et al. CVPR™16] °

CRNN[Cakir et al.]

Convolution Based TCNJ[Lea et al. ECCV'16] °

Attention Mechanism TransformerXL[Dai et al. Arxiv'19], o

BERT, GPT model, °
Informer [Zhou et al. AAAI'21]

Reasonable limit of 250-300 time step with large LSTM

model
A few seconds (4-10) on visual and audio analytics tasks

A larger receptive field of about 10s on video-based
action classification

Time-series forecasting on hundreds to 1K of steps.
NLP: sentence — paragraph — article

Gap: DL models and sensing long-term complex patterns

With different sampling rates, input length can grow to more than thousands

Existing modern models require large dataset of population-scale

Memory intensive: knowledge are not compactly stored

25



CE Detection using Knowledge-based Models

Knowledge-based system (KBS) captures the knowledge of human experts to support

making inferences and decisions.

Bayesian Network / DBN/

AEDvVBN[Hsueh UMEDIA'15]
GM-DNN][Le et al. MASS'19]

PGM KBAR[Zeng eccv'10] [Anitha CC’'19]

ProLog, ProbLog[De Raedt, ijcai’07],
Pyro[Bingham et al. jmir’18],
DeepProblLog[Manhaeve 18]

Logic Programming

SASE[Gylistrom, Arxiv'06]
Cayuga[Demers, cidr'07]
Siddhi[Suhothayan, gpe‘11]
loMT[Aslam, IEEE Access’18]

Complex Event Processing
(CEP)

Probabilistic graphical model that represents the
probabilistic relationship among random variables.
Structure learning or configured by field expert.

Program written in logic from, expressing facts and rules
about some problem domain

Recent framework incorporates deep learning by means
of neural predicates

Takes user’s definition of patterns to process streaming
events.

Use finite automata to capture the temporal
dependencies of infinite range.

Problem: work well with structured data only, don’t handle data quality issues well

26



CE Detection with High-Dimensionality Unstructured Sensor Data

CE definition:

“ A nurse forgets to wash their
hands between processing
different patients ”

Current CE detection for high-dimensional
unstructured data:
e Relies on human effort. Detected complex events:

e Not performed in real-time. “ Unsanitary Operation at 2:10pm in Room 279 ”

27



Current State of Practice

Deep-Learning based Models:

e Process high-dim sensory data

e EXxcel on perception task: e.q.
modeling short term patterns

e Data-consuming, inefficient in
capturing long-term dependencies

Perception

Reasoning

Logic-based Methods:

e \Work with structured data in a
human-understandable way

e Represent complex spatial & temporal
dependencies efficiently and effectively

e (Cannot handle unstructured data

A hybrid approach?

e Inspired by how human process CE
e Combine the power of the DL and Logic
approaches.

28



A “Neurosymbolic” Approach to CE Detection

Raw data

Human Knowledge
Complex Event Rules

-)

Complex
Event

29



The DeepCEP System Architecture

@

Device: i

Device: n

Events coming from distributed edge devices

Deep Data Abstractors
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Raw data from
sensor

Deep Learning
inference

Primitive Event
Generation
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Raw data from
sensor

Deep Learning
inference

Primitive Event
Generation
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CE knowledge

(- \l g — — |
_ ! CE definition from User | | . () !
Events with | _ @/\@ |
“uncertainties” | e - \ Pattern |
| NFA model creation / ’ D I
¢ a b etector

| Selector model creation © X |
T :
1 |

I
1 :
' CE :
] : Selector |
1 :
1 |

I

|

Uncertainty-Robust CEP Engine
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Complex Event Grammar for DeepCEP

(complex-event) == (input-title) (complex-event-title) (format-pattern) INPUT: camera-feed
(constraint)? EOF;
(input-title) == INPUT : (event-stream-source-id); CE: unattended-bag

complex-event-title) ::

(format-pattern) ::= (combo-format) : { (event-list)+ };
(combo-format) ::= FORMAT-SEQ | FORMAT-PATTERN | FORMAT-

CE : {complex-event-stream-id):

PATTERN: {e1:person bag e2:person bag e3:bag e4:person}

PATTERN-WITHOUT; Constraints:{
(event-list) := (event) (, (event))*; e1.sid = "Entrance’,

(event := (event-id) : (event-type-id);
(constraint) = CONSTRAINT :{ (logical-predicate-list) };

(logical-predicate-list) ::=

e2.sid = e3.sid = 'Laboratory’, e4.sid = "Exit’,
el.person id = e2.person id = e4.person id
logic-expression (, logic-expression)*; }

: e2:
Person&Bag > Person&Bag

i Time = 4.66s E- Time = 11.89s Tlme 18.10s Tlme 23.79s

' SID = “Entrance” E SID = “Lab” \ SID = “Lab” | SID = “Exit’

i Detection result: ! Detection result: : Detection result: E Detection result:
. { Person, | { Person, ' { ' { Person,

' PersonlID =1, : PersoniD = 1, ! Bag i PersoniD = 1,
. Bag . Bag ) )

I } : | |

______________________________________________________________________________________________________________________

31



Training Neurosymbolic Models

- Assumption that pre-trained DL models for detecting simple events are available

Pre-trained perception
models may not perform
well in personalized
environments.

The output directory of
pre-trained DL models may
not include the necessary
events for defining
complex events.

\ i
DL ?F :><: ﬁi _
models Z.' x, Iliz?;g
I\ &'
>
Tt

Annotating the sensory
data at event-level is

challenging.

The performance of hybrid
systems relies on the of
perception models for
simple events.

20 100 50 60 70 80 90 100
& RelD (%) Accuracy of Tracker & RelD (%)

Liu et al. CAESAR
SenSys’19

32



Approach 1: Backpropagate Across the Neurosymbolic Model

DL Models
Perception

Propagate CE annotation directly
to the event level? Difficult!

e Logic rules of CE can be arbitrarily
complex

e Relevant events sparsely distributed in
the event streams

+ Logic Models
Reasoning

Event label !

|
|
|
: Complex
| Event

o=

Having Processing Preparing Checking Having Processing
Meeting Patient A Medication Inventory Meeting Patient B
N /

Violation of Sanitary

Protocol! Disinfection
process
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DeepProbCEP: Exploits Logic that is Differentiable

» Augments DeepProblog to support event processing in temporal dimension

» Trains the neural networks as part of the system in an end-to-end manner

VGGish

[123]

VGGish

255 |

Predicted
Complex Event

initiatedAt(shooting = true, T) :- g
window(Window) , -
sequence ([gun_shot, gun_shot], Window, T).

initiatedAt(shooting = false, T) :-
window(Window) ,
sequence([siren, siren], Window, T).

42

AudioNN

DeepProbCEP

Gradient
back-propagation




Approach 2: Neural Proxy of the Symbolic Part

DL Models
Perception

Logic Models
Reasoning

SN

NN Models
Reasoning

Propagate the gradient to the DL models?

e Make the logic model differentiable.
e Easy if we have DL model on logical layer

Approximate the Logical Models using Neural Networks?

e Logical models transfer human knowledge to Neural Network models.

Complex

Event

35



The Neuroplex System

Inferencing: use Logical machine

Perception

Logical
Machine

Deep Learning

Models

NRLogic
Models

Training: use Neurally Reconstructed Logic

Complex
Event

36



The Neuroplex System: Inferencing

Inferencing: use Logical machine

Reasoning: CEP engine

-

OBO

Pattern

EK b \ Detector
oSO

¥

DL Model
(pretrained)

Complex

’ Event

4 )
eCEz.t - e°E1.t <3

CE CE
e 3.t-e 1.t> 10

CE
Selector

CE — ACE
e 2.c—e 1.C

DL Model
(initialized)




The Neuroplex System: Training

Perception Reasoning

(Frozen!)

[
[
[
[
[
|
[
[
I
4§ Deep Learning Primitive NRLogic
Raw data 9
ode vents ode
d  Model Event Model
[
[
[
[
|
[
[
|
[
[
I
[
[

Semantic
regularization on
intermediate
symbolic layer

Logical
Machine

h_____________

Train NRLogic model using
synthetic data

Te——

Training: use Neurally Reconstructed Logic

Gradients w.r.t.
Perception model

Predicted
CE

GroundTruth
CE
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Comparing End-to-End and Neural Proxy Approaches

123
1
VGGish >l : ]

initiatedAt(shooting = true, T) :- ¥ Predicted
window (Window) -
ow, T).

VGGish —s [ : J
:

DeepProbCEP

Gradient
back-propagation

VS.

Inferencing: use Logical machine

Perception

Logical

Machine
Deep Learning Complex
Models N 1 Event
NRLogic

Models

Training: use Neurally Reconstructed Logic

© Complex Event

Inference Time Training Time CE Detection Perception
(single sequence) Accuracy Accuracy

11.54 31
ms ms 99.39%

( Train for 20

4.6s /1280 = 3.6ms 15s / 256 = 58.6ms epochs )

0.96s / 1280 = 0.75ms 3.33s /256 = 13.0ms

Comparison:

DeepProbLog instance is around three orders of magnitude slower
than Neuroplex.

Probabillistic logic programming makes it quite inefficient in terms of
training time.

DeepProbCEP has a human-understandable and easily manipulable
logical regularisation. 39



Main Ways of Composing “Neural” and “Symbolic”

» Symbolic programs used to compute variables which are then processed by a neural
network

» Differentiable symbolic layer in a larger end-to-end trainable neural network

» Neural network called as a function by an outer symbolic program

40



Example: Physics-Guided Neural Networks (PGNN)

Drivers (D) Data science model:
fun D =Y
Physics-based model;
Ypuy Hylbrid physics-data model:

Jupp : X =D, Ypyyl = Y

Y1 Y2

hl hz . '

:) _ .

. ' c hysics-based loss function:
LSTM ) €1 [I.STM] Cz‘ T-1 LSTM A
cell { cell ) Cell State e cell | arg min LOSS(Y, Y) -+ A R(f) +

(| V v
['-a"e ;;‘efgﬂ — - :#: Lake;:el'gv] ! Empirical Error Structural Error

)\PHY LOSS.PHY(YA'),

W
O Physical Inconsistency
XT

—  RNN flow ———»  Energy flow 41

https://arxiv.org/pdf/2001.11086.pdf



Main Ways of Composing “Neural” and “Symbolic”

» Symbolic programs used to compute variables which are then processed by a neural
network

» Differentiable symbolic program layer in a larger end-to-end trainable neural network

42



Example: Convex Optimization and SAT Solver as a Layer

0,

onstraints <:>

P(cell 4 = 5)

O
O

SAT Solver
O — D
_|uniq row |
O. " {uniq col O
@/ — @
~{uniqg blk
C

QOO0

Deep Learning
No constraints on output
Differentiable
Solved via gradient optimizers

=

Logical Inference
Rich constraints on output
Discrete input/output
Solved via tree search

» SATNet introduces a layer that enables end-to-end learning of both the constraints
and solutions within deep networks where neurons have logical constraints

https.//powei.tw/satnet_slide.pdf
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Main Ways of Composing “Neural” and “Symbolic”

» Symbolic programs used to compute variables which are then processed by a neural
network

» Differentiable symbolic program layer in a larger end-to-end trainable neural network

» Neural network called as a function by an outer symbolic program

44



Example: Object Detection

Region proposal function §

Fealures

Feature Extractor

https.//www.mathworks.com/discovery/object-detection.html/

Layers

Object Classification

Classification

Bounding box
refinement layer

Classification

Bounding box
refinement layer
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The End



