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Beyond Temporal: Spatial and Spatiotemporal
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Deep Learning typically on Euclidean Data

• Data sampled on a grid in 1D (speech), 2D 
(image), or 3D (video)


• Deep learning leverages statistical 
properties such as:

‣ stationarity (due to shift invariance)

‣ locality (local connectivity), and

‣ compositionally (multiresolution structure) 


• CNNs exploit these properties 

‣ extract local features that are shared 

across space or time to reduce parameters

‣ impose some priors about natural data

https://flawnsontong.medium.com/what-is-geometric-deep-learning-b2adb662d91d
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Sensors often distributed in and moving through space

• Measurements at  that do not fall on a regular grid in space or time

‣ data may be on some underlying complex low-dimensional structure 

e.g. sensors on body, reports by people, measurements from sensors in cars on roads

(x, y, z, t)

SONYC @ NYU UUV Swarm @ WHOI Wireless BAN Aerial Urban Monitoring
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Deep Learning for Distributed Sensors

https://towardsdatascience.com/geometric-deep-learning-convolutional-neural-networks-on-graphs-and-manifolds-c6908d95b975

CNN

What?
RNN

https://towardsdatascience.com/geometric-deep-learning-convolutional-neural-networks-on-graphs-and-manifolds-c6908d95b975
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One Approach: Consider Measurements as a Set

• We saw this in Set Functions for Time Series (SeFT) for irregularly samples time series 

‣Can generalize to spatial or spatiotemporal

‣Measurements in the most general case as 


• Desired properties

‣Unordered 

- must be permutation invariant

‣ Interaction among measurements 

- model should capture local spatial or spatiotemporal structures,  
and combinatorial interactions among local structures 


‣ Invariance under spatial transformations 
- the learned representation should be variant to spatial transformations such as rotation and 

translation

(v, x, y, z, ρ, θ, ϕ, t)
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Another Approach: Geometric Deep Learning (GDL)

• Generalizes convolution neural networks to 
data that is over non-Euclidean spaces 
such as manifolds, graphs etc


• Perform tasks such as 

‣ classify nodes with similar characteristics

‣ classify graphs, e.g. dangerous molecules, 

buggy circuit, 3D objects from point clouds

‣ 3D shape correspondence to 2D images


• Data with inherent relationships, 
connections, and shared properties


• Useful for DL on sensor networks, social 
networks, genetics, brain, 3D structures etc.


• Of interest in IoT/CPS: data on a graph

‣  graphs provide a relational inductive bias

https://flawnsontong.medium.com/what-is-geometric-deep-learning-b2adb662d91d



8

Example: Traffic Prediction via Neural Networks on Graph Data

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

• Forecasting traffic speed, volume or the 
density of roads in traffic networks is 
fundamentally important in a smart 
transportation system

‣ e.g. ETA in Google Maps


• Traffic network as a spatial-temporal graph

‣ nodes are sensors installed on roads

‣ edges are measured by the distance 

between pairs of nodes

‣ each node has the average traffic speed 

within a window as dynamic input features
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Deep Learning on Static Graphs: Graph Embedding Approach

• A static graph  comprises nodes  and edges 
, which are endowed with features  and  for all  

respectively


• Idea: convert an arbitrary graph into a form that ML algorithms can digest, namely 
vectors in a continuous space


• Graph Embedding: transform nodes, edges, and their features into vector space (a 
lower dimension) whilst maximally preserving properties like graph structure and 
information

‣ Variety of ways to go about embedding graphs, at different levels of granularity


- node level, sub graph level, and via strategies such as graph walks

‣ E.g. DeepWalk, Node2Vec, Graph2Vec, Structural Deep Network Embedding (SDNE), 

Large-scale Information Network Embedding (LINE), and many others

𝒢 = (𝒱, ℰ) 𝒱 = {1,…, n}
ℰ ⊆ 𝒱 × 𝒱 vi eij i, j = 1,…, n

https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4
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The Graph Embedding Idea

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
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Deep Learning on Static Graphs: Graph Convolution Approach

• A static graph  comprises nodes  and edges 
, which are endowed with features  and  for all  

respectively


• Idea: generalize convolution so that it can directly operate on a representation of the 
graph that retains its structure and features


• Intuition: At a high level, convolutions use  
“kernels” to aggregate information from  
surrounding or adjacent entities


• Two approaches to generalizing convolutions 
to graphs: Spectral vs. Spatial

𝒢 = (𝒱, ℰ) 𝒱 = {1,…, n}
ℰ ⊆ 𝒱 × 𝒱 vi eij i, j = 1,…, n

https://towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Spectral Graph Convolutional Networks

• Based on ideas from a field called Graph Signal Processing which applies methods 
such as Fourier Transforms to graphs to create spectral domain representation

‣ allows talking about properties of graphs such as bandwidth, smoothness, etc.


• Definition: Laplacian matrix of a simple (one edge or no edge between a pair of 
vertices) graph  where  is the degree matrix and  is the adjacency 
matrix 
             


• Convolutions over graphs computed by:

1. Finding the Eigen decomposition of  to convert the graph into spectral domain (GFT)

2. Apply Eigen decomposition to the specified kernel

3. Multiply the spectral graph and the spectral kernel

4. Return results to the original spatial domain (inverse GFT)


• Many spectral methods: ChebNets, Kipf and Welling’s GCNs, CayleyNets,  MotifNets

L = D − A D A

Li,j := deg(vi) if i = j; − 1 if i ≠ j and vi is adjacent to vj; 0 otherwise

L

https://towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Spatial Graph Convolutional Networks

• Basic approach: Create an embedding  on the nodes by learning a local aggregation 
rule of the form 
                                

which is interpreted as message passing from the neighbors  of . 
Here  denotes the neighborhood of node  and  and  are 
learnable functions


• Embeddings can then be used for various tasks

• Handle cycles by iterating multiple times till embedding converge

• Hybrids that combine ideas from spatial and spectral approaches

zi

zi = ∑
j∈ηi

h(mij, vi) mij = msg(vi, vj, eij)

j i
ηi = {j : (i, j) ∈ ℰ} i msg h

https://towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Example of Spatial Graph Convolution: GraphSage

• Three steps:

1. Neighborhood Sampling: Find immediate neighborhood of depth 

2. Aggregate Features of Neighbors: Mean aggregation, LSTM aggregation (in random 
order), Pooling aggregation (Max pooling does the best)

3. Prediction: e.g. node class, structure/context

‣ Target node uses the aggregated neighborhood node features to make a prediction via a 

neural network (whose weights are learnt during supervised training)

k

https://towardsdatascience.com/graph-convolutional-networks-for-geometric-deep-learning-1faf17dee008
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Predictions on Dynamic Graphs

• Traditional Graph Neural Networks (GNNs) 
developed for static graphs that do not 
change over time


• However often graph structure changes over 
time, e.g. mobile nodes, transient nodes, 
changing attributes

https://towardsdatascience.com/temporal-graph-networks-ab8f327f2efe
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Representing Dynamic Graphs

• Discrete-time dynamic graphs (DTDG)

‣ Sequences of static graph snapshots taken at intervals in time 


• Continuous-time dynamic graphs (CTDG)

‣More general

‣ Represented as timed lists of events


- edge addition or deletion

- node addition or deletion

- node or edge feature transformations



17

Temporal Graph Networks (TGNs) for Dynamic Graphs

• A general encoder architecture developed at Twitter for tasks such as predicting future 
interaction among nodes. It has the following main components

‣Memory: stores compressed representations  of every node’s past interactions


- When a new node appears, we add a corresponding state initialized as a vector of zeros

‣Message Function: analogous to message passing GNN, upon interaction between two 

nodes, generates messages for them

‣Memory Updater: uses a RNN to update the state of a node with the new message 

‣Node Embedding: obtained by a graph aggregation over the spatiotemporal neighbors

si(t)

Rossi, Emanuele, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein. "Temporal graph networks for deep learning on dynamic graphs." arXiv preprint arXiv:2006.10637 (2020).

https://arxiv.org/pdf/2006.10637

https://arxiv.org/pdf/2006.10637


Neurosymbolic Models: Data + First Principles Knowledge
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Sensing with Models Learnt from Data Very SuccessfulSensing: Event/Activity Detection & Classification

Audio Event Detection Activity Classification Visual Anomaly Detection

Deep Learning is faster, 
and more accurate than 

humans!

4
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But Face Challenges Too

• Models are opaque, i.e. not inherently interpretable

‣ generating satisfactory explanations is hard 


• Difficult to adapt to changed operating environment (“domain shift”)

‣ different sensor, different sensing modality, different weather condition, different platform


• Need a lot of data (usually labeled) and time to train

‣ becomes a problem when operating in dynamic or novel environments

‣ rare and complex events (i.e. higher order spatial and temporal interactions)


• May fail to obey external constraints and expectations

‣ relating to scientific theories, safety, bias, privacy, and similar properties

‣worse, may even amplify the bad
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Models based on First Principles Knowledge

• First principles knowledge can take many forms

‣Models from fundamental sciences (physics, chemistry, biology)

‣ Rules provided by subject matter experts

‣ Laws and regulations


• It may be represented in many ways

‣ Program, simulators, logic formulae, hardware


• But models based on first principles knowledge alone unsatisfactory

‣ Incomplete, approximate, slow (e.g. solve PDEs)
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Example: Detecting Complex Events (CE)Challenges: Complex Events (CE) 

Unsanitary Operation Unattended Bag Traffic Rule Violation

Detecting Complex Event (CE) is a challenging task:
● Lack of large scale dataset to train an end-to-end model

● Requires raw data processing ability to extract informative features

● Need high-level reasoning ability for analyzing larger spatial and temporal dependencies

Coordinated Attack

16
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Example: Detecting Complex Events (CE)Challenges: Complex Events (CE) 

Complex Event:

● Pattern of simpler events taking place over a long span of time

● Look for pattern in the large number of events:: needle in the 
haystack problem

● Involve events from many different sensors

Example: 

Unsanitary Nursing Operation 

A nurse forgets to wash their hands 
between processing different 
patients.

17
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CE Detection with Deep Learning ModelsMainstream Deep Learning Models

Work well but:
● Require large amount of labeled data which is a challenge with sensors that cannot be 

labeled retrospectively via crowdsourcing

● Despite advances such as LSTM, Attention etc. the memory remains limited for purposes 
of complex event sensing (high rate, long time spans)

Image classification Object detection & tracking Language modeling

18
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CE Detection with Deep Learning Models is ChallengingDeep-Learning Based Methods

Modeling long-term dependencies requires memory...

Gap: DL models and sensing long-term complex patterns
● With different sampling rates, input length can grow to more than thousands 

● Existing modern models require large dataset of population-scale

● Memory intensive: knowledge are not compactly stored

Models Related Work Input Length

RNN / LSTM and Variants Bi-LSTM[Singh et al. CVPR’16]
CRNN[Cakir et al.]

● Reasonable limit of 250-300 time step with large LSTM 
model

● A few seconds (4-10) on visual and audio analytics tasks

Convolution Based TCN[Lea et al. ECCV’16] ● A larger receptive field of about 10s on video-based 
action classification

Attention Mechanism TransformerXL[Dai et al. Arxiv’19], 
BERT, GPT model, 

Informer [Zhou et al. AAAI’21] 

● Time-series forecasting on hundreds to 1K of steps.
● NLP: sentence → paragraph → article

20
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CE Detection using Knowledge-based ModelsKnowledge/Logic Based Methods

Knowledge-based system (KBS) captures the knowledge of human experts to support 
making inferences and decisions.

Methods Related Work Features

Bayesian Network / DBN/ 
PGM

AEDvBN[Hsueh UMEDIA’15]
GM-DNN[Le et al. MASS’19]

KBAR[Zeng eccv’10] [Anitha CC’19]

● Probabilistic graphical model that represents the 
probabilistic relationship among random variables. 

● Structure learning or configured by field expert.

Logic Programming ProLog, ProbLog[De Raedt, ijcai’07],
Pyro[Bingham et al. jmlr’18], 
DeepProbLog[Manhaeve ’18]

● Program written in logic from, expressing facts and rules 
about some problem domain

● Recent framework incorporates deep learning by means 
of neural predicates 

Complex Event Processing
(CEP)

SASE[Gyllstrom, Arxiv’06]
Cayuga[Demers, cidr’07]

Siddhi[Suhothayan, gpe‘11]
IoMT[Aslam, IEEE Access’18]

● Takes user’s definition of patterns to process streaming 
events.

● Use finite automata to capture the temporal 
dependencies of infinite range. 

21
● Designed for structured data 
● Users cannot define rules or initiate queriesProblem: work well with structured data only, don’t handle data quality issues well
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CE Detection with High-Dimensionality Unstructured Sensor DataDetecting Complex Events (CE)

Current CE detection for high-dimensional 

unstructured data:

● Relies on human effort.

● Not performed in real-time.

Detected complex events:

“ Unsanitary Operation at 2:10pm in Room 279 ”

CE definition:  

“ A nurse forgets to wash their 
hands between processing 
different patients ” 

22
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Current State of PracticeExisting Approaches and Limitations

Deep-Learning based Models: 

● Process high-dim sensory data

● Excel on perception task: e.g. 
modeling short term patterns

● Data-consuming, inefficient in 
capturing long-term dependencies

Logic-based Methods: 

● Work with structured data in a 
human-understandable way

● Represent complex spatial & temporal 
dependencies efficiently and effectively

● Cannot handle unstructured data

A hybrid approach?

● Inspired by how human process CE
● Combine the power of the DL and Logic 

approaches.

Perception

Reasoning
23
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A “Neurosymbolic” Approach to CE Detection

Forward Path: CE detection 

● During initialization, human knowledge are injected into the system.

● In the forward path, the injected knowledge can help complex event detection.

Raw data

DL Models
Perception

Logic Models
Reasoning Complex 

Event

DeepCEP

Human Knowledge
Complex Event Rules

25
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The DeepCEP System ArchitectureDeepCEP: System Overview

CE definition from User

NFA model creation
Selector model creation

Receiving Events
from Devices

Complex Event
with Uncertainty

CE knowledge

Events coming from distributed edge devices

Uncertainty-Robust CEP Engine Deep Data Abstractors

Sequence Detection

Sequence Selection

 Raw data from 
sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:    i

 Raw data from 
sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:   n

Events with 
“uncertainties” Pattern 

Detector

CE 
Selector

eCE
2.t - e

CE
1.t < 3

eCE
3.t - e

CE
1.t > 10

eCE
2.c = eCE

1.c

26
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Complex Event Grammar for DeepCEPComplex Event Grammar
INPUT: camera-feed

CE: unattended-bag

PATTERN: {e1:person bag e2:person bag e3:bag e4:person}

Constraints:{ 
e1.sid = ’Entrance’, 
e2.sid = e3.sid = ’Laboratory’, e4.sid = ’Exit’,
e1.person id = e2.person id = e4.person id
} 

27



32

Training Neurosymbolic Models

• Assumption that pre-trained DL models for detecting simple events are available

Pre-trained Model Is Not Enough

Assumption of the existing hybrid approach: 

● Pre-trained DL models for detecting simple events are available.

Pre-trained perception 
models may not perform 
well in personalized 
environments. 

The output directory of 
pre-trained DL models may 
not include the necessary 
events for defining 
complex events.

The performance of hybrid 
systems relies on the of 
perception models for 
simple events. 

DL 
models Logic

Rules

Liu et al. CAESAR 
SenSys’19

Training is necessary for complex event detection system!

Label

Annotating the sensory 
data at event-level is 
challenging.

31
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Approach 1: Backpropagate Across the Neurosymbolic ModelBackward Path: Propagating Information 

Propagate CE annotation directly 
to the event level?   Difficult! 

● Logic rules of CE can be arbitrarily 
complex

● Relevant events sparsely distributed in 
the event streams 

Raw data
DL Models
Perception

Logic Models
Reasoning Complex 

Event

Event label

32
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DeepProbCEP: Exploits Logic that is Differentiable

• Augments DeepProbLog to support event processing in temporal dimension


• Trains the neural networks as part of the system in an end-to-end manner

Comparison: Neural-Symbolic Method

DeepProbCEP:

● Augments DeepProbLog to support 
event processing in temporal 
dimension.

● Train the neural networks as part of the 
system in an end-to-end manner. 

Marc Roig Vilamala, Harrison Taylor, Tianwei Xing, Luis Garcia, Mani 
Srivastava,Lance Kaplan, Alun Preece, Angelika Kimming, and 
Federico Cerutti. 2020. “A Hybrid Neuro-Symbolic Approach for 
Complex Event Processing.” In EPTCS proceedings of ICLP. 48
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Approach 2: Neural Proxy of the Symbolic PartNeural Proxy of Reasoning Module

Propagate the gradient to the DL models?

● Make the logic model differentiable.
● Easy if we have DL model on logical layer

Approximate the Logical Models using Neural Networks?

● Logical models transfer human knowledge to Neural Network models.

Raw data
DL Models
Perception

Logic Models
Reasoning Complex 

Event

NN Models
Reasoning

33
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The Neuroplex SystemNeuroplex: System Overview

Reasoning

Perception

Perception

Deep Learning 
Models

Logical 
Machine

Complex 
Event

NRLogic 
Models

Inferencing: use Logical machine

Training: use Neurally Reconstructed Logic

Raw data

[Xing et al. Sensys’20] 

34
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The Neuroplex System: Inferencing
Neuroplex: Inferencing

Reasoning: CEP engine

Perception

Perception

Complex 
Event

Inferencing

Raw data
Pattern 

Detector

CE 
Selector

eCE
2.t - e

CE
1.t < 3

eCE
3.t - e

CE
1.t > 10

eCE
2.c = eCE

1.cDL Model 
(initialized)

DL Model
(pretrained)

Raw data

…. ….

35

Neuroplex: System Overview

Reasoning

Perception

Perception

Deep Learning 
Models

Logical 
Machine

Complex 
Event

NRLogic 
Models

Inferencing: use Logical machine

Training: use Neurally Reconstructed Logic

Raw data

[Xing et al. Sensys’20] 

34
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The Neuroplex System: TrainingNeuroplex: Training

Reasoning
(Frozen!)

Raw data Deep Learning
Model

Logical 
Machine

Primitive 
Events

NRLogic
Model

Predicted 
CE

GroundTruth
CE

Logic 
Constraints

Gradients w.r.t. 
Perception model

Train NRLogic model using 
synthetic data

Perception

Semantic 
regularization on 

intermediate 
symbolic layer

3636

Neuroplex: System Overview

Reasoning

Perception

Perception

Deep Learning 
Models

Logical 
Machine

Complex 
Event

NRLogic 
Models

Inferencing: use Logical machine

Training: use Neurally Reconstructed Logic

Raw data

[Xing et al. Sensys’20] 

34
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Comparing End-to-End and Neural Proxy ApproachesComparison: Neural-Symbolic Method

DeepProbCEP:

● Augments DeepProbLog to support 
event processing in temporal 
dimension.

● Train the neural networks as part of the 
system in an end-to-end manner. 

Inference Time 
(single sequence)

Training Time CE Detection 
Accuracy

Perception 
Accuracy

DeepProbCEP 100ms 1200ms N/A N/A

Neuroplex (cpu) 5.4ms 18ms

99.39%
( Train for 20 

epochs )

98.87%
Neuroplex (gpu) 11.54ms 31ms

Neuroplex (cpu) 4.6s / 1280 = 3.6ms 15s / 256 = 58.6ms

Neuroplex (gpu) 0.96s / 1280 = 0.75ms 3.33s / 256 = 13.0ms

Comparison:

● DeepProbLog instance is around three orders of magnitude slower 
than Neuroplex. 

● Probabilistic logic programming makes it quite inefficient in terms of 
training time.

● DeepProbCEP has a human-understandable and easily manipulable 
logical regularisation.

Marc Roig Vilamala, Harrison Taylor, Tianwei Xing, Luis Garcia, Mani 
Srivastava,Lance Kaplan, Alun Preece, Angelika Kimming, and 
Federico Cerutti. 2020. “A Hybrid Neuro-Symbolic Approach for 
Complex Event Processing.” In EPTCS proceedings of ICLP. 49

Comparison: Neural-Symbolic Method

DeepProbCEP:

● Augments DeepProbLog to support 
event processing in temporal 
dimension.

● Train the neural networks as part of the 
system in an end-to-end manner. 

Marc Roig Vilamala, Harrison Taylor, Tianwei Xing, Luis Garcia, Mani 
Srivastava,Lance Kaplan, Alun Preece, Angelika Kimming, and 
Federico Cerutti. 2020. “A Hybrid Neuro-Symbolic Approach for 
Complex Event Processing.” In EPTCS proceedings of ICLP. 48

Neuroplex: System Overview

Reasoning

Perception

Perception

Deep Learning 
Models

Logical 
Machine

Complex 
Event

NRLogic 
Models

Inferencing: use Logical machine

Training: use Neurally Reconstructed Logic

Raw data

[Xing et al. Sensys’20] 
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Main Ways of Composing “Neural” and “Symbolic”

• Symbolic programs used to compute variables which are then processed by a neural 
network


• Differentiable symbolic layer in a larger end-to-end trainable neural network 


• Neural network called as a function by an outer symbolic program 
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Example: Physics-Guided Neural Networks (PGNN)

https://arxiv.org/pdf/2001.11086.pdf

Data science model:
fNN : D → Y

Physics-based model:
fPHY : D → Y

Hybrid physics-data model:
fHPD : X = [D, YPHY] → Y

Physics-based loss function:
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Main Ways of Composing “Neural” and “Symbolic”

• Symbolic programs used to compute variables which are then processed by a neural 
network


• Differentiable symbolic program layer in a larger end-to-end trainable neural network 
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Example: Convex Optimization and SAT Solver as a Layer

• SATNet introduces a layer that enables end-to-end learning of both the constraints 
and solutions within deep networks where neurons have logical constraints

Integrating
deep
learning
and
logic

Deep
Learning
No constraints on output

Differentiable
Solved via gradient optimizers

+
Logical
Inference

Rich constraints on output
Discrete input/output

Solved via tree search
Sudoku image: ”12 Jan 2006” by SudoFlickr is licensed under CC BY-SA 2.0 2

https://powei.tw/satnet_slide.pdf
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Main Ways of Composing “Neural” and “Symbolic”

• Symbolic programs used to compute variables which are then processed by a neural 
network


• Differentiable symbolic program layer in a larger end-to-end trainable neural network  


• Neural network called as a function by an outer symbolic program 
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Example: Object Detection

https://www.mathworks.com/discovery/object-detection.html



The End


