Random Walks on Graphs / Topics in Applied Stochastic Process : Assignment 1

Yogeshwaran D.

February 6, 2021

Submit solutions to Q1, Q6, Q7, Q8 on Moodle by 17th February 10:00 PM.

1. Let P, Q be $V \times V$ stochastic matrices for a finite set V. Let $P Q$ be the usual matrix multiplication i.e.,

$$
P Q(x, y)=\sum_{z \in V} P(x, z) Q(z, y)
$$

(a) Show that $P Q$ is also a stochastic matrix.
(b) If P, Q are reversible with respect to a measure μ and $P Q=Q P$, then $P Q$ is also reversible with respect to μ.
2. Compute the eigenvalues of the Laplacian for the path graph P_{n}, cycle graph C_{n}, complete graph K_{n} and the complete bi-partite graph $K_{m, n}$.
3. Show that $\lambda_{n-1}=2$ iff G is bi-partite.
4. Consider the hypercube graph on $V=\{-1,+1\}^{n}$ with the following weight function : $\mu(x, y)=\frac{1[x \sim y]}{n 2^{n+1}}, \mu(x, x)=\frac{1}{2^{n+1}}$. What is the Poincaré inequality for this graph?
5. Let $G=K_{k}^{n}$ i.e., the product of n complete graphs. What is the Poincaré inequality for this graph?
6. Consider the Dirichlet problem on a finite, connected and weighted graph (G, μ). Let $\Omega=V$. Show that for a given function $f: V \rightarrow \mathbb{R}$, if a solution u exists for the Dirichlet problem, then infinitely many solutions exist. Further, a solution exists for a given function $f: V \rightarrow \mathbb{R}$ iff $\sum_{x \in V} f(x) \mu(x)=0$.
7. Let $P_{i}, i=1,2$ be stochastic matrices on V_{i}. Consider the following matrix $P=P_{1} \otimes P_{2}$ on $V=V_{1} \times V_{2}$ defined as

$$
P((x, y),(z, w))=P_{1}(x, z) P_{2}(y, w)
$$

Find the eigenvalues and eigenfunctions of P in terms of the eigenvalues and eigenfunctions of P_{1} and P_{2}.
8. Let $X_{1}, \ldots, X_{n}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ be i.i.d. $\{-1,+1\}$ random variables such that $\mathbb{P}\left(X_{1}=1\right)=p=1-\mathbb{P}\left(X_{1}=-1\right)$ where $p \in(0,1)$. Show that for $f:\{-1,+1\}^{n} \rightarrow \mathbb{R}$, we have that
$\mathbb{V} \mathbb{R}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(f\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{i}^{\prime}, \ldots, X_{n}\right)\right)^{2}\right]$.
HINT : Construct a suitable reversible stochastic matrix on $V=\{-1,+1\}^{n}$.
9. Generalize the above problem to the case of X_{i} 's taking values in a finite set V with a pmf π such that $\pi(x)>0$ for all $x \in V$.

