Random Walks on Graphs : Assignment 5

Yogeshwaran D.

April 5, 2021

Submit solutions to Q4, Q7 and Q8 on Moodle by 15th April 10:00 PM.

For the following problems (G, μ) be a locally finite, connected weighted graph on a infinite vertex set V.

- 1. Show the following properties of effective resistance.
 - (a) If $A \subset A', B \subset B'$ with $A' \cap B' = \emptyset$ then $R_{eff}(A', B') \leq R_{eff}(A, B)$.
 - (b) Show that shorting (i.e., identifying x = y for an edge (x, y)) decreases effective resistance.
 - (c) Show that *cutting* (i.e., removing an edge (x, y)) increases effective resistance.
- 2. If A^c is finite and $A \cap B = \emptyset$, show that

$$C_{eff}(B,A) = \sum_{x \in B} \mu(x) \mathbb{P}_x(\tau_A < \tau_B^+)$$

- 3. Show that if $f \in H^2$, $g := (0 \lor g) \land 1$ then $g \in H^2$ and $\mathcal{E}(g) \leq \mathcal{E}(f)$.
- 4. Let $V = \mathbb{Z}^3$ be equipped with the canonical edges and natural weights. Let X_n be the random walk on it.
 - (a) Show that X_n is transient on \mathbb{Z}^3 .
 - (b) Let $n \ge 1$, $A = \mathbb{Z}^3 \setminus \{0\}$. Let $h_n, h : V \to [0, 1]$ be given by

$$h_n(x) = \mathbb{P}_x(T_0 \ge n) = \mathbb{P}_x(X_k \in A, 1 \le k \le n)$$

and

$$h(x) = \mathbb{P}_x(T_0 = \infty) = \mathbb{P}_x(X_n \in A, \text{ for all } n \ge 0).$$

- i. Show that $h_n = Q^n 1_A$ and h = Qh, where Q is the restriction of P onto A.
- ii. Suppose $\alpha = \sup_{x \in A} h(x)$, show that $0 < \alpha \le 1$ and $h \le \alpha 1_A$
- iii. Using (i) and (ii), conclude that $h \leq \alpha h_n$
- iv. Conclude that $\max_{x \in \partial A} h(x) \neq \sup_{x \in \overline{A}} h(x)$.
- 5. Consider \mathbb{Z}^d for $d \ge 1$ with natural weights and the random walk X_n on it. Let $A \subset \mathbb{Z}^d$.
 - (a) Let d = 1, a < 0 < b, A = (a, b) Show that $\mathbb{P}_0(\tau_{A^c} > n(b-a)) \le (1 \frac{1}{2^{b-a}})^n$.
 - (b) Let $\emptyset \neq A \subset \mathbb{Z}^d$ such that $|A| < \infty$. Then show that for any $x \in \mathbb{Z}^3$,

$$\mathbb{P}_x(\tau_{A^c} > n) \le c_1 \rho^n,$$

for some $c_1 > 0$ and $0 < \rho < 1$.

- 6. (a) Show that $\mathbb{Z}^d, \mathbb{R}^d, [0,1] \times \mathbb{R}^d$ are roughly isometric spaces.
 - (b) Let G be a finitely generated infinite group, and λ, Λ' be two sets of generators. Let Γ, Γ' be the associated Cayley graphs. Then Γ, Γ' are roughly isometric.

7. Let $\alpha > 0$. Consider the graph \mathbb{Z}_+ with weights $\mu^{\alpha}(n, n+1) = \alpha^n$.

- (a) Show the graph $(\mathbb{Z}_+, \mu^{\alpha})$ has controlled weights. Does it have bounded weights ?
- (b) Show that the graph is recurrent if and only if $\alpha \leq 1$.
- (c) For $\alpha \neq \beta$ are $(\mathbb{Z}_+, \mu^{\alpha})$ and $(\mathbb{Z}_+, \mu^{\beta})$ roughly isometric ?

- 8. Consider the graph G obtained by identifying the origins of \mathbb{Z}_+ and \mathbb{Z}^3 .
 - (a) Show that G is transient.
 - (b) Let $f_n: V \to \mathbb{R}$ be given by

$$f_n(x) = \begin{cases} 1 - \frac{k}{n} & \text{if } x = k \text{ for } k \le n \\ 0 & \text{otherwise} \end{cases}$$

Find f such that $f_n \to f$ in H^2 . Conclude that H^2 , H_0^2 and L^2 are all distinct spaces.

(c) Let $h: V \to \mathbb{R}$ be given by

$$h(x) = \begin{cases} \mathbb{P}_x(\tau_0 < \infty) & \text{ if } x \in \mathbb{Z}^3\\ 1 + 6p_0n & \text{ if } x = n \in \mathbb{Z}_+, \end{cases}$$

where $p_o = \mathbb{P}_0(\mathbb{R}.\mathbb{W} \text{ on } \mathbb{Z}^3 \text{ does not return to } 0)$. Show that h is non-constant positive harmonic function on G.

(d) Show that G satisfies the Liouville property.