Random Walks on Graphs : Assignment 6

Yogeshwaran D.

April 19, 2021

Submit solutions to Q3, Q4, Q5 and Q9 on Moodle by 27th April 10:00 PM.

For the following problems (G, μ) be a locally finite, connected weighted graph on a infinite vertex set V.

- 1. Show that finitely generated Cayley graphs on the same group V are roughly isometric.
- 2. Show the following
 - (a) \mathbb{Z}^d satisfies (I_d) .
 - (b) Any infinite connected graph satisfies (I_1) .
 - (c) Binary tree \mathbb{T}^2 satisfies (I_{∞}) with $C_0 = 3$.
 - (d) If $(I_{\alpha+\delta})$ holds then (I_{α}) holds.
- 3. Let G_i for i = 1, 2 be graphs, with natural weights, which satisfy (I_{α_i}) respectively. Show that the join of G_1 and G_2 satisfies $(I_{\alpha_1 \wedge \alpha_2})$. Show that if G_i satisfy (N_{α_i}) respectively, the join of G_1 and G_2 satisfies $(N_{\alpha_1 \wedge \alpha_2})$.
- 4. Let (G, μ) be a weighted graph. Let $\lambda > 0$ and $\mu^{\lambda} = \lambda \mu$. If (G, μ) satisfies (N_{α}) with constant C_N then (G, μ^{λ}) satisfies (N_{α}) with $\lambda^{\frac{2}{\alpha}} C_N$
- 5. Show that (I_{α}) is stable under bounded perturbations.
- 6. Show the co-area formula $\|\nabla f\|_1 = \int \mu(\Lambda_t(f), \Lambda_t(f)^c) dt$.
- 7. Show that (N_{α}) holds for all $f \in L^1 \cap L^2$ if it holds for all $f \geq 0$ and $f \in C_0(V)$.
- 8. Let (G, μ) satisfy (I_{α}) . If $\alpha \in [1, \infty)$ then $\mu(B(x, n)) \ge c_1(\alpha)n^{\alpha}$ for all $n \ge 1$. If $\alpha = \infty$, $\mu(B(x, n)) \ge (1 + C_0^{-1})^n \mu(x)$.
- 9. (a) Let $f \in H^2, a \in \mathbb{R}$. Set $g := (f a)_+, h = f \wedge a$. Then show that $g, h \in H^2$ and $\mathcal{E}(g) \leq \mathcal{E}(f), \mathcal{E}(h) \leq \mathcal{E}(f)$.
 - (b) Let $f_1, \ldots, f_n \in H^2$ and $g = \min\{f_1, \ldots, f_n\}$. Then show that

$$\mathcal{E}(g) \le \sum_{i=1}^n \mathcal{E}(f_i).$$

(c) Let $f \in H^2$. Then

$$\mathcal{E}(f_+) + \mathcal{E}(f_-) \le \mathcal{E}(f) \le 2\mathcal{E}(f_+) + 2\mathcal{E}(f_-).$$