Random Walks on Graphs : Assignment 7

Yogeshwaran D.

April 29, 2021

Submit solutions to Q1 Q2, Q3 and Q7 on Moodle by 13th May 10:00 PM.

For the following problems (G, μ) be a locally finite, connected weighted graph on a infinite vertex set V.

- 1. Show that the lamplighter graph on \mathbb{Z} , $LL(\mathbb{Z})$ has exponential growth but is amenable.
- 2. Show that join of \mathbb{Z}^2 with a binary tree \mathbb{T}_2 is amenable but ballistic.
- 3. Consider, B the join of two copies of \mathbb{Z}^3 at the origin with natural weights. Let $f: V \to \mathbb{R}$ be such that it is 1 on one copy and -1 on the other copy. Using f show that the weak Poincare inequality does not hold on G.
- 4. Let (G, μ) be a weighted graph. Let $f \in L^2(V)$. Then for any $n \ge 0$,

$$0 \le \|P^{n+1}f\|_2^2 - \|P^{n+2}f\|_2^2 \le \|P^nf\|_2^2 - \|P^{n+1}f\|_2^2$$

5. Let (G, μ) be a weighted graph. Let $f \in L^2(V)$. Then for any $n \ge 0$,

$$||f||_2^2 - ||P^n f||_2^2 \le 2n\mathcal{E}(f, f)$$

6. Suppose G is \mathbb{Z}^d equipped with weights $\mu(x, y)$ such that $\mu(x, y) \geq \frac{c_1}{d}$ for some $c_1 > 0$. Let the heat kernel of the random walk on G be denoted by $p_n(x, y)$. Then show that

$$p_n(x,y) \le c_2 n^{-\frac{d}{2}},$$

for some $c_2 > 0$.

7. Let G be two copies of \mathbb{Z}^d joined at the origin. Let the transition kernel of the random walk on G be denoted by $p_n(x, y)$. Then show that

$$p_n(x,y) \le c_2 n^{-\frac{d}{2}},$$

for some $c_2 > 0$.

8. Let G be a vertex transitive graph with natural weights with o denoting an arbitrary vertex. Assume that $|B(o,n)| \leq Ae^{Cn^{\alpha}}$ for $A, C \in (0, \infty)$ and $0 < \alpha \leq 1$. Show that \mathbb{P}_o a.s.,

$$\limsup \frac{d(o, X_n)}{n^{1/(2-\alpha)}} \le (2C)^{1/(2-\alpha)}.$$

9. Let G be a vertex transitive graph with natural weights. Assume that $|B(o,n)| \leq Cn^2$ for some $C < \infty$. Show that the simple random walk on G is recurrent.