
Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Database Management Systems
Transaction Processing

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
and

Centre for Artificial Intelligence and Machine Learning
Indian Statistical Institute, Kolkata

June, 2021

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

1 Transaction Life Cycle

2 Concurrent Execution of Transactions

3 Serializability
Conflict Serializability
View Serializability
Testing for Serializability

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Basics

What is a transaction?
A unit of program execution that accesses and possibly updates
various data items.

The properties (briefed as ACID) of a transaction maintained
by the database system to ensure integrity of the data:

Atomicity: None or all operations of the transaction are reflected properly
in the database.

Consistency: The database consistency is preserved by the execution of a
transaction with no other transaction executing concurrently.

Isolation: If multiple transactions execute concurrently, the system
guarantees that for every transaction pair it appears one of them starts
execution after the other finishes.

Durability: Changes in database after the successful completion of a
transaction are retained, even if there are system failures.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

An example

Suppose, 10 PCs are transferred from the PC attribute of the
relation ISI to relation IISc.

The transaction (consisting of six instructions) required for the
above operation is as follows:

I read(ISIPC )

II ISIPC ← ISIPC - 10

III write(ISIPC )

IV read(IIScPC )

V IIScPC ← IIScPC + 10

VI write(IIScPC )

Note: We have to deal with system failures and manage
concurrent execution of multiple instructions.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

An example

Let us see how the ACID properties are managed:

Atomicity: If the system fails at the steps 4-5 then this partial
execution will not be incorporated.

Consistency: If at any step the system fails then also the sum
of ISIPC and IIScPC should be same.

Isolation: If any other transaction working on ISI and IISc
appears, while executing the steps 3-6, it will wait until the
current transaction completes.

Durability: Once the steps 1-6 are executed the database
changes will persist.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Transaction life cycle

State transition diagram

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Why concurrent execution of transactions?

Increased processor and disk utilization

Better transaction throughput

Reduced waiting time

Reduced average response time for transactions – short
transactions will not wait behind longer ones

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Scheduling of transactions

A schedule is a sequence of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

Some properties of scheduling:

A schedule for a set of transactions should comprise all
instructions of those transactions

A schedule should retain the order in which the instructions
appear in each individual transaction

A transaction completing successful execution should have a
commit instruction as the last statement

A transaction that fails to successfully complete its execution
should have an abort instruction as the last statement

Note: The number of possible schedules for a set of n transactions
is much larger than n!.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Importance of a schedule

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Scheduling of transactions – Example 1

Serial schedule T1 is followed by T2:

Transaction T1 Transaction T2 ISIPC=20, IIScPC=40
IN01 read(ISIPC )
IN02 T ← ISIPC * 0.05 T=1
IN03 ISIPC ← ISIPC - T
IN04 write(ISIPC ) ISIPC=19, IIScPC=40
IN05 read(IIScPC )
IN06 IIScPC ← IIScPC + T
IN07 write(IIScPC ) ISIPC=19, IIScPC=41
IN08 commit ISIPC=19, IIScPC=41
IN09 read(ISIPC )
IN10 ISIPC ← ISIPC - 10
IN11 write(ISIPC ) ISIPC=9, IIScPC=41
IN12 read(IIScPC )
IN13 IIScPC ← IIScPC + 10
IN14 write(IIScPC ) ISIPC=9, IIScPC=51
IN15 commit ISIPC=9, IIScPC=51

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Scheduling of transactions – Example 2

Serial schedule T2 is followed by T1:

Transaction T1 Transaction T2 ISIPC=20, IIScPC=40
IN01 read(ISIPC )
IN02 ISIPC ← ISIPC - 10
IN03 write(ISIPC ) ISIPC=10, IIScPC=40
IN04 read(IIScPC )
IN05 IIScPC ← IIScPC + 10
IN06 write(IIScPC ) ISIPC=10, IIScPC=50
IN07 commit ISIPC=10, IIScPC=50
IN08 read(ISIPC )
IN09 T ← ISIPC * 0.05 T=0.5
IN10 ISIPC ← ISIPC - T
IN11 write(ISIPC ) ISIPC=9.5, IIScPC=50
IN12 read(IIScPC )
IN13 IIScPC ← IIScPC + T
IN14 write(IIScPC ) ISIPC=9.5, IIScPC=50.5
IN15 commit ISIPC=9.5, IIScPC=50.5

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Scheduling of transactions – Example 3

Not a serial schedule but equivalent to T2 is followed by T1:

Transaction T1 Transaction T2 ISIPC=20, IIScPC=40
IN01 read(ISIPC )
IN02 ISIPC ← ISIPC - 10
IN03 write(ISIPC ) ISIPC=10, IIScPC=40
IN04 read(ISIPC )
IN05 T ← ISIPC * 0.05 T=0.5
IN06 ISIPC ← ISIPC - T
IN07 write(ISIPC ) ISIPC=9.5, IIScPC=40
IN08 read(IIScPC )
IN09 IIScPC ← IIScPC + 10
IN10 write(IIScPC ) ISIPC=9.5, IIScPC=50
IN11 commit ISIPC=9.5, IIScPC=50
IN12 read(IIScPC )
IN13 IIScPC ← IIScPC + T
IN14 write(IIScPC ) ISIPC=9.5, IIScPC=50.5
IN15 commit ISIPC=9.5, IIScPC=50.5

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Scheduling of transactions – Example 4

Not a serial schedule and also inconsistent:

Transaction T1 Transaction T2 ISIPC=20, IIScPC=40
IN01 read(ISIPC )
IN02 ISIPC ← ISIPC - 10
IN03 read(ISIPC )
IN04 T ← ISIPC * 0.05 T=1
IN05 ISIPC ← ISIPC - T
IN06 write(ISIPC ) ISIPC=19, IIScPC=40
IN07 read(IIScPC )
IN08 write(ISIPC ) ISIPC=19, IIScPC=40
IN09 read(IIScPC )
IN10 IIScPC ← IIScPC + 10
IN11 write(IIScPC ) ISIPC=19, IIScPC=50
IN12 commit ISIPC=19, IIScPC=50
IN13 IIScPC ← IIScPC + T
IN14 write(IIScPC ) ISIPC=19, IIScPC=51
IN15 commit ISIPC=19, IIScPC=51

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Serializability

Assumption: Each transaction preserves database consistency.

So, the serial execution of a set of transactions should preserve the
database consistency.

A schedule is serializable if it is equivalent to a serial schedule

Different forms of schedule equivalence give rise to the notions of –
conflict serializability and view serializability. For
both the cases our main concern is the read/write operation.

Note: We consider only read() and write() instructions to verify
serializability.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Conflict serializability

Definition (Conflict)

Instructions Ii and Ij of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both Ii and Ij
and at least one of them is a write instruction.

Definition (Conflict equivalent)

If a schedule S can be transformed into a schedule S ′ by a series of
swaps of non-conflicting instructions, we say that S and S ′ are
conflict equivalent.

Definition (Conflict serializable)

A schedule S is conflict serializable if it is conflict equivalent to a
serial schedule.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Understanding conflict equivalence

Transaction T1 Transaction T2

↑ read(ISIPC )
Block1 ISIPC ← ISIPC - 10

↓ write(ISIPC )
↑ read(ISIPC )

Block2 T ← ISIPC * 0.05
. ISIPC ← ISIPC - T
↓ write(ISIPC )
↑ read(IIScPC )

Block3 IIScPC ← IIScPC + 10
. write(IIScPC )
↓ commit
↑ read(IIScPC )

Block4 IIScPC ← IIScPC + T
. write(IIScPC )
↓ commit

Consider swapping the instructions between the Blocks 2 and 3.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Conflict serializability – Example 1

Transaction T1 Transaction T2

read(ISIPC )
write(ISIPC )

read(ISIPC )
write(ISIPC )

read(IIScPC )
write(IIScPC )

read(IIScPC )
write(IIScPC )

The above schedule is conflict serializable because it is equivalent
to the following serial schedule.

Transaction T1 Transaction T2

read(ISIPC )
write(ISIPC )
read(IIScPC )
write(IIScPC )

read(ISIPC )
write(ISIPC )
read(IIScPC )
write(IIScPC )

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Conflict serializability – Example 1

Transaction T1 Transaction T2

read(ISIPC )
write(ISIPC )

read(ISIPC )
write(ISIPC )

read(IIScPC )
write(IIScPC )

read(IIScPC )
write(IIScPC )

The above schedule is conflict serializable because it is equivalent
to the following serial schedule.

Transaction T1 Transaction T2

read(ISIPC )
write(ISIPC )
read(IIScPC )
write(IIScPC )

read(ISIPC )
write(ISIPC )
read(IIScPC )
write(IIScPC )

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Conflict serializability – Example 2

The following schedule is not conflict serializable because it is not
equivalent to any serial schedule. Note that, the conflicting
instructions write(ISIPC ) in both the transactions can not be
swapped.

Transaction T1 Transaction T2

read(ISIPC )
write(ISIPC )

write(ISIPC )

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

View serializability

Definition (View equivalent)

Let S and S ′ be two schedules with the same set of transactions.
S and S ′ are view equivalent if the following three conditions are
met, for each data item Q:

If in schedule S , transaction Ti reads the initial value of Q,
then in schedule S ′ also transaction Ti must read the initial
value of Q.

If in schedule S transaction Ti executes read(Q), and that
value was produced by transaction Tj , then in schedule S ′

also transaction Ti must read the value of Q that was
produced by the same write(Q) operation of transaction Tj .

The transaction (if any) that performs the final write(Q)
operation in schedule S must also perform the final write(Q)
operation in schedule S ′.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

View serializability

Definition (View serializable)

A schedule S is view serializable if it is view equivalent to a serial
schedule.

Note: A conflict serializable schedule is always view serializable
but not the vice versa.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

View serializability – An example

Transaction T1 Transaction T2 Transaction T3

read(ISIPC )
write(ISIPC )

write(ISIPC )
write(ISIPC )

The above schedule is view serializable because it is equivalent to
the following serial schedule.

Transaction T1 Transaction T2 Transaction T3

read(ISIPC )
write(ISIPC )

write(ISIPC )
write(ISIPC )

Note: The top schedule is not conflict serializable because the
conflicting instructions write(ISIPC ) both in T1 and T2 cannot be
swapped to obtain a serial schedule.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

View serializability – An example

Transaction T1 Transaction T2 Transaction T3

read(ISIPC )
write(ISIPC )

write(ISIPC )
write(ISIPC )

The above schedule is view serializable because it is equivalent to
the following serial schedule.

Transaction T1 Transaction T2 Transaction T3

read(ISIPC )
write(ISIPC )

write(ISIPC )
write(ISIPC )

Note: The top schedule is not conflict serializable because the
conflicting instructions write(ISIPC ) both in T1 and T2 cannot be
swapped to obtain a serial schedule.

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Testing for conflict serializability

We can test conflict serializability through constructing precedence
graphs.

Definition (Precedence graph)

Given a schedule S , a precedence graph is defined as a directed
graph G = (V ,E ), where the set of vertices V consists of all the
transactions participating in S and E consists of all the edges
Ti → Tj for which one of three conditions holds in S :

1 Ti executes write(Q) before Tj executes read(Q).

2 Ti executes read(Q) before Tj executes write(Q).

3 Ti executes write(Q) before Tj executes write(Q).

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Testing for conflict serializability

The precedence graph for a conflict serializable schedule is always
acyclic.

The following graph corresponds to a conflict serializable schedule
because it is acyclic. Notably, T1→ T2→ T3 is not a cycle.

Note: A directed graph is acyclic if it has no cycle (a sequence of
non-repeating directed edges except for the first and last one).

Malay Bhattacharyya Database Management Systems



Outline Transaction Life Cycle Concurrent Execution of Transactions Serializability

Testing for conflict serializability

In general, cycle-detection algorithms incur O(n2) time, where n is
the order of the graph. However, there exists better algorithms
incurring O(n + e) time, where e denotes the size of the graph.

From an acyclic precedence graph, the serializability order can be
obtained by a topological sorting of the graph.

Malay Bhattacharyya Database Management Systems


	Outline
	Transaction Life Cycle
	Concurrent Execution of Transactions
	Serializability
	Conflict Serializability
	View Serializability
	Testing for Serializability


