
Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Database Management Systems
MySQL - Integrity Control

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
and

Centre for Artificial Intelligence and Machine Learning
Indian Statistical Institute, Kolkata

June, 2021

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

1 Integrity Control

2 Basic Integrity Preservation
Fundamentals
Primary Key
Foreign Key
Nullity Check
General Check

3 Advanced Integrity Preservation
Basics
Creating Triggers
Creating Multiple Triggers
Limitations

4 Cursors

5 Problems

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basics

The term integrity in databases refers to the accuracy and
consistency of data. The integrity control can set the following
types of constraints on the data items:

Basic integrity constraints

Advanced integrity constraints

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints

The basic integrity constraints are of following four types:

Defining the primary key constraint
– specified as primary key (A1, . . . ,Ak)

Defining the foreign key constraint
– specified as foreign key (Ap, . . . ,Aq) references

R(Bp, . . . ,Bq)

Defining the null constraint
– specified as not null

Defining the check constraint
– specified as check <predicate>

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Consider a relational schema

BRANCH = 〈branch id : integer , branch name :
string , branch city : string , assets : real〉
CUSTOMER = 〈customer id : integer , customer name :
string , customer street : string , customer city :
string , account number : integer〉
LOAN =
〈loan number : integer , branch name : string , amount : real〉
BORROWER =
〈customer name : string , loan number : integer〉
ACCOUNT = 〈account number : integer , branch name :
string , balance : real〉
DEPOSITOR =
〈customer name : string , account number : integer〉

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints – primary key

The table BRANCH can be created with the following SQL query:

create table BRANCH(

branch id int(10) not null,

branch name varchar(30),

branch city varchar(30),

assets float(20,2),

primary key (branch id)

);

Note: Multiple attributes can be defined (by putting them
together as arguments separated by comma) as the primary key.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints – foreign key

The table CUSTOMER can be created with the following SQL query:

create table CUSTOMER(

customer id int(20) not null,

customer name varchar(30),

customer street varchar(30),

customer city varchar(30),

account number int(20),

primary key (customer id),

foreign key (account number) references

Account(account number)

);

Note: The attribute serving as the foreign key in one table might
have a different name in the referenced table.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints – foreign key

The table CUSTOMER can be created with the following SQL query:

create table CUSTOMER(

customer id int(20) not null,

customer name varchar(30),

customer street varchar(30),

customer city varchar(30),

account number int(20),

primary key (customer id),

foreign key (account number) references

Account(account number)

);

Note: The attribute serving as the foreign key in one table might
have a different name in the referenced table.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints – null

The table LOAN can be created with the following SQL query:

create table LOAN(

loan number int(10) not null,

branch name varchar(30),

amount float(15,2)

);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basic integrity constraints – check

It can be ensured that a predicate on the attributes (say the
amount is non-negative) must be satisfied by every tuple in the
table LOAN by writing an SQL query as follows:

create table LOAN(

loan number int(10) not null,

branch name varchar(30),

amount float(15,2),

check (amount >= 0)

);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Advanced integrity constraints

The advanced integrity constraints can be specified with triggers.
It protects the integrity of data in databases and is also useful to
automate some database operations such as logging, auditing, etc.

A trigger (or database trigger) is a stored program that executes
automatically in response to a specific event. E.g., insert, update
or delete occurred in a table.

Note: An SQL trigger is a set of SQL statements that are stored
in the database catalog.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Triggers in MySQL

One can define at most six triggers for each table. These are
activated in coordination with the following events.

BEFORE INSERT — before data is inserted into the table.

AFTER INSERT — after data is inserted into the table.

BEFORE UPDATE -– before data in the table is updated.

AFTER UPDATE — after data in the table is updated.

BEFORE DELETE -– before data is removed from the table.

AFTER DELETE — after data is removed from the table.

Note: For MySQL version 5.7.2+, one can define multiple triggers
for the same trigger event and action time.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Triggers in MySQL

To display all the triggers in the database, the following SQL query
is used:

show triggers;

To delete a particular trigger from the database, the following SQL
query is used:

drop trigger <trigger name>;

Note: One must have MySQL SUPERUSER privileges for running
trigger.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL

A trigger must be associated with a specific table and is written as:

create trigger <trigger name>

<trigger time> <trigger event> on <table name>

for each row

<Triggered SQL statement>;

The trigger time can be before/after.

The trigger event can be insert/update/delete.

The clause for each row says that the trigger activation will
occur for the rows of the table, not for the table as a whole.

The logic for the trigger is placed as a block of SQL
statements.

Note: Delimiters are required in some interfaces (e.g. MySQL
client).

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Compound statements

A trigger can accommodate compound SQL statements as follows:

create trigger <trigger name>

<trigger time> <trigger event> on <table name>

for each row

begin

<Triggered SQL statement(s)>

end;

Note: The begin-end block can take multiple SQL statements.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Due to the changes in a table due to triggering, there might be
some new attributes as well as some old ones. Therefore, within a
triggered SQL statement, attributes are explicitly referred to as
NEW.<attribute name> or OLD.<attribute name>.

With insert, only NEW is legal.

With delete, only OLD is legal.

With update, both NEW and OLD are legal.

Note: The objects NEW.<attribute name> and
OLD.<attribute name> are referred to as transition variables.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Table: FACULTY

ID NAME EMAIL AGE

1 Ansuman Banerjee ansuman@isical.ac.in 44

2 Sourav Chakraborty sourav@isical.ac.in 40

3 Malay Bhattacharyya malaybhattacharyya@isical.ac.in 38

Consider the following table to keep the update details on the
FACULTY table.

create table FACULTY LOG(

ID int auto increment primary key,

NAME varchar(50) not null,

LOGTIME datetime default null,

ACTION varchar(50) default null

);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Table: FACULTY

ID NAME EMAIL AGE

1 Ansuman Banerjee ansuman@isical.ac.in 44

2 Sourav Chakraborty sourav@isical.ac.in 40

3 Malay Bhattacharyya malaybhattacharyya@isical.ac.in 38

Consider the following table to keep the update details on the
FACULTY table.

create table FACULTY LOG(

ID int auto increment primary key,

NAME varchar(50) not null,

LOGTIME datetime default null,

ACTION varchar(50) default null

);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Triggers can be set to act on the FACULTY LOG table before
making updates on the FACULTY table as follows.

create trigger before FACULTY update

before update on FACULTY

for each row

insert into FACULTY LOG values (OLD.ID, OLD.NAME,

NOW(), ‘Update’);

Note: We use the OLD keyword to access ID and NAME attributes
of the tuples affected by the trigger.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Consider the following SQL query that makes an update operation
on the FACULTY table at 00:00:01 AM on February 02, 2022.

update FACULTY set AGE = 39 where NAME = "Malay

Bhattacharyya";

This will make the following entry to the FACULTY LOG table:

Table: FACULTY LOG

ID NAME LOGTIME ACTION

3 Malay Bhattacharyya 2022-02-02 00:00:01 Update

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – OLD and NEW keywords

Consider the following SQL query that makes an update operation
on the FACULTY table at 00:00:01 AM on February 02, 2022.

update FACULTY set AGE = 39 where NAME = "Malay

Bhattacharyya";

This will make the following entry to the FACULTY LOG table:

Table: FACULTY LOG

ID NAME LOGTIME ACTION

3 Malay Bhattacharyya 2022-02-02 00:00:01 Update

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Variable declaration

Variables can be declared as follows.

declare Age, Experience int default 0;

declare Name varchar(50);

declare Today date default current date;

declare Var1, Var2, Var3 double(10,2);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Variable assignment

Values can be assigned to variables as follows.

set var1 = 101;

set str1 = ‘Hello world’;

set v1 = 19.99;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Handler declarations

The handler statements deal with one or more conditions. If one of
these conditions occurs, the specified statement executes. To
declare handlers, the following SQL query is used:

declare <handler action> handler for <condition value>

<statement>;

The <handler action> can be continue/exit/undo.

The <condition value> can be
mysql error code/sqlstate/sqlwarning/sqlexception/not

found.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Conditional flow

The if-else construct works as follows.

if <condition> then

<statement>;

else

<statement>;

end if;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Conditional flow

Consider the following table that stores names, ages and course
names of some students.

create table STUDENT(

AGE int,

NAME varchar(50),

COURSE varchar(50)

);

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Conditional flow

Triggers can be set to act on the Age attribute for non-negativity
check before making insertions in the STUDENT table as follows.

create trigger agecheck

before insert on STUDENT

for each row

begin

if NEW.AGE < 0 then

set NEW.AGE = abs(NEW.AGE);

end if

end;

Note: We use the NEW keyword to access the new values inserted
in the table.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Conditional flow

Consider the following SQL query:

insert into STUDENT values (23, ‘Sujan’, ‘MTech’),

(22, ‘Vikas’, ‘MTech’), (-24, ‘Ravindra’, ‘MTech’),

(23, ‘Uddalok’, ‘MTech’);

This will turn the STUDENT table as follows.

Table: STUDENT

AGE NAME COURSE

23 Sujan MTech

22 Vikas MTech

24 Ravindra MTech

23 Uddalok MTech

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Repetitive flow

The loop construct works as follows.

<loop name>: loop

<statement>;

if <condition> then

<statement>;

leave <loop name>;

end if;

<statement>

end loop <loop name>;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Repetitive flow

The while construct works as follows.

<loop name>: while <condition> do

<statement>

if <condition> then

leave <loop name>;

end if;

<statement>

end while;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating triggers in MySQL – Repetitive flow

The repeat-until construct works as follows.

<loop name>: repeat

<statement>;

if <condition> then

<statement>;

leave <loop name>;

end if;

<statement>;

until <condition> end repeat;

Note: The repetitive block executes once irrespective of the
<condition>.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating multiple triggers in MySQL

Multiple triggers are written as follows:

delimiter $$ -- The end delimiter is now ‘$$’
create trigger <trigger name>

<trigger time> <trigger event> on <table name>

for each row

<Triggered SQL statement> -- Works well with ‘;’

create trigger <trigger name>

<trigger time> <trigger event> on <table name>

for each row

begin

<Triggered SQL statement(s)> -- Works well with ‘;’

end;

$$
delimiter ; -- The delimiter is changed back to ‘;’

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Limitations of triggers in MySQL

A MySQL trigger cannot perform the following things:

Using SHOW, LOAD DATA, LOAD TABLE, BACKUP

DATABASE, RESTORE, FLUSH, RETURN statements.

Using statements that commit or rollback implicitly or
explicitly such as COMMIT, ROLLBACK, START

TRANSACTION, LOCK/UNLOCK TABLES, ALTER, CREATE,

DROP, RENAME.

Using prepared statements such as PREPARE, EXECUTE.

Using dynamic SQL statements.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basics of cursors

A cursor allows to iterate a set of rows returned by a query and
process each row accordingly. It is used to handle a result set
inside a stored procedure.

MySQL cursors have the following properties:

Read-only: Cursors cannot be used to update data in the
underlying table.
Non-scrollable: Rows can only be fetched in the order
determined by the select statement. One cannot skip rows or
jump to a specific row in the result set.
Asensitive: MySQL cursors are asensitive. It is often faster
because it does not need to make a temporary copy of data.

Note: Cursors are of two types – asensitive and insensitive. An
asensitive cursor points to the actual data, whereas an insensitive
cursor uses a temporary copy of the data. It is safer not to update
the data used by an asensitive cursor.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Basics of cursors

A cursor allows to iterate a set of rows returned by a query and
process each row accordingly. It is used to handle a result set
inside a stored procedure.

MySQL cursors have the following properties:

Read-only: Cursors cannot be used to update data in the
underlying table.
Non-scrollable: Rows can only be fetched in the order
determined by the select statement. One cannot skip rows or
jump to a specific row in the result set.
Asensitive: MySQL cursors are asensitive. It is often faster
because it does not need to make a temporary copy of data.

Note: Cursors are of two types – asensitive and insensitive. An
asensitive cursor points to the actual data, whereas an insensitive
cursor uses a temporary copy of the data. It is safer not to update
the data used by an asensitive cursor.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Creating cursors

To define a cursor, the following SQL query is used:

declare <cursor name> cursor for <select statement>;

To initialize the result set for the cursor, before fetching rows from
the result set, the following SQL query is used:

open <cursor name>;

To retrieve the next row pointed by the cursor and move the cursor
to the next row in the result set, the following SQL query is used:

fetch <cursor name> into <list variables>;

To close a cursor, the following SQL query is used:

close <cursor name>;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Data handling with cursors

The entire life cycle of an MySQL cursor is illustrated in the
following diagram.

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Data handling with cursors – An example

Suppose we want to build an email list of all employees from the
FACULTY table.

Let us first declare some variables, a cursor for looping over the
emails of employees, and a NOT FOUND handler.

declare Var Done int default 0;

declare email varchar(500) default "";

declare email cursor cursor for select email from

FACULTY;

declare continue handler for not found set Var Done =

1;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Data handling with cursors – An example

Now, open the email cursor as follows:

open email cursor;

Then, iterate the email list, and concatenate all the emails where
each email is separated by a semicolon as follows:

get email: loop

fetch email cursor into email;

if Var Done = 1 then

leave get email;

end if;

set email list = concat(email,";",email list);

end loop get email;

Malay Bhattacharyya Database Management Systems



Outline Integrity Control Basic Integrity Preservation Advanced Integrity Preservation Cursors Problems

Problems

1 Consider the following schema of an online code repository
system like GitHub:

Contributor =
〈contributor name : string , contributor id : integer〉
Code-Group = 〈contributor id : integer , code group :
string , count submissions : integer〉

i) Set the basic integrity constraints on this schema.
ii) Write an SQL trigger to restrict all the possible events that

can make violations to the above schema.

Malay Bhattacharyya Database Management Systems


	Outline
	Integrity Control
	Basic Integrity Preservation
	Fundamentals
	Primary Key
	Foreign Key
	Nullity Check
	General Check

	Advanced Integrity Preservation
	Basics
	Creating Triggers
	Creating Multiple Triggers
	Limitations

	Cursors
	Problems

