IEOR 8100: Reinforcement learning

Lecture 1: Introduction

1 Introduction to reinforcement learning

What is reinforcement learning?

Reinforcement learning is characterized by an agent continuously interacting and learning from a stochastic
environment. Imagine a robot moving around in the world, and wants to go from point A to B. To do so, it
tries different ways of moving its legs, learns from its successesful motion as well as from its falls and finally finds
the most effective way to walk. Reinforcement learning is a branch of artificial intelligence that formalizes this
trial-and-error method of learning.

It is essentially the science of making sequential decisions. How should the robot move its limbs so that it can
eventually learn to walk and reach point B quickly? More generally, "how” should the agent interact with the
environment, what actions should it take now, so that it is able to learn more about the environment and is more
successful in future.

Reinforcement learning sits at the intersection of many disciplines of science, namely:

¢ Optimal control (Engineering)

¢ Dynamic Programming (Operations Research)
¢ Reward systems (Neuro-science)

¢ Classical /Operant Conditioning (Psychology)

In all these different fields there is a branch that is trying to study the same problem as reinforcement learning
essentially the problem of how to make optimal sequential decisions. In engineering it is the problem of finding
optimal control, in Operations research it is studied under Dynamic programming. The algorithmic principles
behind reinforcement learning are motivated from the natural phenomena behind human decision making in simple
words that "rewards provide a positive reinforcement for an action”: this phenomena is studied in psychology as
conditioning and in neuroscience as reward systems.

Key characteristics

Now, lets look at a few things that make reinforcement learning different from other paradigms of optimization,
and other machine learning methods like supervised learning.

¢ Lack of a "supervisor”: One of the main characteristic of RL is that there is no supervisor no labels
telling us the best action to take, only reward signals to enforce some actions more than others. For example,
for a robot trying to walk, there is no supervisor telling the robot if the actions it took were a good way to
walk, but it does get some signals if form of the effect of its actions - moving forward or falling down which
it can use to guide its behavior.

¢ Delayed feedback: Other major distinction is that the feedback is often delayed: the effect of an action
may not be entirely visible instantaneously, but it may severely effect the reward signal many steps later. In
the robot example, an aggressive leg movement may look good right now as it may seem to make the robot go
quickly towards the target, but a sequence of limb movements later you may realize that aggressive movement
made the robot fall. This makes it difficult to attribute credit and reinforce a good move whose effect may
be seen only many steps and many moves later. This is also referred to as the ”credit assignment problem”.

Sequential decisions: Time really matters in RL, the ”sequence” in which you make your decisions (moves)
will decide the path you take and hence the final outcome.

Actions effect observations: And, finally you can see from these examples that the observations or feedback
that an agent makes during the course of learning are not really independent, in fact they are a function of
the agents’ own actions, which the agent may decide based on its past observations. This is very unlike other
paradigms like supervised learning, where the training examples are often assumed to be independent of each
other, or at least independent of learning agents actions.

These are some key characteristics of reinforcement learning which differentiate it from the other branches of
learning, and also make it a powerful model of learning for a variety of application domains.

Examples

Lets concretize this discussion with some examples, we already discussed the example of a robot trying to walk.
Here are a few others:

2

Automated vehicle control: Imagine trying to fly an unmanned helicopter, learning to perform stunts
with it. Again, no one will tell you if a particular way of moving the helicopter was good or not, you may get
signals in form of how the helicopter is looking in the air, that it is not crashing, and in the end you might
get a reward for example a high reward for a good stunt, negative reward for crashing. Using these signals
and reward, a reinforcement learning agent would learn a sequence of maneuvers just by trial and error.

Learning to play games: Some of the most famous successes of reinforcement learning have been in
playing games. You might have heard about Gerald Tesauro’s reinforcement learning agent defeating world
Backgammon Champion, or Deepmind’s Alpha Go defeating the world’s best Go player Lee Sedol, using
reinforcement learning. A team at Google Deepmind built an RL system that can learn to play suite of Atari
games from scratch by just by playing the game again and again, trying out different strategies and learning
from their own mistakes and successes. This RL agent uses just the pixels of game screen as state and score
increase as reward, and is not even aware of the rules of the game to begin with!

Medical treatment planning: A slightly different but important application is in medical treatment
planning, here the problem is to learn a sequence of treatments for a patient based on the reactions to the
past treatments, and current state of the patient. Again, while you observe reward signals in the form of the
immediate effect of a treatment on patients condition, the final reward is whether the patient could be cured
or note, and that can be only observed in the end. The trials are very expensive in this case, and need to be
carefully performed to achieve most efficient learning possible.

Chatbots: Another popular application is chatbots: you might have heard of Microsoft’s chatbots Tay and
Zo, or intelligent personal assistants like Siri, Google Now, Cortana, and Alexa. All these agents try to make
a conversation with a human user. What are conversations? They are essentially a sequence of sentences
exchanged between two people. Again, a bot trying to make a conversation may receive encouraging signals
periodically if it is making a good conversation or negative signals some times in the form of human user
leaving the conversation or getting annoyed. A reinforcement learning agent can use these feedback signals
to learn how to make good conversations just by trial and error, and after many many conversations, you
may have a chatbot which has learned the right thing to say at the right moment!

Introduction to MDP: the optimization/decision model behind RL

Markov decision processes or MDPs are the stochastic decision making model underlying the reinforcement learning
problem. Reinforcement learning is essentially the problem when this underlying model is either unknown or too
difficult (large) to solve in order to find an optimal strategy in advance. Therefore, instead the reinforcement
learning agent learns and optimizes the model through execution and simulation, continuously using feedback from
the past decisions to learn the underlying model and reinforce good strategies. But, more on that later, first lets
understand what is a Markov decision process.

dependent policy same performance can be achieved by a Markovian policy). Therefore, in this text, policy refers
to a Markovian policy.

A deterministic policy 7 : § — A is mapping from any given state to an action. A randomized policy 7 : § — A4
is a mapping from any given state to a distribution over actions. Following a policy n; at time ¢ means that if
the current state s, = s, the agent takes action a; = m(s) (or a; ~ w(s) for randomized policy). Following a
stationary policy m means that 7 = 7 for all rounds ¢t =1,2, ...

Any stationary policy 7 defines a Markov chain, or rather a ‘Markov reward process’ (MRP), that is, a Markov
chain with reward associated with every transition. The transition probability vector and reward for this MRP in
state s is given by Pr(s’|s) = PT,E[r|s] = T, where P7 is an S x S matrix, and ™ is an S-dimensional vector
defined as:

T —
Pl =

E““”(s)[P(&Ch 8/)]7Vs7 =
- an,ﬁ(s)[R(& a)]

5

The stationary distribution (if exists) of this Markov chain when starting from state sy is also referred to as the
stationary distribution of the policy 7, denoted by d™:

d™(s) = tlggo Pr(s; = s|sy,w)

Goals. The tradeoffs between immediate reward vs. future rewards of the sequential decisions and the need for
planning ahead is captured by the goal of the Markov Decision Process. At a high level, the goal is to maximize
some form of cumulative reward. Some popular forms are total reward, average reward, or discounted sum of
rewards.

¢ finite horizon MDP: Here, actions are taken for ¢ = 1,..., H where H is a finite horizon. The total
(discounted) reward criterion is simply to maximize the expected total (discounted) rewards in an episode
of length H. (In reinforcement learning context, when this goal is used, the MDP is often referred to as an
episodic MDP.) For discount 0 < v < 1, the goal is to maximize

H

E[Z Y s4]

t=1
e Infinite horizon MDP:

— Expected total discounted reward criteria: The most popular form of cumulative reward is expected
discounted sum of rewards. This is an asymptotic weighted sum of rewards, where with time the weights
decrease by a factor of v < 1. This essentially means that the immediate returns more valuable than

those far in the future.
T

. t—1
Jm E[Y " b si]

t=1
— Expected total reward criteria: Here, the goal is to maximize

T

lim E[> ryfs]

T—o0
t=1

The limit may not always exist or be bounded. We are only interested in cases where above exists and is
finite. This requires restrictions on reward and/or transition models. Interesting cases include the case
where there is an undesirable state, the reward after reaching that state is 0. For example, end of of a
computer game. The goal would be to maximize the time to reach this state. (A minimization version
of this model is where there is a cost associated with each state and the game is to minimize the time
to reach winning state, called the shortest path problem).

— Expected average reward criteria: Maximize

1 X
i Bl 2 el
Intuitively, the performance in a few initial rounds does not matter here, what we are looking for is a

good asymptotic performance. This limit may not always exist. Assuming bounded rewards and finite
state spaces, it exists under some further conditions on policy used.

Discounted sum of rewards is one of the most popular forms of goal in MDP for many reasons: it is mathemat-
ically convenient as it is always finite and avoids the complications due to infinite returns. Practically, depending
on the application, immediate rewards may indeed be more valuable. Further, often uncertainty about far future
are not well understood, so you may not want to give as much weight to what you think you might earn far ahead
in future. The discounted reward criteria can also be seen as a soft version of finite horizon, as the contribution
of reward many time steps later is very small. As you will see later, discounted reward MDP has many desirable
properties for iterative algorithm design and learning. Due to these reasons, often the practical approaches which
actually execute the MDP for finite horizon, use policies, algorithms and insights from infinite horizon discounted
reward setting.

Gain of the MDP. Gain (roughly the ‘expected value objective’ or formal goal) of an MDP when starting in
state sy is defined as (when supremum exists):

e episodic MDP:
H

pls1) = sup E[> 2" rilsi
e t=1

Infinite horizon expected total reward.
T
pls1) =sup lim E[> rsi]

{,n.t}T%oo P

Infinite horizon discounted sum of rewards.

T
p(s1) = sup lim E[Z’y“lrﬂsl]

{me} T—o0 P}

infinite horizon average reward:
T

. 1
p(s1) = sup lim E[T Zrt|sl]

{‘ﬂ't} T—o00 -1

Here, expectation is taken with respect to state transition and reward distribution, supremum is taken over all
possible sequence of policies for the given MDP. It is also useful to define gain p™ of a stationary policy 7, which
is the expected (total/total discounted/average) reward when policy 7 is used in all time steps. For example, for
infinite horizon average reward: Here, expectation is taken with respect to state transition and reward distribution,
supremum is taken over all possible sequence of policies for the given MDP. It is also useful to define gain p™ of
a stationary policy 7, which is the expected (total/total discounted/average) reward when policy 7 is used in all
time steps. For example, for infinite horizon average reward:

T
. 1
pr(s1) = lhm Bl > rilsi]
t=1

where a; = w(sy),t =1,...,T.

Optimal policy. Optimal policy is defined as the one that maximizes the gain of the MDP. Due to the structure
of MDP it is not difficult to show that it is sufficient to consider Markovian policies. Henceforth, we consider only
Markovian policies.

For infinite horizon MDP with average/discounted reward criteria, a further observation that comes in handy is
that such a MDP always has a stationary optimal policy, whenever optimal policy exists. That is, there always exists
a fixed policy so that taking actions specified by that policy at all time steps maximizes average/discounted/total
reward. The agent does not need to change policies with time. This insight reduces the question of finding the
best sequential decision making strategy to the question of finding the best stationary policy.

The results below assume finite state, action space and bounded rewards.

Theorem 1 (Puterman [1994], Theorem 6.2.7). For any infinite horizon discounted MDP, there always exists a
deterministic stationary policy m that is optimal.

Theorem 2 (Puterman [1994], Theorem 7.1.9). For any infinite horizon expected total reward MDP, there always
erists a deterministic stationary policy w that is optimal.

Theorem 3 (Puterman [1994], Theorem 8.1.2). For infinite horizon average reward MDP, there always exist a
stationary (possibly randomized) policy which is an optimal policy .

Therefore, for infinite horizon MDPs, optimal gain:

* TT
p (8) - ﬂ:Markovriralg)gtationaryp (8)
(limit exists for stationary policies [Puterman Proposition 8.1.1])

These results imply that the optimal solution space is simpler for infinite horizon case, and make infinite horizon
an attractive model even when the actual problem is finite horizon but the horizon is long. Even when such a result
on optimality of stationary policy is not available, ‘finding the best stationary policy’ is often used as an alternate
convenient and more tractable objective, instead of finding the optimal policy which may not exist or may not be
stationary in general.

Solving an MDP, finding optimal policy. Solving or optimizing an MDP means finding a strategy for the
agent to choose actions in such a way so as to maximize the stated form of cumulative reward. Note that an
action not only determines the current reward, but also future states and therefore future rewards. So, the agent
needs to choose these actions or policy strategically in order to optimize the overall cumulative reward. The rest
of the lecture will develop formal constructs necessary to design algorithmic solutions for solving this optimization
problem. But, let’s first look at some examples.

3 Examples

Example 1. Lets formulate a simple MDP for a robot moving on a line. Let’s say there are only three actions
available to this robot: walk or run or stay. Walking involves a slow limb movement, which allows the robot to
move one step without falling. Running involves an aggressive limb movement which may allow the robot to move
two steps forward, but there is a 20% chance to fall. Once the robot falls, it cannot get up. The goal is to move
forward quickly and as much as possible without falling.

We can model this as MDP. We define state of the robot as a combination of its Stance: whether it is standing
upright or has fallen down, denoted here as S or I, and its location on the line, represented here as 0,1,2,3,4,5,
So, this state (S, 1) for example means that the robot is upright at location 1, where as this state (F',2) means that
the robot has fallen down at location 2. The robot starts in a standing state at the beginning of the line, that is at
state (S,0). Action space consists of three actions: walk | run, and stay. The state transition depends on current
state and action. Walking in a standing state always transfers the robot to a standing state at a location one step
ahead(this transition on taking walk action is represented here by these black arrows). So, by walking the robot
can always move up by one step. On the other hand, by taking the second action of running or an aggressive limb
movement, a robot in a standing state may move by 2 steps at a time (shown here by these green arrows), but
there is also a 20% chance of falling and transitioning to a Fallen state. In fallen state, there is no effect of any
action, the robot is stuck. Stay action keeps the robot in the current state.

but with 0.4 probability, it may make the robot fall, which means transfer to the Fallen state and a reward of —1.
In moving state, again, the slow action is reliable, but fast action can earn more reward, with a risk of falling that
is smaller than the risk in standing state.

Here, state space S = {'F'/ 5"/ M'}, A= {'slow’, fast’}. Ris an S x A matrix and P is S x A x S matrix.

(06 x —1+04x1) 0 —-02 0
R=11 (06x24+04x—1) | = 1 08
1 (0.8x2+02x—1) | 1 14

06 04 0 [1.0 o0

P(s,slow,s’) = 0 0 1 |P(sfast,s)=1] 04 0 06

0 0 1 | 02 0 08

4 Solving an MDP (Bellman equations)

4.1 Finite horizon

Bellman equations named after their discoverer Richard Bellman, provide a recursive formula for gain of an MDP.
For finite horizon MDP this is simply dynamic programming.

Consider the toy example of robot trying to walk in Figure 3. Let the starting state is ‘Standing’. Try to
compute the optimal policy for horizon H = 1,2,3,...,10 for total reward criteria (v = 1) by enumeration. For
H =1, the optimal policy simply maximizes immediate reward arg max, R(s, a) for s =" Standing’. And, therefore
optimal policy is to take the slow action (black). For H = 2, the optimal policy involves deciding a two-stage
decision. Deciding the first action (in ‘Standing’ state) involves enumerating the tree of all possible trajectories of
state-action sequences starting from this state and every action. That is, A7 (S)7~! possibilities. A central idea
in solving MDPs is that the Markovian structure can be used to make this computation tractable, using the simple
idea of memoization (dynamic programming).

Bellman optimality equations. Let V,"(s) be defined as the maximum total (discounted) reward achievable
over a k length horizon starting in state s. Then,

k
* o t—1 _
Vi(s) = mgXE[Z'y ri|s1 =]
=1
where maximum is taken over all (non-stationary) policies 7 = (7, ..., 7g), ar = 7 (s¢), E[re|s:] = R(s¢, ar), Pr(ses1 =

§'|se,ar) = P(sy, a4, 8).
Then, we have optimal substructure property:

k
Vi(s) = mfrmx{ [ri]s1 = s] + E[E Z'ytﬁlrﬂsl = 5,8 = s/]]}
=2

T2,

k
= maXR(s a) + max ZP (s,a,s) Z’y“%ﬂsz = 5]
t=2

Te—1

k—1
= max R(s,a) +’yZP(s7 a, s’ { max Z’yt*%ﬂsl = s/]}

= maXR(sa +’yZPsas)Vk (s, k=1,... H

And, by definition

p(s1) = Vi (s1)
This can be used to solve a finite horizon MDP by dynamic programming, by building a table of H x S values,
starting from the last time step.

Example. Let’s compute below for the toy example of robot MDP. Further examples are available in Section 4.6
of Puterman [1994].
Let’s optimize for horizon H = 4. Now, V{*(-) is simply immediate reward maximization,

VI'(F) = O0(fast action/do nothing)
Vi'(S) = 1(slow action)
Vii(M) = 1.4(fast action)

This suggest that if time horizon is 1, the robot should not try to get up from fallen state.
Vo (F) = max{-0.2+404x 1,0+ 0} = 0.2(slow action)

2
Vo (S) = max{1+14,08+4+0.6x1.4+0.4x0=24(slow action)
V(M) = max{l1+14,144+0.8x 1.440.2 x0 = 2.56(fast action)
VI(F) = max{—0.2+0.4 x 24,0+ 0} = 0.76(slow action)
Vo' (S) = max{l+ 256,084 0.6 x 2.56 + 0.4 x 0 = 3.56(slow action)
Va'(M) = max{1+ 256,14+ 0.8 x 2.56 + 0.2 x 0 = max{3.56,3.448} = 3.56(slow action)

(If you use v < 1, it might take more time steps for the action in state M to become slow action, depending on
how small v is. Intuitively, if horizon is short or future is either discounted heavily you might want to be more
aggressive).

In the next iteration, the policy is the same:

VIA(F) = max{—0.2+0.4 x 3.56,0 + 0}(slow action)
Vi(S) = max{1+3.56,0.84 0.6 x 3.56 + 0.4 x 0 = max{4.56,2.936}(slow action)
V(M) = max{l+3.56,1.4+4 0.8 x 3.56 + 0.2 x 0 = max{4.56,4.248} = 4.56(slow action)

4.2 Infinite horizon discounted reward

Henceforth we will assume finite and discrete state space S, finite and discrete action space A, bounded rewards
R(s,a) and discount v < 1. In this case, there exists an optimal stationary policy. We abuse notation, to denote a
stationary policy (w,m,7,...), as w. Therefore, we are effectively looking for a stationary policy 7% € argmax p™(s1).

Value of a policy © in a given state s at time ¢ is the gain when starting from state s.

T—o0

T
V7(s) = lim E[Z |y =], Vs,
=1

Note that gain of a policy is simply p™(s1) = V™ (s1), i.e., the value from the starting state. (Value is also referred
to as ‘cost-to-go’ when cost-based version of MDP is considered. In that version, instead of reward, you observe a
cost, and the goal is to minimize total/average/discounted cost).

Bellman equations for value of a policy. In infinite horizon case, the value of policy only depends on the
state and not the time, and satisfies the following recursive relation.

Vf(s) = Eqon(s),s'~P(s,0) [R(s,a,s") +~4V7(s")], or,
VIi=R"+P"V"
Proof:
Vi(s) = Elri+qym+ Vs 4%+ sy = 8]
= Elri|s1 = s| + VE[E[ry + yr3 + 274 + ... |so]|s1 = 5]

10

The first term here is simply the expected reward in state s when action is given by w(s). The second term is «
times the value function at sg ~ P(s, w(s),")

Vf(s) = E[R(s,7(s),s1)+ 7Vf(sz)|31 = 3]
= R(s,m(s)) +v Y P(s,m(s), 52)V] (s2)
s2ES8

= R7(s) +[PTV](s)
Bellman optimality equations. Let V7 (s) = max, V7 (s).

V; (s) = max R(s, a) + > P(s,a, 8V (s)

And, by definition
p(s) =V'(s)

Proof: for all s, from the theorem ensuring stationary optimal policy:

Vi(s) = max Vi(s) = maxBEq.n(s)sP(s,a) [R(s,a,s") +~VI(s)]

< max R(s,a)+ ’YZP(& a,s") max Vyﬂ(s/)

= max R(s,a) + ’YZP(& a, 3/)V7*(3/)

Now, if the above inequality is strict then the value of state s can be improved by using a (possibly non-stationary)
policy that uses action argmax, (s, a) in the first step. This is a contradiction to the definition V7 (s). Therefore,

Vy (s) = max R(s, a) + > P(s,a, 8V (s)

Technically, above only shows that V' satisfies the Bellman equations. Theorem 6.2.2 (c) in Puterman [1994] shows
that V" is in fact unique solution of above equations. Therefore, satisfying these equations is sufficient to guarantee
optimality, so that it is not difficult to see that the deterministic (stationary) policy

7 (s) = argmax R(s,a) + 4 > P(s,a,8)Vi(s)

is optimal (see Puterman [1994] Theorem 6.2.7 for formal proof).
And, by Bellman optimality equations, V' = R™ + 'yP’T*Vj, Le, VJ = (I —4P™)"'R™", where the inverse
exists for v < 1.

Linear programming. The fixed point for above Bellman optimality equations can be found by formulating a
linear program. It amounts to :

min WV,
vERS ZS 5

subject to vy > R(s,a) +yP(s,a)'v Va,s

for any positive weights w1, ..., wg.
Proof. V* clearly satisfies the constraints of the above LP. Next, we show that v = V* minimizes the objective.
vs > R(s,a) + P(s,a)' v,Vs,a implies that

vy > R(s,77(s)) +vP(s, 7" () v, Vs

11

(Above is written assuming 7* is deterministic, which is infact true in the infinite horizon discounted reward case.)
Or

?

(I —~P™ v >R™
Because v < 1, (I —yP7™)~! exists for all 7, and for any u > 0
(I =vP™) lu= (T +4PT +* (P 4 Ju 2w
Therefore, from above
(=P) (L =P v = B™) 2 0
Or

?

v> (I —yP") IR =V*

Therefore, w' v for w > 0 is minimized by v = V*.

4.3 Infinite horizon average reward
Gain of a policy. Gain of a policy in this case is asymptotic average reward starting from state s,
T

P (s) = lim %E[Zrﬂsl = s

T—o0
t=1

This is related to finite time undiscounted value, and infinte horizon discounted value, in the following ways:
[]

p(s) = Jim LVE(s)

T—o0

where V7 (s) = E[Zthl Tels1 = s].

p(s) = lim (1 =) V7 (s)

For an intuitive explanation of above relation consider v = 1 — (1/7") with T going to infinity. A formal proof

of above expression is provided in Corollary 8.2.5 of Puterman [1994] using Laurent series expansion of V,,.

Bias of a policy. For average reward case, an important quantity is the total deviation of reward from asymptotic
average reward. This is referred to as the ‘bias’ of a policy. Bias of a policy = in state s is given by

T
h™(s) = lim IEZ "(8:))]|s1 = s hm EZ (s, m(s¢)) — p" (8¢))]s1 = s].

T—o0
t=1 t=1

The limit in above is Cesaro limit, which exists, more details in Section 8.2 of Puterman [1994].
A connection between value finite time value (V7 (s) = E[Zthl r¢|s1 = s]) and bias is that: if two states s, s’
are in the same irreducible class (i.e., can be reached from each other in finite expected time, under policy) then

hT(s) = p7(s") = lim (V7 (s) = Vi (s))

T—o0

And, connection to discounted value function:

h™(s) — h™(s') = lim (VI (s) = VI (s')

y—1 7

12

4.3.1 Bellman equations for evaluating a policy.
Assume a policy 7 is such that all the states reached form a single recurrent class. Then,
hﬂ-(s) + pﬂ-(s) - an‘n'(s),s/fvp(s,a) [R(87 @, 8/) + hﬂ-(s/)]
Or, in compact notation:
h‘n'+p7r :Rﬂ_+Pﬂ'hﬂ'
Proof: (assumes finite or countable state space and policy space, and deterministic policy 7 for simplicity. Similar
derivation can be done for randomized policy with notational changes.)
We can use the equation for discounted value:

VI = Ry 4PV

Subtract vV from both sides:
VE(L=4) = Ry +4P7V] = AV

For state s:
VI(s) (=) = Rals)+ Y P (s,8)VI(s') =7V (s)
= Rals)+ > _yP"(s,8)(VI(s) = VI (s))
I VI =7) = Rele) + 3P (o) i AV () = Vi ()
P(s) = Ra(s)+ Y P (s,8)(h"(s') = h"(s))
Therefore,

p‘/r:Rﬂ+P7rh7r_h7r

4.3.2 Bellman optimality equations.
We will make an additional ‘communicating MDP’ assumption.

Definition 4. An MDP is called communicating if for any two states s, s’, there exists a policy such that the
expected number of steps to reach s’ from s is finite.

A convenient fact is that optimal gain does not depend on the starting state for such MDPs.

Theorem 5 (Puterman [1994], Theorem 8.3.2 in Section 8.3.3). For communicating MDP, for optimal gain policy
p7(s) = p*, i.e., optimal average infinite horizon reward does not depend on starting state.

Proof. (Sketch) Suppose that that there exists s1 # sg such that p*(s1) > p*(s2). Since the MDP is communicating
there exists a policy 7y using which we can go from sy to s; in time 7 with finite expected value, say E[r] < D.
Then we can construct a (possibly non-stationary) policy, which first goes from s9 to sy using mg in at most D steps
in expectation, and then uses the optimal policy (say 1) for s1. Such a policy will have infinite horizon average
reward p*(s1) which is strictly greater than p*(s2), thus violating the optimality of p*(s2). O

Recall stationary (possibly non-deterministic) optimal policy 7* exists for this setting. And, p™ (s1) = p* is
independent of the starting state.

Lemma 6 (Bellman optimality equations for average reward MDP). For a communicating MDP, let h*(s) :=
R (s), where 7° = argmax, p” be the bias of an optimal policy, and p* = p”* be the optimal gain. Then, Bellman
optimality equations state that optimal gain p* = p where (p, h) is a feasible solution to the following equations:

p+ h(s) = max R(s,a) + ZP(& a, 8" Yh*(s'),Vs

13

Proof. We assume that a solution (p*, h*)to the above equations exist. Then, we show that p* > p™ for every policy
7w = (my,...,7p,...,). Proof of existence of such a solution is more intricate, and is shown by using relation with
discounted model through Laurent series expansion (refer to Section 9.1.3 of Puterman [1994]).

Now, using the equation for first step policy as 71 we have:

p'e> Re, + (Pr, —)"
Using the equation for mg, and multiplying by Py, on both sides
p'e > Pr Re, + Pry (Pry, — DA
Similarly, for any ¢t =1,2,..., we can get
pre>Pr Pry - Pr | Rp + Pr Pry - Pry_ (P, —)R

On adding above equations for for ¢t = 1,...,7, the first term on the right hand side adds to value of policy in T’
rounds. The second term reduces to (HiT:1 Py, — I)h* . Therefore,

T
Tp'e > Vi + (|| Pr, — DI
i=1

Dividing by T and taking limit T — oo:

T

1 1
* > . il v - o *
poz fim Vi (TP 0n
we get
p*ezpﬂ'

O

Using an argument similar to that used in the above proof, one can show that if = the policy given by arg max
in the above equation, i.e., let
7(s) = argmax R(s,a) + (P(s,a)’ —)b,
a

then, p* = p™ .

Linear programming. Based on above discussion, for infinite horizon average reward case, the fixed point for
Bellman optimality equations can be found by formulating a linear program (assuming communicating MDP).

min P
pER,vERS

subject to p > R(s,a) + P(s,a) ' h—hy; Va,s

If the MDP is multichain and not necessarily communicating, the optimality equations can still be formulated, but
they are slightly more complex. Interested readers may refer to Chapter 9.1 of Puterman [1994].
However, solving LP is slow, and therefore, faster iterative methods are used.

Example. For MDP in Figure 3, the optimal average reward policy (say n*) is to take the slow action in all
states, with gain of p = 1. The bias of this policy is V(F) = (-0.2—1) x (1/04) = =3,V (5) =0,V (M) = 0. (For
calculating V (F'), note that the expected number of steps spent in Fallen state when taking slow actions is 1/0.4,
after that the reward of the given policy is 1).

Check that the bias and gain of the optimal policy satisfy the Bellman equations stated above.

-3 1 —-0.2 06 04 O -3
0O+ 1= 1]+ 0 0 1 0
0 1 1 0 0 1 0

v N i S ———
Vo pre RT* pr* yo*

14

5 Iterative algorithms (discounted reward case)

Using dynamic programming directly may not be very efficient especially for large/infinite horizon case. Below, we
discuss some popular iterative methods that are more efficient than linear programming. For succinctness, we limit
our discussion primarily to the discounted reward case. Similar algorithms and convergence results are available
for the average reward case. For the average reward case, more conditions on the transition matrix are required
for convergence. See Chapter 8 of Puterman [1994] for more details.

5.1 Value Iteration.

Indirect method that finds optimal value function (value vector v in above), not explicit policy.

Pseudocode

1. Start with an arbitrary initialization v°. Specify ¢ > 0
2. Repeat for k = 1,2,... until [|[v*(s) = vF71(s)] 0 < Caly

e for every s € S, improve the value vector as:

k o N k—17 7
v4() = max R(s,0) 47 3 Pls, a0t~ (), M
3. Compute optimal policy as
7(s) € argmax R(s, a) +vP(s,a) v (2)

Bellman operator It is useful to represent the iterative step (1) using operator L : RS — RS,

o ! !
LV(s) = %rléaﬁ(R(s7 a) + 'yz;P(s7 a, s V(s
L™V (s) = Eacn(o[R(s,a) + 7Y P(s,a,s)V(s)] (3)
Then, (1) is same as
vk = Lvi! (4)
Also, for any policy n, if V™ denotes its value function, then, by Bellman equations:
VP=LV* VT =LV~ (5)

Below is a useful ‘contraction’ property of this operator, which underlies the convergence properties of all DP
based iterative algorithms.

Lemma 7. The operator L(-) and L™(-) defined by (3) are contraction mappings, i.c.,
[Lo — Lullco < 7llv — | o
[L70 = LTulloo < 7llv — | co.

Proof. First assume Lv(s) > Lu(s). Let aj = argmaxaca R(s,a) + >, P(s,a,s)v(s')

0 < Lu(s)— Lu(s)
< R(s,al) +7y) Pls,al,s)o(s) = R(s,a;) =7 Y P(s,a], s Ju(s)
= yP(s,al) (v —)
< Allo =l

Repeating a symmetric argument for the case Lu(s) > Lwv(s) gives the lemma statement. Similar proof holds for
L. |

15

Convergence

Theorem 8 (Theorem 6.3.3, Section 6.3.2 in Puterman [1994]). The convergence rate of the above algorithm is
linear at rate . Specifically,

T
V=V < ——

lo" — 0%l

Further, let 7% be the policy given by (2) using v®. Then,

2 k
V™ =V — o0 < o’ — 0|l
1

Proof. By Bellman equations V* = LV*.

V¥ —oMlee = [LV" ="
|LV* — Lo¥|| oo + [Lo® = 0¥
|LV* — Lo®|| oo + || Lo® — Lo* Y| oo

IN

< AV =Myt =0t
< AV =t Aot =)
k
g
L [o Call

1-—

Let 7 = 7* be the policy at the end of k iterations. Then, V™ = L™V™ by Bellman equations. Further, by definition

of m = 7¥,

L™o*(s) = max R(s,a)+~ ZP(& a, s o*(s") = Lof(s).

Therefore,

VT —o* oo = IIL7VT = 0"||oo
< JLTVT = LMo + [L70% — 0"l
= |IL™V™ = L™ + || Lv* — Lo* Y|
< AIVT = Aot — o

||V7T _yk”w S ﬁ”vk _kaln
k
< Tl =
Adding the two results above:
92 k
V™=Vl < 2=l =27l
-

O

In average reward case, the algorithm is similar, but the Bellman operator used to update the values is now
LV (s) =max, 7+ P(s, a)' V. Also, here v* will converge to v* + ce for some constant c. Therefore, the stopping
condition used is instead sp(vF — v¥~1) < ¢ where sp(v) := max, vy — ming; vs. That is, span is used instead of
Loo norm. Further since there is no discount (y = 1), a condition on the transition matrix is required to prove
convergence. Let

4= max |- Zmin{P(ga7j)7P(s/7a/7j)}

S7S/7a7a/ .
jes

Then, linear convergence with rate «y is guaranteed if v < 1. This condition ensures that the Bellman operator in
this case: is still a contraction. For more details, refer to Section 8.5.2 in Puterman [1994].

16

5.2 Q-value iteration

Q" (s,a): expected utility on taking action a in state s, and thereafter acting optimally. Then, V*(s) = max, Q@ (s, a).
Therefore, Bellman equations can be written as,

Q*(s,0) = R(s,a) + 7> Pls,a,5) (max @ (+',a))
Based on above a Q)-value-iteration algorithm can be derived:

Pseudocode
1. Start with an arbitrary initialization Q° € RS*4.

2. In every iteration k, improve the Q-value vector as:

Q" (s,a) = R(s,a) + 1Ey [max Q¥ (s, a')[s, a], ¥s,a

3. Stop if |QF — Q" Y| is small.

5.3 Policy iteration.
Direct method that finds optimal policy.

Pseudocode
1. Start with an arbitrary initialization of policy #°, and initial value vector v" as the value of this policy.

2. In every iteration k, improve the policy as:

7*(s) = argmax R(s, a) + YEy [0* 1 (s")|s, a], Vs

And, set v* as value of policy 7*.
3. Stop if #f =7+ 1,

For computing value of policy 7*, one can use a similar procedure as value iteration.

5.4 Exercise

Use policy iteration and value iteration to compute optimal policy for the MDP in Figure 3 by hand.

6 Reinforcement learning algorithms

Reinforcement learning is essentially the sequential decision problem when the underlying MDP model (state
transition probabilities and reward function) is either unknown or too difficult (large) to solve. We have seen some
algorithms (value iteration, policy iteration, linear programming) for solving MDPs. There are two main challenges
in using those for reinforcement learning problems:

e The model: R(s,a), P(s,a,s’)is not available in reinforcement learning. The model however may be accessible
as a blackbox to generate samples. The challenge for RL algorithms is to (implicitly) learn this model from
samples, while computing optimal policy. It is therefore important to consider both sample complexity and
computation complexity when designing these algorithms.

¢ Number of states in most RL problems is too large for tabular methods like those discussed before to be
scalable.

17

¢ Regret minimization: In regret analysis, the objective is to maximize total reward or minimize the difference
in reward compared to a benchmark policy, over the steps of the execution of the algorithm. Typically, regret
is defined with respect to the performance of best stationary policy, which is justified as a near-optimal
benchmark if the horizon is large (as discussed earlier there exist an optimal stationary policy for many
infinite horizon settings). For example Auer et al. [2009] consider a (weakly) communicating MDP and define
regret in 1" steps as R(T) = Tp* — Zthl r¢. Here, p* is the optimal gain, which is independent of the starting
state and achieved by a stationary policy in this case. And, r; is the reward obtained by the algorithm at
time ¢. The goal is to obtain algorithms that have sublinear regret in T

References
Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in

Neural Information Processing Systems 21, pages 89-96. Curran Associates, Inc., 2009. URL
http://papers.nips.cc/paper/3401-near-optimal-regret-bounds-for-reinforcement-learning.pdf.

Sham M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, Gatsby Computational Neuro-
science Unit, University College London, 2003.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.

19

