IEOR 8100: Reinforcement learning

Lecture 6: Actor-critic methods

The methods we have seen so far can be divided into two categories [Konda and Tsitsiklis, 2003]

¢ Actor-only methods (vanilla policy gradient) work with a parameterized family of policies. The gradient of the
performance, with respect to the actor parameters, is directly estimated by simulation, and the parameters are
updated in a direction of improvement. A possible drawback of such methods is that the gradient estimators
may have a large variance. Furthermore, as the policy changes, a new gradient is estimated independently
of past estimates (by sampling trajectories). Hence, there is no “learning”, in the sense of accumulation and
consolidation of older information.

¢ Critic-only methods (e.g., Q-learning, TD-learning) rely exclusively on value function approximation and aim
at learning an approximate solution to the Bellman equation, which will then hopefully prescribe a near-
optimal policy. Such methods are indirect in the sense that they do not try to optimize directly over a policy
space. A method of this type may succeed in constructing a “good” approximation of the value function, yet
lack reliable guarantees in terms of near-optimality of the resulting policy.

Actor-critic methods aim at combining the strong points of actor-only and critic-only methods, by incorporating
value function approximation in the policy gradient methods. We already saw the potential of using value function
approximation for picking baseline for variance reduction. Another more obvious place to incorporate Q-value
approximation is for approximating @Q-function in the policy gradient expression (refer to Policy gradient theorem
in the last lecture). Recall, by policy gradient theorem:

Vap(ra) = D d™(s)Eqmn(s) [(Q (s, a) — b™(s))Va log(ma(s, a))]

for any baseline 5™ ().

In the vanilla policy gradient algorithm, we essentially approximated the @-value function by Monte-Carlo
estimation. In every iteration, we sampled multiple independent trajectory to implicitly do a (-value estimation.
Thus, as the policy changes, a new gradient is estimated independently of past estimates. In the actor-critic method,
we use (J-function approximation in the gradient estimate. The actor-critic algorithm simultaneously/alternatively
updates the Q-function approximation as well as policy parameters, as it sees more samples. Over iterations, as
policy changes, the Q-function approximations also improves with more sample observations.

Before describing the algorithm, let’s first understand the requirements from such an approximation — what
kind of Q-function approximations are desirable (at least in ideal conditions)?

1 Policy gradient theorem with ()-function approximation.

For a scalable estimation of @-value function, one may want to use function approximation for ¢)-value approxi-
mation as well. Let f,(s,a) be approximation of Q™. The next theorem shows that certain types of Q-function
approximation are more ‘compatible’ with policy gradient approach.

Theorem 1 (Sutton et al. [1999]). If function f,, is compatible with policy parametrization 8 in the sense that for
every s, a,
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And, further we are given parameter w which is a stationary point of the following least squares problem.:

HBH Eswd"e,awﬂg(s,~) [(Qﬂ—e(& CL) - b(sv '9) - fw(37 a))Z]

vwfw(s7 CL) - V9w€(37a) - v@ IOg(TrG(S?a))



where b(-;0) any baseline, which may depend on the current policy mg. Then,
VQp(Wa) =Esare EGE‘ITQ(S) [fw(37 CL)VQ log(’ﬂ@(& a))]

That is, function approrimation f,, can be used in place of Q-function to obtain gradient with respect to 6.

(Here, we abuse the notation and use E,..q7 2] as a shorthand for >~ _d™ (s)z. This is not technically correct
in the discounted case since in that case d™(s) = E,,[>.~, Pr(s; = s;m, s1)y"!], which is not a distribution. In
fact in discounted case, (1 — «)d™ is a distribution.

Proof. Given 0, for stationary point w of the least squares problem:
Eswd"e,awﬂg(s,~) [(Qﬂ-e (87 CL) - b(sv '9) - fw(87 a))waw(& CL)] =0

Substituting the compatibility condition:

Eswd"e,awﬂg(s,)[(@ﬂe(s? CL) - b(sv '9) - fw(87 a))vig’fr@(& CL) =0
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Do d™(s) D Vomo(s, a)(Q (s,a) = b(s;0) — fu(s,a)) =0
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Since b(s;0) >, Vomg(s,a) =0,

D d™(s) Y Vomp(s,a)(@(s,a) — fu(s,a)) = 0
using this with the policy gradient theorem, we get

V@p 7T9 Z d‘n’e ) Zva'ﬂ@(& CL)fw(S7 CL)

1.1 Example: softmax policy

Consider policy set parameterized by 0 such that given s € 5, probability of picking action a € A is given by:
b bea

Za/EA el Puer

where each ¢, is an ¢-dimensional feature vector characterizing state-action pair s,a. This is a popular form of
parameterization. Here,

mo(s,a) =

Vomg(s,a) = ¢psamo(s, a) (Z tsamols,a’ )mg(s7 a)

a’cA

Meeting the compatibility condition in Theorem 1 requires that

vwfw(s7 a) - v&'ﬂ@(s CL (bsa - Z (bsa/'ﬂé s, CL

7'('0(870/) a’cA

A natural form of f, (s, a) satisfying this condition is:
fw(37 a) = WT((bsa - Z Psp 70(37 b))
bcA

Thus f,, must be linear in the same features as the policy, except normalized to be mean zero for each state. In
this sense it is better to think of f,, as an approximation of the advantage function, A™(s,a) = Q™ (s,a) — V7 (s),
rather than Q™.



1.2 Example: Gaussian policy for continuous action spaces

In continuous action spaces, it is natural to use Gaussian policy. Given state s, the probability of action a is given
as:

mo(s, a) = N(4(s)70,0%)

for some constant o. Here ¢(s) is a feature representation of s. Then, compatibility condition for f,(s,a):
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For f,, to satisfy this, it must be linear in w, e.g., f.(s,a) = o(s)'w

2 Policy iteration algorithm with function approximation [Sutton et al.,
1999]

Let f,(-,-) be such that Vf,(s,a) = Vglogmg(s,a) for all w,8,s,a. Initialize 61,71 = wy,. Pick step sizes
A1, 09, ...,

In iteration £k =1,2,3,...,

¢ Policy evaluation: Find w; = w such that

Eswd"kanﬂ'k(s) [(Qﬂ-k(& CL) - bk(s) - fw(87 CL))VQ IOg(Trk(& CL))] =0
(Here, d™ is not normalized to 1, and sums to 1/(1 —~).)

¢ Policy improvement:
Okt Or + g EgogriEgror, (o) [fw (s, @) Vo log(my(s, a))]

A similar algorithm appears in Konda and Tsitsiklis [1999].

2.1 Convergence Guarantees

Following version of convergence guarantees were provided by Sutton et al. [1999] for infinite horizon MDPs (average
or discounted).

Theorem 2 (Sutton et al. [1999]). Given ay, o, ..., such that
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90,9, < - Then, for 61,605, ..., obtained by the above algorithm,

and Maxg s q.i
lim V@p(@”@k =0
k—o0

The proof of the above theorem can be obtained by viewing the algorithm as a stochastic approximation method
with h(0) = Vygp(mg). Then, under the assumptions stated in the theorem, the convergence to h(¢) = 0 can be
obtained using Proposition 3.5 of Bertsekas and Tsitsiklis [1996].

Note that above theorem needs several desirable conditions in order to achieve convergence. Notably (a) second
derivative of the policy function approximation is small, (b) in every iteration, good Q-function approximation
parameters w are found (specifically, w is a stationary point of the squared loss function min,, (£, (s, a) —Q™ (s, a))?),
and (c) policy gradient is estimated accurately. In practice, Q-function approximation would only be approximately



satisfy the condition. Further, the policy gradient estimation through sampling will be approximate. In the next
lecture, we study the work by Kakade and Langford [2002], which highlight the instability of this algorithm under
such approximation, through examples where this algorithm would require exponential number of iterations. They
also propose approximate algorithms that are guaranteed to terminate in a small number of steps.

The work by Kakade and Langford [2002] also form the basis of the recent ‘Trust Region Policy Optimization’
(TRPO) algorithm Schulman et al. [2015a]. Other recent actor-critic algorithms based on advantage estimation
include ‘Asynchronous Advantage Actor Critic Algorithm (A3C)’ [Mnih et al., 2016] and ‘Generalized Advantage
Estimation (GAE)’ [Schulman et al., 2015b].
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