IEOR 8100: Reinforcement learning

Lecture 5: Policy gradient methods

In Q-learning function approximation was used to approximate Q-function, and policy was a greedy policy based on
estimated Q-function. In policy gradient methods, we approximate a stochastic policy directly using a parametric
function approximator.

More formally, given an MDP (S, A, s1, R, P), let mg : S — A“ denote a randomized policy parameterized
by parameter vector # € R%. For a scalable formulation, we want d << |S|. For example, the policy 7y might
be represented by a neural network whose input is a representation of the state, whose output is action selection
probabilities, and whose weights form the policy parameters #. (The architecture for such a [deep] neural network
is similar to that for a multi-label classifier, with input being a state, and labels being different actions. And, the
network should be trained to predict the probability of different actions given an input state).

For simplicity, assume that 7y is differentiable with respect to 0, i.e. 9m0(5:9) oyists. This is true for example, if
a neural network with differentiable activation functions is used to define my. Let p(my) denote the gain of policy
7g. This may be defined as long term average reward, long term discounted reward or total reward in an episode or
finite horizon. Therefore, solving for optimal policy reduces to the problem of solving

(o)

In order to use stochastic gradient descent algorithm for finding a stationary point of the above problem, we
need to compute (an unbiased) estimate of gradient of p(my) with respect to 6.

1 Finite horizon MDP

Here performance measure to optimize is total expected reward over a finite horizon H.

H
=E[) 7 rilmsi]
t=1

Let 7 (s, a) denote the probability of action a in state s for randomized policy 7. Let D™(7) denote the probability
distribution of a trajectory (state-action sequence) 7 = (s1,a1, 82, ...,a5_1, sy) of states on starting from state s;
and following policy . That is,

H—1
D(r) = H m(si, a;)P(si, ai, 8i41)
i=1

Theorem 1. For finite horizon MDP (S, A, s1, P, R, H), let R(7) be the total reward for an sample trajectory 7,
on following wy for H steps, starting from state s1. Then,

H—1
Vop(rs) = E. [R(r)Vslog(D™ ()] = E, | R(r) 3 Vg log(ro(st, ar))
t=1

Proof. Let R(7) be expected total reward for an entire sample trajectory 7, on following mg for H steps, starting

from state s;. That is, given a sample trajectory 7 = (s1, a1, 89, ...,ag_1, sy) from distribution D7,
H—1
t—1
v R(sy, ar),
t=1

Then,
p(mg) = Erpro [R(T)]

Now, (the calculations below implicitly assume finite state and action space, so that the distribution D(7) has
a finite support)

Op(rg) 0
a0 - %ETNDWQ [R(T)]
- 2 DR
7:D™6 (7)>0
=Y DUy oD)R)
7:D™0 (7)>0

~ B [% log(D™ (1)) R(r)

Further, for a given sample trajectory 7.

Vo log(my(s;, a)) + Vo log P(si, ay, sy 1)
(

Ve log(m(s}, ay))

H—-1
Volog(D™ (") = >
t=1
H—-1
t=1

O

The gradient representation given by above theorem is extremely useful, as given a sample trajectory this can
be computed only using the policy parameter, and does not require knowledge of the transition model P(,-,-)!
This does seem to require knowledge of reward model, but that can be handled by replacing R(7%) by R(r?) =

ri+yra+ ..,y 2rg 4, the total of sample rewards observed in this trajectory. Since, given a trajectory 7, the
quantity D”e()1s determined, and E[R(7)|7] = R(7),
Vop(mg) = Er [R(7)Vylog(D™(7))]
— E, |R(r)Vylog(D™(7))]
H-1
= E, |R(r)> Vs log(wa(s“at))}
=1
Unbiased estimator of gradient from samples. From above, given sample trajectories 72,4 = 1,...,m, an

unbiased estimator for gradient Vyp(mg) is given as:

m m H-1
1 - 1 i i
— :E V@ log(D™(= o E:) ;,1 Volog(me(sy, ay)) (1)

Baseline. Note that for any constant b (or b that is conditionally independent of sampling from 7y given 8), we
have:

7]
E, log(D™ 0,s1] =5 D7 (1)) = b— D7 (r
g oD (e los) = b [2o [
Therefore, choosing any ‘baseline’ b, following is also an unbiased estimator of the Vgp(my):

m H—-1

%Z Z —b V@log(ﬂe(suat))

i=1 t=1

Or, more generally, one could even use a state and time dependent baseline b;(s¢) conditionally is independent of

sampling from 7y given si, 0, to get estimator:

1 m H-—1
= =" (R(7) = bu(s})) Ve log(mo(s}, ay) (2)
m
i=1 t=1
Below we show this is unbiased. The expectations below are over trajectories (s1,a1,...,a5_1,8y), Where a; ~

(s, +), given s;. For any fixed 6, ¢, the baseline b,(s;)|s; needs to be deterministic or independent of a;|s,. For
simplicity we assume it is determinstic.

Z bi(se) 5 log(ﬂa(smat))w s1] Z Elb(st) - log(m(sﬁat))lst]lﬂ s1]

= Z bi(se) —IOg(W0(8t7at))|3t]|9781]

- Z bi(sy) Zwa (st,a log(ﬂa(su a))|0, s1]
= Z be(s 289 o(st,a)l0, s1]

= E[i bt(st)% ZW€(3t7a)|‘9731]
1 7 a

o
= B[S bilsi) g5 (116, 4]
t=1 J

= 0

An example of such state dependent baseline b,(s), given s and 8, is V}° ,(s), i.e., the value of policy 74, starting
from state s at time ¢. We will see later that such a baseline is useful in reducing the variance of gradient estimates.

Vanilla policy gradient algorithm Initialize policy parameter #, and baseline.
In each iteration,

¢ Execute current policy 7% to obtain several sample trajectories 7%, i = 1,..., m.
¢ Use these sample trajectories and chosen baseline to compute the gradient estimator g as in (2).

e Update # <+ 0+ ag

Update baseline as required.

Above is essentially same as the REINFORCE algorithm introduced by [Williams, 1988, 1992].

2 Infinite horizon case

Long term average reward. Let’s first consider the case when p(7) is long-term average reward of (randomized)
policy ,

T—o0

1 -
p" = lim TIE[m +rot...trpn] = zsjd (s) zajﬂ(& a)R(s, a)

where d™(s) = lim;_. o Pr(s; = s|sy, 7), the stationary distribution for policy 7, is assumed to exist and independent
of the starting state s; for all policies 7 (refer to the introductory lecture notes for conditions under which this

assumption holds). In the average reward case, recall that the value of a state given a policy 7 is defined as:

T
VT(s) = TIEO]E[;(W —p(m))ls1 = s,ac = w(s:),t =1, T = w(s1,0)Q" (s1,0)
where
T
Q7 (s,a) ::TIEEOE;H)s1 = 8,01 = a,ap = w(se), 6 =2,...,7)
Discounted rewards.
T
T t—1 o T
plr 1) = Jim EISS9* rfrssi) = 32 76) 3wl (s)
where d™(s) = limp_ oo Zthl =1 Pr(s; = s|sq,), and the value of a state given a policy 7 is defined as:
T
T _ t—1 _ _ _ _ T
V7(s) = TIEEOE[;'y rels1 = s,ar =7(se),t =1,....7] = zajw(sha)Q (s1,a)
where
T
Q7 (s,a) = hm E[Z'ytﬁlrﬁsl =s,a1 =a,a; =7(sy),t =2,...,7)
=1

Theorem 2. [Policy gradient theorem [Sutton et al., 1999]] For infinile horizon MDP (average or dis-
counted),

Vop(mg, s1) = D _d™(s) Y Q™ (s,a)Vemg(s,a) = ¥ _ d™(s) (Eqn(s)|Q™ (s,a)Vglog(ms(s, a))])

5 a 5

That is gradient of gain with respect to 0 can be expressed in terms of gradient of policy function with respect
to 6.

Proof. Average reward formulation.
Q"(s,a) = R(s,a) +) Pls,a,s)V7(s) —p(n)

V7™(s) z:7T(s7a)Q7r(s7 a)

a

VoV7™(s) = ZQW(87CL)V97T(87CL)+7T(87CL)V9Q7T(87CL)

= ZQ”(& a)VgW(s7a)+Z7r(s7a)
Vop(r) = ZQ”(s7a)Vg7r(s7a)+Z7r(s7a)

Z d"(s)Vep(n) = Z d™(s) Z Q" (s,a)Vyr(s,a)+ Z d™(s) Z (s,a)
since d" is the stationary distribution of 7

> dT(s ZQ”savmsa+Zdﬂ YWoV™ (s Zd” YWoV™ (s
Zdﬂ (s) ZQ” (s,a)Vom(s,a)

Z P(s,a,8)\VoV™(s') — V@p(w)]

— VoV (s)

Z P(s,a,s")\VoVT(s')

ZPSCLS VoV7™ (s

Z d™(s)VeV™ (s

Discounted reward formulation.

Q" (s,a) = R(s7a)+'yZP(s7a7s/)V”(s/)

By Bellman equations:

V7™(s) = Z w(s,a)Q7 (s, a)

a

VoV7™(s) ZQ”(& a)Vgr(s,a)+ w(s,a)VeQ" (s,a)

Let Pr(s — z, k, w) is the probability of going from state s to state z in k steps under policy =.

Zd” WeVT™(s) = Z(iykpr(sl—>87k77r)> VeV (s)

s k=0
= Z (Z v* Pr(s; — s,]fﬂT)) (Z Q7 (s,a)Vgw(s,a) + 72%(37 a) ZP(& a, s/)V(gV”(s/)>
s k=0 s’/
Zdﬂ ZQ (s,a)Vyr(s,a) +Z (ZZ'yk Pr(s1 = s, k, 7) 72%(37 a)P(s,a,s VoV (s')
s’ s k=0 a

Zdﬂ ZQ” s,a)Vom(s,a Jrz:d7r —Pr(sy = §,0,m)VoV™(s)

Zd’r ZQ” s,a)Vor(s,a +Z (Z'kaPr s1—= s, k+1, 7T)> VoV (s")

> d(s ZQ” s,a)Ver(s,a +Zd” WV (s') — VoV (s1)

Moving the terms around

VoV™(Zdﬂ)ZQ”(&CL)VWT(& a)

That is,
Vop(r, s1) Zdﬂ)ZQ”(& a)Vor(s,a)

O

Remarks on Theorem 2. The key aspect of the expression for the gradient is that there are no terms of
the form %Z(S): the effect of policy changes on the distribution of states does not appear. This is convenient
for approximating the gradient by sampling. For example, if s was sampled from the distribution obtained by
following 7g, then >, Q™ (s, a)Veme(s, a) would be an unbiased estimate of Vyp(mg). Of course, Q™ (s, a) is also
not normally known and must be estimated (in an unbiased way).

2.1 Vanilla Policy Gradient Algorithm (for discounted case)

Estimation using samples. Suppose we run policy 7 several times starting from s; to observe sample trajectories
{7%}. Then, at each time step ¢ in a trajectory 7, set

O

\QH
=

&

ot

where r is the observed reward at time ¢/. Then, Qt is an unbiased estimate of QJ(s;, a;) at time ¢ (almost,
assuming large enough T), i.e

E[Qt|3t7at] = Q(3t7at)
Let R
Ft = QtV9 logwa(st7at)
Then,
E[Ft|3t] = E[E[Qt|3t7at]v€ IOg(W(St?atmst] = E[Q(st7at)V9 log(7r9(st7at |3t ZQ 3t7 V07T6(8t7)
And

?

[ee]

ED ~ 'R = DAY E[Fs = 8] Pr(s, = sls1)
t=1 t=1 s
— Zy“l Z (Z Q(s7a)V97r9(s7a)> Pr(s; = s|s1)
t=1 s a
— Z(ZQSCLV@T(@SCL)ZthT ¢ = s|s1)

5

— Z (Z Q(s7a)V97T0(87a)> d™(s)

= Vop(my)

where the last step follows from the policy gradient theorem. Therefore, following is an unbiased (almost, for large

T estimate of gradient of Vgp(w, s1) of policy 7 at é, starting in state si:

T T
g= Z’YtilFt = Z’Ytilc?tve IOg(We(Sm at))
t=1 t=1

From N sample trajectories {7%,i =1,..., N} we can develop sample average estimate
| NT | NT
R D) I T) SELRT0 A AN CAENT) 3)
i=1 t=1 i=1 t=1

Baseline. We can obtain another unbiased estimate by replacing F; by

F} = (Q¢ — be(s:)) Ve log(ma(ss, ar))

for an arbitrary baseline function b,(s). Then,

ED ~ U =ED AR - Z'y "by(s¢) Vg log(ma(ss, ar)) = E[> 4" 'F}]

t t

The last step follows because:

E[bi(s:)Volog(mo(ss, ar))lsi] = bi(s:) Y Vomo(se,a) = bi(s:) V(1) = 0

That is, following is also an unbiased gradient estimate
.1 i i
8= ZZ (s1)) Ve log(n(sy, ay)) (4)

The difference Qt — b.(s;) is also referred to as Advantage. This terminology appears in more recent algorithms
like ‘Asynchronous Advantage Actor Critic Algorithm (A3C)’ [Mnih et al., 2016] and ‘Generalized Advantage
Estimation (GAE)’ [Schulman et al., 2015].

Vanilla Policy Gradient Algorithm. Initialize policy parameter #, and baseline function b;(s), Vs.
In each iteration,

1. Execute current policy 7% to obtain several sample trajectories 7%, i = 1,.. ., m.

. . . SV t—t
2. For any given sample trajectory ¢, use observed rewards 7,7, ..., to compute Q% := ﬂ(s o Zt, LY Ty

3. Use Q! and baseline function b,(s) to compute the gradient estimator g as in (4).
4. Update 6 + 0+ ag.

5. Re-optimize baseline.

3 Examples

A key contribution of policy gradient theorem is to reduce the computation of gradient of gain with respect to 8 to
computation of gradient of policy function (or log of policy function Vg log(n(s, a;8))) with respect to 8. So, it is
desirable that the gradient of policy function is efficiently computable. Here are some examples of policy functions
where this is efficiently implementable.

3.1 Softmax policies

Consider policy set parameterized by 8 € R? such that given s € S, probability of picking action a € A is given by:
b bea

Za/EA e beal

where each ¢, is an d-dimensional feature vector characterizing state-action pair s,a. This is a popular form of
policy space called softmax policies. Here,

mo(s,a) =

v@ 10g(7rg(s7a (bsa - (Z (bsa/’fr@ S, CL) - (bsa - Ea/w‘n'(s)[(bsa/]

a’cA

3.2 Gaussian policy for continuous action spaces

In continuous action spaces, it is natural to use Gaussian policies. Given state s, the probability of action a is given
as:

(s, a) = N(4(s)70,07)

for some constant o. Here ¢(s) is a feature representation of s. Then,

—(a—0"4(s))* (07¢(s) —a)

Volog(mg(s,a)) = Vy 52 s #(s)

3.3 Deep neural networks: backpropagation for gradient computation

In deep reinforcement learning, the policy function is computed by a multi-layer neural network. The independent-
layer structure of deep neural network allows the gradient computations efficiently through backpropagation. (In
the reinforcement learning context) Backpropagation refers to simply a computational implementation of the chain
rule : an algorithm that determines the relevant partial derivatives by means of the backward pass.

Suppose 7y is given by a deep neural network whose input is representation of state s, and output is a represen-
tation of action selection probabilities 7 (s, a). (We can add another layer giving logarithmic of the action selection
probabilities.) The weights of the neural network form the parameters 8 of the policy. Specifically let the quantity

of interest Gy(s,) € R4 is given by a neural network with &k — 1 hidden layers and weights 6 = (Wy, ...

input x being a representation of state s, so that
Go(s,) = log(n(s,) = log(a (W (a(- - Wia(W? - o(W'x))))))
Or, (let L(-) denote the log function)
G(s,a) = log(n(s,a)) = L(hy)
hE = o(zk), 2k = Whpk—1

e O e e))

Rt =o(2h), 2t = Wik

Now, gradient with respect of G(s, a) with respect to parameter W(fb is:

0G(s,a) dlog(hX) onk

awes OrE aw?,

Then, basic observation is as follows. For a neuron r in layer k, ¢ < k:

ot
oW,

dzk
oW,
awkhkfl
owe,
Rkt
o 7k k i
- 0 (Zr) Z Wri 8W(fb

iEparents(r)

= o)

= o)

Thus, the gradients can be back propagated over the network, until we reach layer ¢, so that

ohf [o/(ZOhT ifi=a
owe, 10 otherwise

This follows from layer structure of the neural network so that:

0z O3 Wehi !
Wy, oWG!
ontt
— Ry W(fi i
L g
= hyt

as layer Rf ! is independent of layer ¢ parameters.

References

,Wg) and

Volodymyr Mnih, Adrid Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. CoRR, abs/1602.01783,

2016. URL http://arxiv.org/abs/1602.01783.

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015. URL

http://arxiv.org/abs/1506.02438.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for rein-
forcement learning with function approximation. Proceedings of the 12th International Conference on Neural
Information Processing Systems, pages 1057-1063, 1999.

R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. Technical Report NU-CCS-88-3,
College of Comp. Sci., Northeastern University, Boston, MA, 1988.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine Learning, 8(3):229-256, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.

