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7% = 7 for @ = 0, and 71°" = 7/ for & = 1. Then, using policy gradient theorem, we get that gradient of p(7

at o = 0 is given by
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The second last step follows because > d™ (s)m (s, a)A™(s,a) = > d"(s)n(s,a)(Q" (s,a)=V™(s)) = >, d"(s)(V™(s)—
V7 (s)) = 0. In fact, by the same insight, A, (7"**) = aA,(x’). Therefore, using Taylor expression, a lower bound
on the improvement is given by

p(rp=) = p(m) 2 @Az (n') — O(a®) = Ag(7"**) — O(a?)

To get a precise lower bound expression, we use a stronger lemma below (Lemma 2). This lemma shows that
improvement in gain is given precisely by the following expression:

p(r") = p(r) = 3™ () 3 7 (s, ) AT (5, )

Compare this to

QA (7)) = Ap("e) =Y d"(s) > 7" (s,a) A" (s, a)

The first expression above uses state distribution under 77" instead of w. To get a precise lower bound we need
to bound the error due to this measure mismatch.

To compare the two, a coupling argument is used.In any given state s, 7 picks actions according to n’ with
probability « and according to = with probability 1 — «. Now, for any fixed time ¢, let ; be the number of steps
before time ¢ where 7™% did not take action according to w. Then, conditional on event 7, = 0, the distribution of
states before time ¢ is same for trajectories generated from 7" and w. More precisely,
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Pr (s; =s|p,=0)= Pr(s; = s)
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where random variable 7 = (s1,s9,..., s, ...) denotes a trajectory . Further, the probability that 72V differed
from 7 in some time step before ¢ is given by p; := Pr(n; > 0) =1 — (1 — «)*~!. Therefore,
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2.2 Algorithm design: selecting 7’ and «

Lemma 1 provides a lower bound on the improvement for a given o and =’

Choice of . For o =1 (greedy update), the improvement is lower bounded as:
p(a") = p(m) = A (') — 2ve

However, the second quantity can be larger than the first in above, as € is an upper bound on A, (%), and therefore,
the above improvement may be negative.
However, we can select a step size to ensure positive improvement as long as A,(x’) > 0. Let R be an upper

bound on rewards, so that A, (7) < %7 e < er)' Then, setting

An(m)(1 =7’
B @

o =

and substituting in Lemma 1, we get
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P70 — p(m) > aAn (') — A=) = 8R

(3)

Remark: Note that since the ‘distribution’ d™(s) in the definition of A,(#’) is not normalized to 1, and instead
sums 1/(1 —~), Az(#") in the above expression is upper bounded by R/(1 —+). So, the above expression is of order
R.

Choice of #’. From above quantification, to ensure maximum improvement, n’ should maximize A,(#"). Intu-
itively, A;(7") measures to what extent advantage can increase if a different action (according to 7’) was chosen in
every visited state under w. Clearly,

max A (7') = Z d™(s)max A7 (s, a)



Therefore, the policy that maximizes policy advantage is given by
7'(8) = argmax A” (s, a).
a

However, to use this policy the advantage A™ (s, a) needs to be estimated. The following algorithm allows approxi-
mate estimation of A™ (s, a):
Algorithm. Initialize 7.

1. Set A — > d™(s)max, A7 (s,a), where A™(s,a) are estimates of A™(s,a) for every s,a and such that

(1= )4 2 (1) mpx Ar(x) 3

Here max, A-(7n") = >, d"(s)max, A"(s,a). This can be done for example by estimating A™(s,a) as
function approximation A™ = f, (s, a) where parameter w is set through sample estimation with loss function

(1—7) > d™(s)max |A"(s, a) — f(s, a)|

Since this is expected error over state distribution under current policy =, this loss can be approximated

using trajectory samples from the current policy. Roughly %2 log %22 samples are required to ensure a § with
probability 1 — 4.

A [
2. If (1 -+)A < 2, STOP.

3. Otherwise, update policy:
7+ (1 —a)r+ar

where
7'(s) := argmax f, (s, a).

‘T (A‘ 3(15—7)> (1;13)2

In above procedure, in every iteration fl(l —) = % > % - % = %, therefore, from (3), the increase in gain is at

least )
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Since the total improvement to be made is at most maximum value of gain, i.e., R/(1 —+), the procedure terminates

%?—f = #va) steps. That is, we have the following result.

4. Go back to Step 1.

in at most
Lemma 3. Above conservative greedy algorithm terminates in at most % steps to find a policy © such that

(I —y)max A (7') <o

3 How good is the policy found?

As demonstrated in the last section, the conservative greedy algorithm (with right choice of 7’ and step size
a) is guaranteed to terminate. It terminates at the policy m such that (1 — ) max, A;(7’) < 6. This can be
interpreted as the condition that there is no (or very little) advantage increase on changing the policy under the
state distribution of the current policy. But, how does this policy compare to the “optimal policy”, which may
have completely different state distribution.



The following theorem shows that the gap can be large if the stationary distribution over states for the chosen
policy is very different from the stationary distribution over states for the optimal policy. This can happen if
there isn’t enough exploration over states. The following theorem also provides a way to ensure exploration. It
states that one could start from a different starting state distribution (e.g. uniform) than the target starting state
distribution, and then the gap depends only on how the stationary distribution of optimal policy differs from the
uniform distribution.

Theorem 4 (Theorem 6.2 of Kakade and Langford [2002]). Let d™* denotes the (non-normalized) stationary
distribution over states for policy w when starting state distribution is p. Also, let p(w; i) denote the gain of policy
w when starting state distribution is given by .

Suppose we have a policy 7, with (1 — y)max, Ag(n") < 6, where Ar(n') = >, d™*(s)>, 7' (s,a)A™(s,a).
Then, for any policy n* and starting state distribution p*,
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where the last step follows from Lemma 2. O

Therefore, if we can choose starting state distribution to be uniform distribution, we can bound the gap from
optimal pohcy by (1 )2, where n is the number of states. (Some applications may not have the flexibility of
choosing the starting state distribution).

The second part of the theorem statement follows from the observation that

. S - 1
p(s) < d™H( th PPr(se = 8) = (I = vP) " uls) < T n(s)
so that .. .. L.
dﬂ' i N (1 — ry)dﬂ' i 1 (1 — ry)dﬂ' i
2 N ey (N

4 Trust Region Policy Optimization Schulman et al. [2015]

The TRPO algorithm from Schulman et al. [2015] can be explained as a simple (and useful!) extension of the
above ideas. The paper explores if we need to use mixed policies of form 7Y = (1 — a)r + an’. Note that every
iteration of the conservative greedy algorithm stated above adds a new policy to this mixture, making the collection
of policies to maintain potentially quite large and inconvenient. Instead can we just maintain policy parameter 6,
and simply update the policy parameter 6 to obtain a new policy?

Schulman et al. [2015] provide following lower bound on improvement of gain when policy 7 is updated to
arbitrary policy 7, which is very similar to the quantification in Lemma 1 (even has essentially the same proof).
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where € = 7/ max; q |A" (s, a)|. Substituting,
40’ ey
p(T) = p(m) =2 Ax(F) -
(1-7)
Now, setting oo = DFg*(m, 7), we have Pr(a # a|s) < «. This gives the stated result. O

Note that the above lemma is very similar in form to Lemma 1 which considered 7 as mixed policy with « being
the mixing parameter, and provided:

p(T) —p(r) > Ax(7)—

(For mixed policy 7 = (1 — a)w + an’, Az (%) = aA, ('), and € = ﬁ (max, Yy, 7'(s,a)A™(s,a))). The main
contribution of Lemma 5 is to get rid of mixing through o and provide bounds in terms of total variation distance
for arbitrary updates.

Given the above result, the paper proposes the following way to update the policy parameter. A natural strategy
to find a good policy is to search over all policies with small total variation distance or KL-divergence from the

policy m and find the one with maximum A, (7). Let 7 is parameterized by 6. And, A(#) denote Ay, (7). Then,
TRPO algorithm chooses next policy by solving

max Ag(0)
é
st DR (rallns) < n

The region of parameters with D7 (7, 75) < 7 is referred to as the trust region.
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