
Louis-Philippe Morency

Multimodal Machine Learning

Lecture 2.2: Basic Concepts – Network Optimization

* Original course co-developed with Tadas Baltrusaitis.

Spring 2021 edition taught by Yonatan Bisk

Administrative Stuff

3

Lecture Highlight Form

Deadline: Today, Thursday at 11:59pm ET

New form for each lecture

Posted on Piazza’s Resources section

Use your Andrew CMU email

You will need to login using this address

You should start taking notes now!

Contact us if you have any problem

4

Lecture Highlight Form - Segments

3:05pm 3:35pm 4:00pm 4:20pm

Segment 1 Segment 2 Segment 3

Scheduled

beginning

of the lecture

Scheduled

end

of the lecture

Segment 1 starts at 3:05pm, even if the lecture starts slightly later.

Segment 3 ends whenever the lecture ends

Slides happening around the segment borders (+/- 5min of 3:35pm

and 4:00pm) can be included in either neighboring segment.

5

Reading Assignments – Weekly Schedule

Four main steps for the reading assignments

1. Monday 8pm: Official start of the assignment

2. Wednesday 8pm: Select your paper

3. Friday 8pm: Post your summary

4. Monday 8pm: Post your extra comments (2 posts)

6

Team Matching Event – Today!

Today around 4:05pm ET

(later part of the lecture)

Detailed instructions will be shared during lecture

Event optional for students who already have a full team

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 2.2: Basic Concepts – Network Optimization

* Original course co-developed with Tadas Baltrusaitis.

Spring 2021 edition taught by Yonatan Bisk

8

Lecture Objectives

▪ Learning neural networks

▪ Optimization

▪ Gradient computation

▪ Practical Deep Model Optimization

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Multimodal Optimization

Basic Concepts:

Loss Function

10

Linear Classification: Loss Function

(or cost function or objective)

𝑓 𝑥𝑖;𝑊

2 (dog) ?

1 (cat) ?

0 (duck) ?

3 (pig) ?

4 (bird) ?(Size: 32*32*3)

Image

98.7

45.6

-12.3

12.2

-45.3

Scores

𝑥𝑖

Label

𝑦𝑖 = 2 (𝑑𝑜𝑔)

Loss

𝐿𝑖 = ?

Multi-class problem

How to assign

only one number

representing

how “unhappy”

we are about

these scores?

The loss function quantifies the amount by which

the prediction scores deviate from the actual values.

A first challenge: how to normalize the scores?

11

First Loss Function: Cross-Entropy Loss

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

0.5

0

0

1

𝜎 𝑓

𝑓 ➢Score function

12

First Loss Function: Cross-Entropy Loss

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

Logistic regression:
(two classes)

= 𝜎 𝑤𝑇𝑥𝑖

0.5

0

0

1

𝜎 𝑓

𝑓

𝑝 𝑦𝑖 = "𝑑𝑜𝑔" 𝑥𝑖; 𝑤)

➢Score function

= true
for two-class problem

13

First Loss Function: Cross-Entropy Loss

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

𝑝 𝑦𝑖 𝑥𝑖;𝑊) =
𝑒
𝑓𝑦𝑖

σ𝑗 𝑒
𝑓𝑗

Softmax function:
(multiple classes)

Logistic regression:
(two classes)

= 𝜎 𝑤𝑇𝑥𝑖𝑝 𝑦𝑖 = "𝑑𝑜𝑔" 𝑥𝑖; 𝑤)
= true
for two-class problem

14

First Loss Function: Cross-Entropy Loss

(or logistic loss)

𝐿𝑖 = −log
𝑒
𝑓𝑦𝑖

σ𝑗 𝑒
𝑓𝑗

Softmax function

Cross-entropy loss:

Minimizing the

negative log likelihood.

15

Second Loss Function: Hinge Loss

loss due to

example i sum over all

incorrect labels

difference between the correct class

score and incorrect class score

(or max-margin loss or Multi-class SVM loss)

Basic Concepts:

Neural Networks

17

Neural Networks – inspiration

▪ Made up of artificial neurons

18

Neural Networks

Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

19

Neural Networks – activation function

▪ 𝑓 𝑥 = tanh 𝑥

▪ Sigmoid - 𝑓 𝑥 = (1 + 𝑒−𝑥)−1

▪ Linear – 𝑓 𝑥 = 𝑎𝑥 + 𝑏

▪ ReLU
▪ Rectifier Linear Units

▪ Faster training - no gradient vanishing

▪ Induces sparsity

𝑓 𝑥 = max 0, 𝑥 ~log(1 + exp(𝑥))

20

Multi-Layer Feedforward Network

𝑊3

𝑊2
𝑊1

𝑦𝑖𝑥𝑖
𝑓2;𝑊2

𝑥 = 𝜎(𝑊2𝑥 + 𝑏2)

𝑦𝑖 = 𝑓 𝑥𝑖 = 𝑓3;𝑊3
(𝑓2;𝑊2

(𝑓1;𝑊1
𝑥𝑖))

𝑓3;𝑊3
𝑥 = 𝜎(𝑊3𝑥 + 𝑏3)

Score function

Activation functions (individual layers)

𝐿𝑖 = (𝑓 𝑥𝑖 − 𝑦𝑖)
2 = (𝑓3;𝑊3

(𝑓2;𝑊2
(𝑓1;𝑊1

𝑥𝑖)))
2

Loss function (e.g., Euclidean loss)

𝑓1;𝑊1
𝑥 = 𝜎(𝑊1𝑥 + 𝑏1)

Optimization –

Learning model parameters

22

Learning model parameters

We have our training data

▪ X = {𝒙1, 𝒙2, … , 𝒙𝑛} (e.g. images, videos, text etc.)

▪ Y = {𝑦1, 𝑦2, … , 𝑦𝑛} (labels)

We want to learn the W (weights and biases) that leads to best loss

argmin
𝑊

[𝐿 X, Y,𝑊]

The notation means find 𝑊 for which 𝐿 X, Y,𝑊 has the lowest value

23

Optimization

24

Analytical gradient

If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥)𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)

25

How to follow the gradient

Many methods for optimization

▪ Gradient Descent (actually the “simplest” one)

▪ Newton methods (use Hessian – second derivative)

▪ Quasi-Newton (use approximate Hessian)

▪ BFGS

▪ LBFGS

▪ Don’t require learning rates (fewer hyperparameters)

▪ But, do not work with stochastic and batch methods so rarely used to train modern

Neural Networks

All of them look at the gradient

▪ Very few non gradient based optimization methods

26

Parameter Update Strategies

Gradient descent:

𝜃(𝑡+1) = 𝜃𝑡 − 𝜖𝑘𝛻𝜃𝐿

New model

parameters
Previous

parameters
Learning rate

at iteration k

Gradient of our loss function

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏
Learning rate

at iteration k
Decay Initial learning rate

Decay learning rate linearly until iteration 𝜏

27

Interpreting learning rates

Optimization –

Practical Guidelines

29

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Pre-training

30

Critical Points

31

Detecting Saddles

One way to detect saddles:

▪ Calculate Hessian at point 𝑥

▪ If Hessian is indefinite you have a saddle for sure.

▪ If Hessian is not indefinite you really can’t tell.

“My loss isn’t changing”

▪ You are definitely close to a critical point

▪ You may be in a saddle point

▪ You may be in the local minima/maxima

▪ One trick: quickly check the surrounding

▪ Best practical trick if Hessian is not indefinite.

32

Adaptive Learning Rate

Key Idea: Let neurons who just started learning have huge learning rate.

Adaptive Learning Rate is an active area of research:

▪ Adadelta

▪ RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2

x += - learning_rate * dx / (np.sqrt(cache) + eps)

▪ Adam
m = beta1*m + (1-beta1)*dx

v = beta2*v + (1-beta2)*(dx**2)

x += - learning_rate * m / (np.sqrt(v) + eps)

33

Adaptive Learning Rate

34

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Pre-training

35

Bias-Variance

Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard problem, thus

probability of finding the right model is low.

Real

Not an issue these days!

36

Bias-Variance

Problem of bias and variance

▪ Simple models are unlikely to find the solution to a hard problem, thus

probability of finding the right model is low.

▪ Complex models find many solutions to a problem, thus probability of

finding the right model is again low.

A big issue with

deep learning!Real

37

Parameter Regularization

Adding prior to the network parameters
▪ 𝐿𝑝 Norms

𝐿1 𝐿2 𝐿∞

Minimize: 𝐿𝑜𝑠𝑠 𝑥; 𝜃 + ԡ∝ ԡ𝜃

38

Parameter Regularization

Parameter Regularization
▪ 𝐿1(Lasso) and 𝐿2 (Ridge) are the most famous norms used.

▪ Sometimes combined (Elastic)

▪ Other norms are computationally challenging.

Maximum a posteriori (MAP) estimation
▪ Having priors one the model parameters

▪ 𝐿2 can be seen as a Gaussian prior on model parameters 𝜃

39

Structural Regularization

Lots of models can learn everything.

▪ Go for simpler ones.

Use task specific models:

▪ CNNs

▪ RecNNs

▪ LSTMs

▪ GRUs

Occam’s razor

40

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Pre-training

41

Co-Adaptation - Example

A neuron can learn something that is not useful:

1. It learn something useless

2. Other neurons learn to mitigate it.

Useless

neuron

Learning to fight

useless neuron Actually learning something

42

Dropout

Simply multiply the output of a hidden layer with a mask of 0s and 1s (Bernoulli)

𝑥1

𝑥2

𝑥3

𝑏

Bernoulli

𝑝 = 0.2

𝑝 = 0.8

𝑦 = 0

𝑦

43

Dropout

Forward step: multiply with a Bernoulli distribution per epoch,

batch or sample point.

Backward step: just calculate the gradients same as before.

Question: some neurons are out of the network, so how

does this work? All good?

Multiply the weights by 1 − 𝑝𝑖

Nope!

44

Dropout

Stop co-adaptation + learn ensemble

45

Other variations

Gaussian dropout: instead of multiplying with a Bernoulli random

variable, multiply with a Gaussian with mean 1.

Swapout: Allow skip-connections to happen

46

Optimization – Practical Guidelines

▪ Adaptive Optimization Methods

▪ Regularization

▪ Co-adaptation

▪ Pre-training

47

Optimization with Different Networks

Many multimodal problems are solved using different network architectures

CNN

LSTM

M
L
P

Challenge: These networks may require different optimization strategies

Examples:

• CNNs work well with high decaying learning rate

• LSTMs work well with adaptive methods and normal SGD

• MLPs are very good with adaptive methods

48

Pre-Training

A potential solution for multimodal models:

▪ Train each individual component of the model separately

▪ Put together and fine tune

An example: Multimodal Sentiment Analysis

49

Pre-training – Example (Multimodal Sentiment Analysis)

CNN
Sentiment

1. Unimodal

Pre-training

LSTM
Sentiment

CNN
Visual

Representaion

2. Encoding

LSTM
Verbal

Representation

50

Pre-training – Example (Multimodal Sentiment Analysis)

Sentiment
3. Fusion

pre-training

Visual

Representaion

Verbal

Representation

M
L
P

CNN

LSTM

4. Fine-tuning M
L
P Sentiment

51

Pre-training – Tricks

In the fine-tuning stage (4), it is better to not use adaptive methods

such as Adam.

▪ Adam starts with huge momentum on all the networks parameters

and can destroy the effects of pretraining.

▪ Simple SGD mostly helpful.

Initialization from other pre-trained models:

▪ VGG for CNNs

▪ Language models for RNNs

▪ Layer by layer training for MLPs

Team Matching Event

