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Lecture Highlights - Reminder

Last 20+ mins - Summary - At least two poi (fi bered)
Your personal takeaways from the lecture - Ti keaways (full senter
numbered)

(Optional) Any question? Pk I lic ber(s)

IMPORTANT: Be sure you received an email after your submission
(or revisit the form and your answers should be there).
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Reading Assignments — Reminder

Week 3 reading assignment was posted
1. Friday 8pm: Post your summary
2. Monday 8pm: End of the reading assignment

Be sure to post your discussion comments before Monday 8pm!

=> Start the discussion early ©

=> Late submissions will be penalized
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amaZon
web services™ Google Cloud Platfor

®» 50% coupons available for each student

® Pre-registration is required first

More details soon on Piazza ...
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Lecture Objectives

= Word representations
= Distributional hypothesis
= Learning neural representations

= Sentence representations and sequence modeling
= Recurrent neural networks

= Gated recurrent neural networks
= Backpropagation through time

» Syntax and language structure
* Phrase-structure and dependency grammars

=  Recursive neural network
= Tree-based RNN, Stack LSTM
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Word
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What is the meaning of “bardiwac”?

= He handed her her glass of bardiwac.
= Beef dishes are made to complement the bardiwacs.
= Nigel staggered to his feet, face flushed from too much bardiwac.

= Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

= | dined off bread and cheese and this excellent bardiwac.

= The drinks were delicious: blood-red bardiwac as well as light, sweet
Rhenish.

—> bardiwac is a heavy red alcoholic beverage made from grapes
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How to learn (word) features/representations?

m=) Distribution hypothesis: Approximate the
word meaning by its surrounding words

m) \Words used in a similar context will lie close together

AN ™

He was|walking [away because ...
He was|running [away because ...

— Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

T
% > Y. logp(wyyluw)

t=1 —c<j<c,j#0
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Geometric interpretation

rOW Vector X,

describes usage of get | see | use | hear | eat | kill
d doa in the knife | 51 | 20 | 84 0 3 0
wor J cat | 52 | 58 | 4 4 6 | 26
COTPUS Jogs |53 0 2 |31
boat | 59 | 39 | 23 4 0 0

can be seen as cup | 98 | 14| 6 2 110
coordinates of point in pig | 12 | 17 | 3 2 9 | 27
n-dimensional banana | 11 | 2 | 2 0 [18] 0

Euclidean space R"
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Distance and similarity

Two dimensions of English V=0bj DSM

= |llustrated for two S
dimensions: get and _
USE: Xgoq = (115, 10) . e
= similarity = spatial 27
proximity (Euclidean 3 o
distance)
= |ocation depends on N oat
frequency of noun S - ® < 9d=575 dog
(fdog ~ 2.7 - fcat) c.ateb °
e I | | I | I

0 20 40 60 80 100 120

get
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Angle and similarity

Two dimensions of English V=Obj DSM

= direction more
Important than
location

120
|

100
|

knife

= normalise “length”
|[Xqg0gll OF vector

Luse

= Oruse angle a as

distance measure

dog
—>0®
| | | | [ |
0 20 40 60 80 100 120

Language Technoiogies !nstitute




How to learn (word) features/representations?

., He
z 8 Was
walking S S
3 Away
because
300d 300d
[0;0;0;0;....;0; 0; 1; 0;...; 0; O] [0;1;0;0;....;0; 0; 0; 0;...; 0; O]

%\ [0; 0; 0; 1;....; 0; 0; 0; 0;...; 0; 0]
He was|walking [away because ... [0; 0; 0; 0;....;1; 0; 0; 0;...; 0; O]

He was|running|laway because ... [0; 0; 0;0;....; 0, 0; 0; 0;...; 0; 1]
Word2vec algorithm: https://code.google.com/p/word2vec/
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How to use these word representations

If we would have a vocabulary of 100 000 words:

Classic NLP: ___ 100 000 dimensional vector 4
Walking: [0;0;0;0;....;0;0; 1; 0;...; 0; O]
Running: [0;0;0;0;....;0;0; 0; 0;...; 1; 0]

100 000d

# Similarity = 0.0

l Transform: x'=x*W

Goal: ) 300 dimensional vector R 2004
Walking: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,095]

Running: [0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]
mm) Similarity = 0.9
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Vector space models of words

# While learning these word representations, we are
actually building a vector space in which all words
reside with certain relationships between them

Encodes both syntactic and semantic relationships

13

This vector space allows for algebraic operations:

Vec(king) — vec(man) + vec(woman) = vec(queen)
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Vector space models of words: semantic relationships

2 ] | T ] T _| I
China«
*Beijing
15 F Russia« 1
Japarx
1k Moscow |
Turkey Ankara  okyo
0.5 1
Poland:
0 Gmm}gn]ﬁ -
France AWarsaw
w —HBerlin
05 F |tal‘f‘( Paris .
#Athens
Greecet ®
-1+ Spairx Rome |
# Sadrid
-1.5 | Portugal sLisbon -
_2 1 1 1 1 1 1 |
-2 -1.5 1 0.5 0 0.5 1 1.5 2

Trained on the Google news corpus with over 300 billion words
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Word Representation Resources

Word-level representations:
Word2Vec (Google, 2013)
https://code.qgoogle.com/archive/p/word2vec/
Glove (Stanford, 2014)
https://nlp.stanford.edu/projects/glove/
FastText (Facebook, 2017)
https://fasttext.cc/
Sentence-level representations:
ELMO (Allen Institute for Al, 2018) :
https://allennlp.org/elmo Word represer]tatlons
are contextualized
BERT (Google, 2018)

using all the words in
https://github.com/qgoogle-research/bert

the sentence.
RoBERTa (Facebook, 2019) More details later

https://github.com/pytorch/fairseq In this lecture and
during Week 5
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https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://allennlp.org/elmo
https://github.com/google-research/bert
https://github.com/pytorch/fairseq

Lexicon-based Word Representation

LIWC: Language Inquiry & Word Count

Manually created dictionaries for different topics and categories:
= Function words: pronouns, preposition, negation...

Affect words: positive, negative emotions

Social words: family, friends, referents

Cognitive processes: Insight, cause, ...

Perceptual processes: Seeing, hearing, feeling

Biological processes: Body, health/illness, ...

Drives and needs: Affiliation, achievement, ...

Time orientation: past, present, future

Relativity: motion, space, time

Personal concerns: work, leisure, money, religion ...

Informal speech: swear words, fillers, assent,...

LIWC can encode individual words or full sentences.

Commercial software. Contact TAS in
https://liwc.wpengine.com/ advance if you would like to use it.
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https://liwc.wpengine.com/

Other Lexicon Resources

Lexicons
® General Inquirer (Stone et al., 1966)

® OpinionFinder lexicon (Wiebe & Riloff, 2005)

® SentiWordNet (Esuli & Sebastiani, 2006)

®* LIWC (Pennecbaker)

Other Tools
* LightSIDE
O ® Stanford NLP toolbox
® IBM Watson Tone Analyzer
Google Cloud Natural Language
Microsoft Azure Text Analytics
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Sentence Modeling: Sequence Label Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
4 A

[ N N D D A

Ideal for anyone with an Interest in disguises
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Sentence Modeling: Sequence Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction Part-of-speech ?
disguises who likes to see the subject '

) (noun, verb,...)
tackled in a humourous manner.

0 of 4 people found this review helpful

POS? POS? POS? POS? POS? POS? POS? POS?

[ N N D D A

ldeal for anyone with an Interest in disguises
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Sentence Modeling: Sequence Representation

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning Sequence representation
disguises who likes to see the subject ﬁ

tackled in a humourous manner.

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
4 A

[ N N D D A

Ideal for anyone with an Interest in disguises
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Sentence Modeling: Language Model

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction Language Model
disguises who likes to see the subject
tackled in a humourous manner.

0 of 4 people found this review helpful

Next word?

A
4 A

I .

Ideal for anyone with
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Language Model Application: Language Generation

Embedding
[0,1;
0,0004; .
_ Generation Ideal for anyone with an interest in
T disguises who likes to see the subject
0.09; tackled in a humourous manner.
0,05]

Example: Image captioning

[0,1;

0’0004’ ﬁ The man at bat readies to swing at the
ey pitch while the umpire looks on.
0.09;

0,05]
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Language Model Application: Speech Recognition

arg max P(wordsequence | acoustics) =

wordsequence

arg max P (acoustics | wordsequence) x P(wordsequence)
wordsequence P (aCOUSti CS)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

Language model

Language Technologies Institute




Challenges in Sequence Modeling

: -of- 2
TP Part-of-speech -

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in - Sentlr_nent ? |
disguises who likes to see the subject (positive or negative)
tackled in a humourous manner.

0 of 4 people found this review helpful " Language MOdel

=  Sequence representation

Main Challenges:

= Sequences of variable lengths (e.g., sentences)
= Keep the number of parameters at a minimum

= Take advantage of possible redundancy

Language Technologies Institute
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Recurrent Neural Network

Feedforward Neural Network

@ L® = —logP(Y = yV]z(D)
@ @ z®) = matmult(h®, V)

0 @ h® = tanh(Ux®)
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Recurrent Neural Networks
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Recurrent Neural Networks - Unrolling

Z
a h jh(Z)\ »h(3)
h® = tanh(Ux® + WhE=1y |

Same model parameters are used for all time parts.
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Backpropagation Through Time

L= )10 == logP(Y = y©|z)
t t
Gradient ="backprop” gradient @

@ @ aL(t) X “local” Jacobian

oL oL oL®

@or@ (Vz(t)l‘) Py (t) aLO 5, (t) —SlngLd(Zt)—lly(t) @ @

VA,

@ Vol = Vol s = VywLV o)
do(®) dh(t+1)
Vh(t)L = (t)L PYAG + Vz(t+1)L PYAG @
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Backpropagation Through Time

Gradient ="backprop” gradient
X “local” Jacobian

Z(t)

VyL = Z(V (t)L)
t
oh®
(W) = z(Vth)
dh®
@ Vyl = Z(thL)
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RNN for Sequence Prediction

P(word is P(word is P(word is P(word is
positive) positive) positive) positive)

B ey [y il e+
L L 1 L
L Il _

Ideal for anyone disguises

. 1 1
What is the loss? L = Nz L® = Nz —logP (Y = y®|z({®)
t t

Language Technologies Institute 35



RNN for Sequence Prediction

P(sequence is

positive)
E R s 1
L HE L
Ideal for anyone disguises

Whatis the loss? [ = [ = —ogP(Y = y®|z(M))

Language Technologies Institute




RNN for Sequence Representation (Encoder)

Sequence
Representation

)
.

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

Language Technologies Institute




RNN-based for Machine Translation

Le chien sur la plage =) The dog on the beach

e S -
Tr + 1
I I BN B e

1-of-N encoding 1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”

L} L
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Encoder-Decoder Architecture

Context




Gated Recurrent
Neural Networks



Long-term Dependencies

Vanishing gradient problem for RNNSs:

h®~tanh(Wh-D)

Qutputs

Hidden
Layer

|nputs

Time 1 2 3 4 5 6 7

» The influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it
cycles around the network's recurrent connections.
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Recurrent Neural Networks
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LSTM ideas: (1) “Memory” Cell and Self Loop

[Hochreiter and Schmidhuber, 1997]
Long Short-Term Memory (LSTM)

/ h® tanh
SNa/+ 1
O N2 =

( ) Self-
loop
]
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LSTM Ideas: (2) Input and Output Gates

sigmoid

N €
N x® 0_/Output gate
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LSTM ldeas: (3) Forget Gate [Gers et al., 2000]

sigmoid
h(t)\ ) f

x® 0_/Forget gate

sigmoid

\\\ h(t)\ T 0
N Ve
X 0 Output gate
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Recurrent Neural Network using LSTM Units

@%%e Yo
A} a a

LSTM® > LSTM® o LSTM®) fenseeasease: — LSTM®

/A

Gradient can still be computer using backpropagation!

SENG

vV
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Bi-directional LSTM Network

M i
V
LSTM e LSTM® fe LSTME) fammseeeeeseeeee LSTMY)
LSTM® > LSTM® > LSTM® fersesssee —{ LSTMO

o I \

ELMO: Two bi-directional LSTMs are used to

contextualize the word embeddings
https://allennip.org/eimo
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https://allennlp.org/elmo

Deep LSTM Network

L)
o P O

A} a

SENG

V
LSTMY o LSTM®) o LSTM) fersussssssss — LSTMY)
LSTM® > LSTM® > LSTM® fersesssee —{ LSTM®

NS
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_in Week 5!

COMING SOON

And There Are More Ways To Model Sequences...
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Syntax and
Language Structure



Syntax and Language Structure

What can you tell about this sentence?

Serjince Phrase-structure Grammar
s \
Noun Verb phrase
phrase A (2) Syntactic parse tree
4 \
Noun phrase
AL
s \
Noun Verb Adjective Noun :I (1) Part-of-speech tags

Alice ate yellow squash

Language Technologies Institute




Syntax and Language Structure

What can you tell about this sentence?

)‘ice Phrase-structure Grammar
Noun Verb phrase _
phrase (2) Syntactic parse tree

Noun phrase

/N

Noun Verb Adjective Noun :I@ Part-of-speech tags

Alice ate yellow squash @ Dependency Grammar

object

Language Technologies Institute




Dependency Grammar

Main idea: Syntactic structure consists of lexical items, linked by binary
asymmetric relations called dependencies

» Easier to convert to predicate-argument structure
» You can try to convert one representation into another

O But, in general, these formalisms are not equivalent

Object
Det. Subject

avYavars

The Dboy saw the dog
ROOT

Language Technologies Institute




Ambiguity in Syntactic Parsing

“Like” can be a verb or a preposition
= | like/VBP candy.
= Time flies like/IN an arrow.
“Around” can be a preposition, particle, or adverb
= | bought it at the shop around/IN the corner.
* | never got around/RP to getting a car.
= Anew Prius costs around/RB $25K.
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Language Ambiguity

S S
N
NP VP NP VP
VAN | /I\
N Vv NP N V. NP NP
/W™ N\
Det N N Det N N

Salesmen sold the dog biscuits Salesmen soldthe dog biscuits
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Language Syntax — Examples

Det Noun Verb Det Noun Prep Det Noun
The boy saw the dog in the park

Part or Speech tagging

S
N\ |
VP Object
AN Det. Subject
NP / NP Det.
Det N V Det N The boy saw the dog
The boy saw the dog ROOT
Congpitucnau Dacclas Ranaandananv-Darsing

How to take advantage of syntax when modeling
language with neural networks?

Language Technologies Institute



Recursive Neural
Network



How to Model Syntax with RNNs?

N
VP

N\ t ottt
NP / NP ? WW
/ N\ / N\
Det N V Det N The boy likes the cars
The boy likes the cars

We could use Part-of-Speech tags.
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Tree-based RNNs (or Recursive Neural Network)

S
N
VP
N
w /w
Det N V Det # # * ?
The boy likes the cars The boy likes the cars
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Recursive Neural Unit

m=) Pair-wise combination of two input features

»
»

600d
300d

The boy

&
<«

300d ] Activation function
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Recursive Neural Network for Sentiment Analysis

©co P2 = g(a,p1)

... nhot very good...
a b C

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013
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Recursive Neural Network for Sentiment Analysis

Classification of a sentence using tree-based compositionality of words

e
jou T

® ® @ NG
This film '

e e
¢ ® @ @
does n’t care @& @
about @ @
g © @ o
@ 0’0 o @ 8
@ @w1t any@ @ .of@. @
cleverness - other kind intelligent humor

Demo: http://nlp.stanford.edu/sentiment/
Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013
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http://nlp.stanford.edu/sentiment/

Stack LSTM

stack of partially buffer of words
constructed remaining to be
dependency subtrees @\%ﬁb processed
o
IS (W] B
#‘ bt %
P N
T [ amos | T T T T
0 an '(\ decision was made  ROOT 0
overhasty 208
\5\ —— REDUCE-LEFT(amod)
stack representing the 1
history of actions taken A e SHIFT
by the parser f

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015
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Stack LSTM

yo Y1 Yo Vi Yo yi Yo
(Jz] L { 1 1‘\\ } /4
X1 0 X1 0 \X_l/( X9

Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015
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Resources

= Stanford NLP software

https://nlp.stanford.edu/software/

= Stanford Parser
» Stanford POS Tagger

= UC Berkeley Parser
https://github.com/slavpetrov/berkeleyparser

» Parsers by Kenji Sagae (syntactic parsers)
http.//www.sagae.org/software.html
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http://www.sagae.org/software.html

