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Administrative Stuff
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Upcoming Deadlines

▪ Today: Lecture highlight form

▪ Sunday: First project assignment

▪ Friday 10/1: Reading assignment

▪ Sunday 10/10: Second project assignment
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GPU $50 Coupons - AWS

First, create an account on AWS Educate portal:

Your account will need to be backed by your credit card

https://aws.amazon.com/education/awseducate/

Be sure to setup billing alarms and monitor your spending!

Refrain from including AWS credential in code/github

To get your coupon, contact your Primary TA on Piazza

https://aws.amazon.com/education/awseducate/
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GPU $50 Coupons - GCP

Coupons can be redeemed at this address:

https://console.cloud.google.com/education

Be sure to setup billing alarms and monitor your spending!

Refrain from including GCP credential in code/github

To get your coupon, contact your Primary TA on Piazza
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Objectives of today’s class

▪ Multi-modal representations

▪ Coordinated vs. joint representations

▪ Unsupervised Joint representations

▪ Multimodal auto-encoder

▪ Multi-view clustering

▪ Non-negative matrix factorization

▪ Supervised joint representations

▪ Coordinated representations

▪ Canonical correlation analysis

▪ Deep CCA Models

▪ Auto-encoder in auto-encoder
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Multimodal 

representations
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Core Challenge: Multimodal Representation

Modality 1 Modality 2

Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Joint representations:A
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Joint Multimodal Representation

“I like it!” Joyful tone

Tensed voice

“Wow!”

Joint Representation
(Multimodal Space)
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Core Challenge 1: Representation

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.
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Unsupervised 

Joint representations
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Unsupervised learning

Unlabeled data 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑛} …

… with no labels 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}

Why would we want to tackle such a task?

1. Extracting interesting information from data

▪ Clustering

▪ Discovering interesting trends

▪ Data compression

2. Learn better representations
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Unsupervised representation learning

Force our representations to better model input distribution

▪ Not just extracting features for classification

▪ Asking the model to be good at representing the data and not overfitting 

to a particular task

▪ Potentially allowing for better generalizability

Use as initialization for a supervised task, especially when we have 

a lot of unlabeled data and much less labeled examples
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Shallow multimodal representations

Want deep multimodal representations

▪ Shallow representations do not capture complex relationships

▪ Often shared layer only maps to the shared section directly

Shallow RBM Shallow Autoencoder
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Autoencoders

What does auto mean?

▪ Greek for self – self encoding

▪ Feed forward network intended to 

reproduce the input

Two parts encoder/decoder

𝒙′ = 𝒈(𝒇 𝒙 ) : score function

𝑓 = 𝜎 𝑊𝒙 : encoder 

𝑔 = 𝜎(𝑊∗𝒉) : decoder

Often, we use tied weights to force the 

sharing of weights in encoder/decoder
𝑊∗ = 𝑊𝑇

𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Encoder

Decoder
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Autoencoder – Loss Function

Loss function compares the original 

input to the generated output

e.g., Euclediant loss: 𝐿 =
1

2
σ𝑘(𝑥𝑘 − 𝑥′𝑘)

2

But how to make it robust to noise?

Solution: Denoising autoencoder

▪ It adds noise to input 𝒙 but learn to 

reconstruct original

It leads to a more robust 

representation and prevents copying

ො𝑥1

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

𝑥2𝑥1 𝑥𝑛

Noise

ො𝑥2 ො𝑥𝑛𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss
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Deep Multimodal autoencoders

Bimodal auto-encoder: a deep 

representation learning approach

▪ Used for Audio-visual 

speech recognition

[Ngiam et al., Multimodal Deep Learning, 2011]
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Deep Multimodal autoencoders - training

Individual modalities can be 

pre-trained

▪ Denoising Autoencoders

To train the model to reconstruct 

the other modality

▪ Use both

▪ Remove audio

[Ngiam et al., Multimodal Deep Learning, 2011]
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Deep Multimodal autoencoders - training

Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

To train the model to reconstruct 

the other modality

▪ Use both

▪ Remove audio

▪ Remove video

[Ngiam et al., Multimodal Deep Learning, 2011]



21

Deep Multimodal autoencoders

It can now discard the decoder and 

use it for the AVSR task

Interesting experiment:

▪ “Hearing to see”

[Ngiam et al., Multimodal Deep Learning, 2011]
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Deep Multimodal Boltzmann machines

Generative model

▪ Multimodal representation trained 

using Variational approaches

▪ Used for image tagging and cross-

media retrieval

▪ Reconstruction of one modality from 

another is a bit more “natural” than in 

autoencoder representation

▪ Can actually sample text and images

[Srivastava and  Salakhutdinov,  Multimodal Learning with 

Deep Boltzmann Machines, 2012, 2014]
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Multi-View Clustering
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Data Clustering

· · ·

Image

How to discover groups in your data?

K-mean is a simple clustering algorithm 

based on competitive learning

• Iterative approach 

o Assign each data point to one 

cluster (based on distance metric)

o Update cluster centers 

o Until convergence

• “Winner takes all”

Clustering definition: partition a set of data samples such that 

similar samples are grouped, and dissimilar samples are divided
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“Soft” Clustering: Nonnegative Matrix Factorization

X F

G

=

Given: Nonnegative n x m matrix M (all entries ≥ 0) 

Want: Nonnegative matrices F (n x r) and G (r x m),

s.t. X = FG.

➢ easier to interpret

➢ provide better results in information retrieval, clustering
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Semi-NMF and Other Extensions

Ding et al., TPAMI2015

· · ·

Image
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Deep Semi-NMF Model

Trigerous et al., TPAMI 2015
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Multi-View Clustering

· · · · · ·

Text Image

· · ·

Audio

Learn data partitioning from multiple views (modalities)

Views: different sources in diverse domains or obtained 

from various feature collectors or modalities

Example: Multiple views in computer vision - LBP, SIFT, HOG

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Principles of Multi-View Clustering

2

Two important principles:

Complementarity principle: multiple views needed to get more 

comprehensive and accurate descriptions

1 Consensus principle: maximize consistency across multiple distinct 

views

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Multi-view subspace clustering

Definition: learns a unified feature representation from all the view 

subspaces by assuming that all views share this representation
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Enforcing Data Clustering in Deep Networks

· · · · · ·

Text Image

𝒀𝑿

· · · · · ·

· · · · · ·

How to enforce data clustering in our (multimodal) 

deep learning algorithms?
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Deep Matrix Factorization

Li and Tang, MMML 2015
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Other Multi-View Clustering Approaches

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Graph-based clustering: search for a fusion graph (or network) across all 

views and then perform clustering
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Other Multi-View Clustering Approaches

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Co-training: bootstraps the clustering of different views by using the 

learning knowledge from other views



35

Supervised

Joint representations
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Multimodal Joint Representation

For supervised learning tasks

▪ Joining the unimodal 

representations:

▪ Simple concatenation

▪ Element-wise multiplication  

or summation

▪ Multilayer perceptron

How to explicitly model both 

unimodal and bimodal 

interactions?

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

𝒉𝒎
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= 𝒉𝒙 ⊗𝒉𝒚

Bilinear Pooling

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

Models bimodal interactions:

𝒉𝒎 = 𝒉𝒙 ⊗𝒉𝒚

[Tenenbaum and Freeman, 2000]

𝒉𝒎
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=
𝒉𝒙 𝒉𝒙 ⊗𝒉𝒚
1 𝒉𝒚

Multimodal Tensor Fusion Network (TFN)

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

Models both unimodal and 

bimodal interactions:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

[Zadeh, Jones and Morency, EMNLP 2017]

𝒉𝒎
Unimodal

Bimodal

Important !
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Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

⊗
𝒉𝒛
1

[Zadeh, Jones and Morency, EMNLP 2017]

Explicitly models unimodal, 
bimodal and trimodal

interactions !
· · ·

· · ·

Audio
𝒁

· · ·

· · ·

Text
𝑿

𝒉𝒙 𝒉𝒛

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒛

𝒉𝒙

𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚
𝒉𝒙 ⊗𝒉𝒛

𝒉𝒛 ⊗𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚 ⊗𝒉𝒛
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Multimodal Encoder-Decoder

· · ·

· · ·

· · ·

· · ·

Text Image

···

𝒀𝑿

▪ Visual modality often encoded 

using CNN

▪ Language modality will be 

decoded using LSTM 

▪ A simple multilayer perceptron 

will be used to translate from 

visual (CNN) to language (LSTM)



Coordinated

Multimodal 

Representations
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Coordinated multimodal embeddings

▪ Instead of projecting to a joint space enforce the similarity between unimodal embeddings

Modality 1 Modality 2

Repres 2Repres. 1
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Coordinated Multimodal Embeddings

What should be the loss function?

X Y

Distance(x,y)

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]
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Max-Margin Loss – Multimodal Embeddings

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]

What should be the loss function?

X Y

Distance(x,y)

Max-margin:

Positive 

labels

Negative 

labels

Margin
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Structure-preserving Loss – Multimodal Embeddings

Symmetric max-margin:

[Wang et al., Learning Deep Structure-Preserving Image-Text Embeddings, CVPR 2016]

Structure-preserving constraints

Neighborhood of 𝒙𝒊: 
images that share the 

same meaning (text)
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Structured coordinated embeddings

▪ Instead of or in addition to similarity add alternative structure

[Vendrov et al., Order-Embeddings of 

Images and Language, 2016]

[Jiang and Li, Deep Cross-Modal Hashing] 
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Canonical 

Correlation Analysis
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demographic properties responses to survey

audio features at time i video features at time i

Multi-view Learning

𝑿 𝒀
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Canonical Correlation Analysis

· · · · · ·

Text Image

𝒀𝑿

1 Learn two linear projections, one for each 

view, that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

“canonical”: reduced to the simplest or clearest schema 

possible

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚

= argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀
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Correlated Projection

1 Learn two linear projections, one for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
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Correlated Projection

1 Learn two linear projections, one for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

We want to learn multiple projection pairs 𝒖(𝑖)𝑿, 𝒗(𝑖)𝒀 :

𝒖(𝑖)
∗ , 𝒗(𝑖)

∗ = argmax
𝒖 𝑖 ,𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝑿𝒖(𝑖) 𝒗(𝑖)

𝑻 𝚺𝒀𝒀𝒗(𝑖)
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Canonical Correlation Analysis

2 We want these multiple projection pairs to be orthogonal (“canonical”) to 

each other:

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]

3 Since this objective function is invariant to scaling, we can constraint the 

projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

1
Linear projections maximizing 

correlation

2 Orthogonal projections

3
Unit variance of the projection 

vectors

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚

for 𝑖 ≠ 𝑗
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Exploring Deep 

Correlation Networks
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image

𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Same objective function as CCA:

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

And need to compute gradients:

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑈

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑉

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image

𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image

𝒀′𝑿′
Training procedure:

1. Pre-train the models parameters 

using denoising autoencoders

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models parameters 

using denoising autoencoders

2. Optimize the CCA objective 

functions using large mini-

batches or full-batch (L-BFGS)

· · · · · ·

Text Image

𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

· · · · · ·

Text Image

𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image

𝒀′𝑿′

Jointly optimize for DCCA and 

autoencoders loss functions

➢ A trade-off between multi-view 

correlation and reconstruction 

error from individual views

Wang et al., ICML 2015
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Auto-Encoder in 

Auto-Encoder Network
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Deep Canonically Correlated Autoencoders (DCCAE)

· · ·

Text

𝑿

𝑼
· · ·𝑯𝒙

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · ·
𝑾𝒙

· · ·

· · ·

Text

𝑿′
Wang et al., ICML 2015

· · ·

Image

𝒀

𝑽
· · · 𝑯𝒚

· · ·
𝑾𝒚

· · ·

· · ·

Image

𝒀′
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Multi-view Latent “Intact” Space

Given multiple views 𝑧𝑖 from the same “object”:

1) There is an “intact” representation which is complete and not damaged

2) The views 𝑧𝑖 are partial (and possibly degenerated) representations 

of the intact representation

Xu et al., TPAMI 2015
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Auto-Encoder in Auto-Encoder Network

· · · · · ·

Input Text Input Image

𝑿(𝟐)𝑿(𝟏)

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

Reconstructed Text Reconstructed Image

𝒁(𝑴,𝟏)

Zhang et al., CVPR 2019

··
·

Latent Intact

Representation

𝑯

···

···

··· ··
·

··
·

··
·

Degradation 

network

Degradation 

network

𝒁(𝑴,𝟐)

𝒁(
𝑴
𝟐 ,𝟏) 𝒁(

𝑴
𝟐 ,𝟐)

𝑮(𝑳,𝟏) 𝑮(𝑳,𝟐)

Total Loss:

Latent variable


