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Upcoming Deadlines

= Today: Lecture highlight form

= Sunday: First project assignment

* Friday 10/1: Reading assignment

= Sunday 10/10: Second project assignment
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amazon
GPU $50 Coupons - AWS webservices™

:; First, create an account on AWS Educate portal:

https://aws.amazon.com/education/awseducate/

:> Your account will need to be backed by your credit card

Be sure to setup billing alarms and monitor your spending!

:; Refrain from including AWS credential in code/github

:> To get your coupon, contact your Primary TA on Piazza
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https://aws.amazon.com/education/awseducate/

9,

GPU $50 Coupons - GCP Google Coud Hatform

:> Coupons can be redeemed at this address:

https://console.cloud.google.com/education

Be sure to setup billing alarms and monitor your spending!
;> Refrain from including GCP credential in code/github

:> To get your coupon, contact your Primary TA on Piazza
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Objectives of today’s class

= Multi-modal representations
= Coordinated vs. joint representations

= Unsupervised Joint representations
= Multimodal auto-encoder

= Multi-view clustering
= Non-negative matrix factorization

= Supervised joint representations

= Coordinated representations
= Canonical correlation analysis
= Deep CCA Models
= Auto-encoder in auto-encoder
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Multimodal
representations
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Core Challenge: Multimodal Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations:

Representation

Modality 1 Modality 2
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Joint Multimodal Representation

_ _ Tensed voice
Joint Representation

(Multimodal Space)
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 <P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2
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Unsupervised
Joint representations
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Unsupervised learning

Unlabeled data X = {x{, x5, ..., X} ...
... with no labels Y = {y;,v,, ..., ¥}
Why would we want to tackle such a task?

1. Extracting interesting information from data
= Clustering
= Discovering interesting trends
= Data compression

2. Learn better representations
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Unsupervised representation learning
Force our representations to better model input distribution
= Not just extracting features for classification

= Asking the model to be good at representing the data and not overfitting
to a particular task

= Potentially allowing for better generalizability

Use as Initialization for a supervised task, especially when we have
a lot of unlabeled data and much less labeled examples
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Shallow multimodal representations

Want deep multimodal representations
= Shallow representations do not capture complex relationships
= Often shared layer only maps to the shared section directly

Shared Representation Shared Representation

(0000 ¢+0000 0000]| [OOO0 244000 0000

[oomoo?oomoo] [oo---oo{oomoo]

Audio Input Video Input Audio Input Video Input

Shallow RBM Shallow Autoencoder
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Autoencoders

What does auto mean?

= Greek for self — self encoding _
= Feed forward network intended to @ @ e °@
reproduce the input Decoder— I
Two parts encoder/decoder i
x' = g(f(x)) : score function - @@° ¢ °@
f =a(Wx) : encoder f 1
g = o(W*h) : decoder Encoder =

Often, we use tied weights to force the @ @ C e O@

sharing of weights in encoder/decoder
wr=wT
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Autoencoder — Loss Function

Loss function compares the original
Input to the generated output

e.g., Euclediant loss: L = %Zk(xk —x'1)?

But how to make it robust to noise?

Solution: Denoising autoencoder

= |t adds noise to input x but learn to
reconstruct original

It leads to a more robust
representation and prevents copying
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Deep Multimodal autoencoders

Bimodal auto-encoder: a deep Audio Reconstructior} Video Reconstruction
representation learning approach 00 T 00J ©0 T 00
= Used for Audio-visual 00-..00) (00.--00

speech recognition ‘ \/
Shared

[O O e OO ] Representation

00::- 00| (00::-00

I B
00+ 00] (00 +++ 00)

Audio Input Video Input
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Deep Multimodal autoencoders - training

IﬂlelduaI mOd alltles can be Audio Reconstruction Video Reconstruction
pre-trained Li. T 00J) 99 ¥ 00
= Denoising Autoencoders 00:+ 00| (00::.:00
) \/Shared
To train the model to reconstruct (00 +++ OO Represenation
the other modalit , . ,
Y N 0| (00::: 00
= Use both T
= Remove audio O 0| (00 00]
Audio Input Video Input
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Deep Multimodal autoencoders - training

Individual modalities can be
pretrained

= RBMs

= Denoising Autoencoders

To train the model to reconstruct
the other modality

= Use both

= Remove audio

= Remove video

Language Technologies Institute

Audio Reconstruction

Video Reconstruction

00 sss OO0

00 «es OO

T

T

00+ 00|

00+ 00

\/Shared

[O O e OO ] Representation

PN

00+ 00] (@ 0]
T
00 sss OO0 o0 |
Audio Input Video Input




Deep Multimodal autoencoders

N Shared

It can now discard the decoder and 00 ++: 00 |representation
use it for the AVSR task | /\
00:.+ 00 (00:--00]

i f

Interesting experiment: 00 ++ 00] (00 ++00]

m b H ea rl ng to See” Audio Input Video Input
Linear Classifier > Superyised
E Testing
Shared |, |  Shared
Representation Representation
E lllllll E (AN N} E ) r
[ Audio Video
Training Testing
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Deep Multimodal Boltzmann machines

Generative model

= Multimodal representation trained
using Variational approaches

» Used for image tagging and cross-
media retrieval

= Reconstruction of one modality from

another is a bit more “natural” than in wm‘z’i i w2
autoencoder representation h (D (Y
m
= Can actually sample text and images w @ (1)
Image m

e Text
v S (O (X X
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Multi-View Clustering
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Data Clustering

Clustering definition: partition a set of data samples such that
similar samples are grouped, and dissimilar samples are divided

How to discover groups in your data?

K-mean is a simple clustering algorithm
based on competitive learning

» |[terative approach

o Assign each data point to one
cluster (based on distance metric)

o Update cluster centers
o Until convergence [ )

e  “Winner takes all” Image
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“Soft” Clustering: Nonnegative Matrix Factorization

Given: Nonnegative n x m matrix M (all entries = 0)

4 ™ [ G ]

X
[
-

N Y, L

Want: Nonnegative matrices F (nxr) and G (r x m),
s.t. X=FG.

» easier to interpret
» provide better results in information retrieval, clustering

Language Technologies Institute




Semi-NMF and Other Extensions

SVD: X1~ FiGi

NMF: X, ~ F.GT

Semi-NMF: X, ~ F,.G"

Convex-NMF: Xy~ X W, GI

Ding et al., TPAMI2015
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Deep Semi-NMF Model

Squint

_ k-means
i § Zy . Identity |
k-means Z Expression ‘___——-———“/’1 Features
i \ 2 : §
‘ Pose / Features ‘ H3
Features Hz
L = ) 7.7,7
H1 Zl Z 1Z2 17273

Trigerous et al., TPAMI 2015
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Multi-View Clustering

Learn data partitioning from multiple views (modalities)

Views: different sources in diverse domains or obtained
from various feature collectors or modalities

Example: Multiple views in computer vision - LBP, SIFT, HOG

Audio Text Image

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Principles of Multi-View Clustering

Two important principles:

Consensus principle: maximize consistency across multiple distinct
views

Complementarity principle: multiple views needed to get more
comprehensive and accurate descriptions

One data object

View 1
View 2

A c

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Multi-view subspace clustering

Definition: learns a unified feature representation from all the view
subspaces by assuming that all views share this representation

atent space

L
\l Unified
X repre sentation
/
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Enforcing Data Clustering in Deep Networks

How to enforce data clustering in our (multimodal)
deep learning algorithms?

00
00 - 00
Text Image
X Y
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Deep Matrix Factorization

D i -
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Li and Tang, MMML 2015
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Other Multi-View Clustering Approaches

Graph-based clustering: search for a fusion graph (or network) across all
views and then perform clustering

Fusion graph

"y

~—

\7\

\/\

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Language Technologies Institute




Other Multi-View Clustering Approaches

Co-training: bootstraps the clustering of different views by using the
learning knowledge from other views

Trainer 1

Knowledge
Knowledge

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Cooperation

Trainer 2
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Supervised
Joint representations
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Multimodal Joint Representation

For supervised learning tasks

Joining the unimoda e.g. Sentiment

representations: 0 08 sofmax
S
= Simple concatenation f
= Element-wise multiplication 000 - 0001,
or summation /\
= Multilayer perceptron h, @9 09 | |h,

o h
qu to epr|C|tI)_/ model bot TETTRIRTT)
unimodal and bimodal

. . Text Image
Interactions? % y
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Bilinear Pooling

e.g. Sentiment
Models bimodal interactions: @@ ---®®) softmax
4

hm:h‘x®hy =hx®hy
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Multimodal Tensor Fusion Network (TFN)

e.g. Sentiment
Models both unimodal and @@ ---®®) softmax

bimodal interactions:

Bimodal e
h, h, x y
[ ]®[ ] [1 h,
h, @@ ‘-‘-OO] [ ]hy
rrEyre ]
Text Image
X Y
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Multimodal Tensor Fusion Network (TFN)

hy ® h,

» h, ® h,
Can be extended to three modalities:

= @[] o]

Explicitly models / | \

bimodal and h[OO -‘-‘-OO]h[ - | (@@ -‘-‘-GG] h
interactions ! * y z
rrasr i . 00) 00 ---900)
Text Image Audio
X Y YA
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Multimodal Encoder-Decoder

= Visual modality often encoded

using CNN
= Language modality will be D)
decoded using LSTM (:)
= A simple multilayer perceptron /Q\
will be used to translate from ©)
visual (CNN) to language (LSTM)

0000 OO -.-00]

00 - 00 00 - 00

Text Image
X Y
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Coordinated
Multimodal
Representations



Coordinated multimodal embeddings

» |nstead of projecting to a joint space enforce the similarity between unimodal embeddings

Repres.1 <= Repres 2

I I

Modality 1 Modality 2
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Coordinated Multimodal Embeddings

What should be the loss function?

Distance(Xx,y)

Image features Text: a parrot rides a tricycle
X Y

[Frome et al., DeVIiSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]
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Max-Margin Loss — Multimodal Embeddings

. What should be the loss function?
Max-margin:

d(xi,y;) +m <d(zi,ye) Vy; €Y7 Vyp €Y7 Distance(x,y)

Margin Positive Negative @
labels labels ‘ ¥

Image features Text: a parrot rides a tricycle
X Y

[Frome et al., DeVIiSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]
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Structure-preserving Loss — Multimodal Embeddings

Symmetric max-margin:
d(xi,y;) +m <d(xi,ye) Yy; €Y, Vyp €Y,
d(xjryi) +m < d(zp.yir) Vo€ X;,V:I.’-;y c X,

Neighborhood of x;:
4:' Images that share the

same meaning (text)
Structure-preserving constraints /
d(z;, ;) +m < d(xi,x) Yo; € N(x;), Vo € N(x;)

d(yir sy )+m < d(yi,yr) Yy € N(yar), Vyrr € N(yir)

[Wang et al., Learning Deep Structure-Preserving Image-Text Embeddings, CVPR 2016]
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Structured coordinated embeddings

* [nstead of or in addition to similarity add alternative structure

entity

skis person\ dog
/ \ . T T T T T T !
woman person walking i @% \ Supervised Information
‘\ \ | TATA L0 0
woman walking , — a1l tdl P41 {0100 |
\ (N s S G e } Binary | |
i —————————— \ Code | 1 S

woman skiing woman walking her dog

| / N

|

I |
0 ¥ | | |
3| ' l -1-11 1 | 10 |
(:, m: “ ll i 1
E'f" O / _____________________

[Vendrov et al., Order-Embeddings of [Jiang and Li, Deep Cross-Modal Hashing]
Images and Language, 2016]
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Canonical
Correlation Analysis
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Multi-view Learning

audio features at time 1 video features at time 1
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Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest schema
possible

@ Learn two linear projections, one for each
view, that are maximally correlated:

projection of Y

»

projection of X

(u*,v*) = argmax corr(H,, Hy)

. Hx // \\\ Hy
00 00 00 00
= argmax corr(uTX, vTY) U | | vV
| 00 - 00 00 - 00)
Text Image
X Y
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Correlated Projection

@ Learn two linear projections, one for each view, that are maximally
correlated:

(u*,v*) = argmax corr(u! X, v'Y)

uv

° b °
. o . . v... ° ® 9
SIS L N et

¢ o °F oo P

o« o ¢ o

Y
X . .

Two views X, Y where same instances have the same color
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Correlated Projection

@ Learn two linear projections, one for each view, that are maximally
correlated:

(u*,v*) = argmax corr(u! X, v'Y)
uv

We want to learn multiple projection pairs (u(i)X, v(i)Y):

Uiy Exy v

(uiy v) = argmax T T
(@)Y \/u(i)zXXu(i)\/v(i)zYYv(i)
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Canonical Correlation Analysis

We want these multiple projection pairs to be orthogonal (“canonical”) to
each other:

u{l)szv(]) = u{])szv(l) =0 for i :;t]
|UszV| = tT(UszV) where U = [u(l),u(z),..., u(k)]

and V = [v(1), V(2),---, V()]

Since this objective function is invariant to scaling, we can constraint the
projections to have unit variance:

UTs U =1 VIZyV =1
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Canonical Correlation Analysis

maximize: tr(UTZyy V)
subject to: UTSxxU = VTZyyV = I, uljyZxyv(;y = 0
R fori #j
z )
Linear projections maximizing c o5
@ correlation g {,ﬁl
. /projection OfX:K
Orthogonal projections
@ omoomaloe w /N
Unit variance of the projection °e 00 (@0 1)
@ vectors U V
00 - 00 | -1")
Text Image
X Y
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Exploring Deep
Correlation Networks
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr(H X Hy)
V.UW, W,

And need to compute gradients:

acorr(H o H y)
ou

acorr(Hx, Hy)
aV

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

Training procedure:

X' Y’
1. Pre-train the models parameters Text Image
using denoising autoencoders 00 - 00 | )
00 00
H: (@0 - 00] 00 00 H
Ul V
00 - 00
W, 1 W,
00 00 |
Text Image
X Y

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models parameters
using denoising autoencoders

2. Optimize the CCA objective
functions using large mini-
batches or full-batch (L-BFGS)

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and
autoencoders loss functions

> A trade-off between multi-view
correlation and reconstruction
error from individual views

Wang et al., ICML 2015

Language Technologies Institute




Auto-Encoder In
Auto-Encoder Network
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Deep Canonically Correlated Autoencoders (DCCAE

.................................................................................................................................................................................................................................................................................................................. Wangetal., ICML 2015 @ @@ @ .
X' Y’
Text Image
00 - 00 [ ]
A
CIrexnr o [ ]
1 ; --—’:ﬁ h DS
— 2 Y
—————— = /.’. a ~~~~~“~~
________ View H, ] \\‘\-\
H: 9@ - @@ 00 --00)Hy
U A A V
00 - 00] | .
Wx a a Wy
00 - 00 00 -
Text Image
X Y
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Multi-view Latent “Intact” Space
Xu et al., TPAMI 2015

Given multiple views z; from the same “object”:

View Space Z;

57 aceds maip

View Space Z,

Latent Intact Space

1) There is an “intact” representation which is complete and not damaged

2) The views z; are partial (and possibly degenerated) representations
of the intact representation
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Auto-Encoder in Auto-Encoder Network
Zhang et al., CVPR 2019

Reconstructed Text Latent Intact Reconstrlﬁ:;ed Image
ZM.1) . ZM.2)
Representation
@0 00 u L, Q@ - 99
L “ GO — ¢ “ ¢
o e e &
v/ (00 - 00 © @@ O @@ | ] \¢
‘ Clilele:|® ol @ |
XY I DU o D ) DRSS ) SERIN () BN B B BN O Y4
\/0 . . . . i . | . . . OSS
| CR- R HA R :
ZF¥V (00 00 © I F" 0 TTi0 @0 - 00 zF¥
| Degradation Degradation |
QG QQ network network ( ]
| ~ Total Loss:
00 09 . 1 v 00 _ (M) 2
Input Text 0 otV ( F Input Image
{Oae ?edg v=1 v=1 ) p g
x®M Latent variable +A"Z(T'I)J—G(L’l') o) xX®
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