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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 5.1: Multimodal alignment

* Original course co-developed with Tadas Baltrusaitis.  

Spring 2021 edition taught by Yonatan Bisk



2

Administrative Stuff



3

3

Second Project Assignment (Due Sunday 10/10)

Main goals:

▪ Get familiar with unimodal representations

▪ Learn about tools based on CNNs, word2vec, BERT, …

▪ Understand the structure in your unimodal data

▪ Perform some visualization of the unimodal data

▪ Explore qualitatively the unimodal data

▪ How does it relate to your labels? Look at specific examples

Examples of unimodal analyses:

▪ What are the different verbs used in the VQA questions?

▪ What objects do not get detected? Are they important?

▪ Visualize face embeddings with respect of emotion labels
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Share Your Thoughts!

Deadline
Please submit your 

feedback about this 

course before this 

Sunday 10/3

Optional, 

but greatly appreciated! ☺

Anonymous, by default.
• You can optionally share 

your email address if 

you want us to follow-up 

with you directly.

https://forms.gle/ZUBcMZVf4Ttv2uQ66

https://forms.gle/ZUBcMZVf4Ttv2uQ66
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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 5.1: Multimodal alignment

* Original course co-developed with Tadas Baltrusaitis.  

Spring 2021 edition taught by Yonatan Bisk
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Lecture objectives

▪ Multimodal alignment

▪ Explicit signal alignment

▪ Dynamic Time Warping

▪ Canonical Time Warping

▪ Multi-view video alignment

▪ Speech alignment

▪ Connectionist Temporal Classification

▪ Implicit alignment

▪ Hard attention

▪ Spatial Transformer Networks
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Multimodal alignment
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Multimodal-alignment

Multimodal alignment – finding relationships and 

correspondences between two or more modalities

Two types

▪ Explicit – alignment is the task in itself

▪ Implicit / Latent – alignment helps when 

solving a different task (for example using 

“Attention” module)

Examples ?

▪ Images with captions

▪ Recipe steps with a how-to video

▪ Phrases/words of translated sentences
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tn

Modality 2Modality 1
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Explicit multimodal-alignment

Explicit alignment - goal is to find correspondences between modalities

In other words: the alignment is part of the loss function

▪ Aligning speech signal to a transcript

▪ Aligning two out-of sync sequences

▪ Language grounding
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Implicit multimodal-alignment

Implicit alignment - uses internal latent alignment of modalities in order to 

better solve various problems

▪ Machine Translation

▪ Cross-modal retrieval

▪ Image & Video Captioning

▪ Visual Question Answering
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Explicit alignment
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Temporal sequence alignment

Applications:

- Re-aligning asynchronous 

data

- Finding similar data across 

modalities (we can 

estimate the aligned cost)

- Event reconstruction from 

multiple sources
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Let’s start unimodal – Dynamic Time Warping

▪ We have two unaligned temporal unimodal

signals

▪ 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑛𝑥 ∈ ℝ𝑑×𝑛𝑥

▪ 𝐘 = 𝒚1, 𝒚2, … , 𝒚𝑛𝑦 ∈ ℝ𝑑×𝑛𝑦

▪ Find set of indices to minimize the alignment 

difference:

▪ Where 𝒑𝑥and 𝒑𝑦are index vectors of same 

length

▪ Dynamic Time Warping is designed to find these 

index vectors

𝐿(𝒑𝑥, 𝒑𝑦) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥 − 𝒚𝒑𝑡
𝑦

2

2



14

14

Dynamic Time Warping continued

Lowest cost path in a cost matrix

▪ Restrictions?
▪ Monotonicity – no going back in time

▪ Continuity  - no gaps

▪ Boundary conditions - start and end at the 

same points

▪ Warping window - don’t get too far from 

diagonal

▪ Slope constraint – do not insert or skip too 

much

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)
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Dynamic Time Warping continued

Lowest cost path in a cost matrix

▪ Solved using dynamic programming 

while respecting the restrictions

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)
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DTW alternative formulation

Replication doesn’t change the objective!

𝐿(𝒑𝑥 , 𝒑
𝑦
) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥
− 𝒚𝒑𝑡

𝑦

2

2

= 𝐗𝐖𝑥
=

= 𝐘𝐖y

Alternative objective:

𝐿(𝑾𝒙,𝑾𝒚) = 𝑿𝑾𝑥 − 𝒀𝑾𝑦 𝐹

2
𝑿, 𝒀 – original signals (same #rows, possibly 

different #columns) 

𝑾𝑥,𝑾𝑦 - alignment matrices

Frobenius norm 𝑨 𝐹
2 = σ𝑖σ𝑗 𝑎𝑖,𝑗

2

𝑾𝒙

𝑾𝒚

A differentiable version of DTW also exists… 

https://arxiv.org/pdf/1703.01541.pdf

https://arxiv.org/pdf/1703.01541.pdf
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▪ Computationally complex

▪ Sensitive to outliers

▪ Unimodal!

m sequences

DTW – Some Limitations
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Canonical Correlation Analysis reminder

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰 , 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

1
Linear projections maximizing 

correlation

2 Orthogonal projections

3
Unit variance of the projection 

vectors

for 𝑖 ≠ 𝑗

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚
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Canonical Correlation Analysis reminder

When data is normalized it is actually equivalent to smallest RMSE reconstruction

CCA loss can also be re-written as:

𝐿(𝑼, 𝑽) = 𝐔𝑇𝐗 − 𝐕𝑇𝐘 𝐹
2

· · · · · ·

Text Image

𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·

𝑯𝒙 𝑯𝒚subject to:

𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎
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Canonical Time Warping

Dynamic Time Warping + Canonical Correlation Analysis = Canonical Time 

Warping

▪ Allows to align multi-modal or multi-view (same modality but from a different 

point of view)

▪ 𝑾𝒙,𝑾𝒚 – temporal alignment

▪ 𝑼,𝑽 – cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2
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Canonical Time Warping

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009, NIPS]

Optimized by Coordinate-descent – fix one set of parameters, optimize another

Generalized Eigen-decomposition

Gauss-Newton

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2

𝑾𝒙,𝑾𝒚 𝑼,𝑽



22

22

(1) Time warping

(2) Spatial embedding

Generalized Time warping

Generalize to multiple sequences all of different modality

▪ 𝑾𝒊 – set of temporal alignments

▪ 𝑼𝒊 – set of cross-modal (spatial) alignments

[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]

𝐿(𝑼𝒊,𝑾𝒊) =෍

𝑖=1

෍

𝑗=1

𝐔𝑖
𝑇𝐗i𝐖i − 𝐔𝑗

𝑇𝐗j𝐖𝑗 𝐹

2
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Alignment examples (multimodal)
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Deep Canonical Time Warping

Could be seen as generalization of DCCA and GTW

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

𝐿(𝜽1, 𝜽2,𝑾𝒙,𝑾𝒚) = 𝑓𝜽1(𝐗)𝐖𝐱 − 𝑓𝜽2(𝐘)𝐖𝐲 𝐹

2
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Deep Canonical Time Warping

▪ The projections are orthogonal (like in DCCA)

▪ Optimization is again iterative:

▪ Solve for alignment (𝑾𝒙,𝑾𝒚) with fixed projections (𝜽1, 𝜽2)

▪ Eigen decomposition

▪ Solve for projections (𝜽1, 𝜽2) with fixed alignment (𝑾𝒙,𝑾𝒚)

▪ Gradient descent

▪ Repeat till convergence

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

𝐿(𝜽1, 𝜽2,𝑾𝒙,𝑾𝒚) = 𝑓𝜽1(𝐗)𝐖𝐱 − 𝑓𝜽1(𝐘)𝐖𝐲 𝐹

2
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Multi-View 

Video Alignment and 

Representation Learning
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Temporal sequence alignment



28

Reminder: Dynamic Time Warping for Sequence Alignment

𝐿(𝒑𝑡
𝑥, 𝒑𝑡

𝑦
) = ෍

𝑡=1

𝑙

𝒙𝒑𝑡𝑥 − 𝒚𝒑𝑡
𝑦

2

2

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)

Solved with dynamic programming… 

But how to do alignment and representation learning 

at the same time?
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Premise: we have paired video sequences 

that can be be temporally aligned 

Temporal Alignment and Neural Representation Learning

How can we define a loss function to enforce 

the alignment between sequences while at the 

same time learning good representations?
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Self-supervised approach to learn an embedding space 

where two similar video sequences can be aligned temporally

Temporal Cycle-Consistency Learning
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Solution: Representation learning by enforcing Cycle consistency

Temporal Cycle-Consistency Learning

Main idea: My closest neighbor also views me as their closest neighbor
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Compute “soft” / “weighted” nearest neighbour:

Temporal Cycle-Consistency Learning

distances: Soft nearest neighbor:

Find the nearest neighbor the other way and then penalize the distance:

penalty!
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Nearest Neighbour Retrieval

Temporal Cycle-Consistency Learning
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Anomaly Detection 

Temporal Cycle-Consistency Learning

How could you extend this idea to multimodal?

Course project idea? ☺
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Alignment for 

Speech Recognition
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Architecture of Speech Recognition

𝑨

Feature

Extraction

Frame

Classification

Sequence

Model

Lexicon

Model

Language

Model

Speech Audio Feature Frames

𝑶

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳

𝑸

Sequence States

t ah m aa t ow

𝑃 𝑳 𝑾 𝑃(𝑾)

𝑳

Phonemes

𝑾

Words Sentence

http://slazebni.cs.illinois.edu/spring17/lec26_audio.pdf

Spectogram

𝑾

෢𝑾 = argmax
𝑾

𝑃 𝑾 𝑶

= argmax
𝑾

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳 𝑃 𝑳 𝑾 𝑃(𝑾)

tomato
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Architecture of Speech Recognition

𝑨

Frame

Classification

Sequence

Model

Language

Model

Speech Audio Feature Frames

𝑶

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳

𝑸

Sequence States

t ah m aa t ow

𝑃 𝑳 𝑾 𝑃(𝑾)

𝑳

Phonemes

𝑾

Words Sentence

http://slazebni.cs.illinois.edu/spring17/lec26_audio.pdf

Spectogram

𝑾

Feature

Extraction

Lexicon

Model

deterministic

෢𝑾 = argmax
𝑾

𝑃 𝑾 𝑶

= argmax
𝑾

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳 𝑃 𝑳 𝑾 𝑃(𝑾)

tomato
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Architecture of Speech Recognition

෢𝑾 = argmax
𝑾

𝑃 𝑾 𝑶

= argmax
𝑾

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳 𝑃 𝑳 𝑾 𝑃(𝑾)

𝑨

Frame

Classification

Sequence

Model

Language

Model

Speech Audio Feature Frames

𝑶

𝑃 𝑨 𝑶 𝑃 𝑶 𝑸 𝑃 𝑸 𝑳

𝑸

Sequence States

t ah m aa t ow

𝑃 𝑳 𝑾 𝑃(𝑾)

𝑳

Phonemes

𝑾

Words Sentence

http://slazebni.cs.illinois.edu/spring17/lec26_audio.pdf

Spectogram

𝑾

Feature

Extraction

Lexicon

Model

deterministic

Sequence Labeling (and alignment)

tomato
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t  ah  m  aa  t  ow

Sequence Labeling and Alignment

Spectogram

Phonemes

How can we predict the sequence of phoneme 

labels from the sequence of audio frames?
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t  ah  m  aa  t  ow

Potential Solution: Sequence Labeling with RNN

Spectogram

Phonemes

What should be the loss function?

Challenge: many-to-1 alignment

t   ah       m   aa 
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Connectionist Temporal Classification (CTC)

Deep Speech 2

Test set Deep speech 2 Human

WSJ eval’92 3.60 5.03 

WSJ eval’93 4.98 8.08  

LibriSpeech 

test-clean

5.33 5.83 

LibriSpeech

test-other

13.25 12.69 

Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." (2015)

CTC is used in speech recognition 

systems that were almost in par 

with human performances.
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Connectionist Temporal Classification (CTC)

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)
𝒙 ∈ 𝒳 are spectrogram frames

Training examples 𝑆 = 𝒙𝟏, 𝒛𝟏 , … 𝒙𝑵, 𝒛𝑵 ∈ 𝒟𝒳×𝒵

Goal: train temporal classifier ℎ ∶ 𝒳 → 𝒵

Loss: Negative log likelihood

𝐿 𝑆; 𝜃 = − ෍

𝒙,𝒛 ∈𝑆

ln 𝑝𝜃 𝒛 𝒙

Not the 

same length

𝒛 ∈ 𝒵 are phoneme transcripts

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑇

𝒛 = 𝑧1, 𝑧2, … , 𝑧𝑈

𝑈 ≤ 𝑇

defined over the space of labels L
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Connectionist Temporal Classification (CTC)

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)

softmax

𝒚 = 𝑓𝜃 𝒙 ,

1 Output activations (distribution):

C
T

C

𝑦1
𝑡

… … … … …𝑦𝐿
𝑡

𝑦𝐿+1
𝑡

where 𝒚𝒕 = 𝑦1
𝑡, 𝑦2

𝑡, … , 𝑦𝐿
𝑡,

for ‘blank’ or no label

𝑦𝐿+1
𝑡

2

P 𝝅 𝒙 = ෑ

𝑡=1

𝑇

𝑦𝝅𝑡
𝑡 , ∀𝝅 ∈ 𝐿′𝑇

Path 𝝅 over the activations:

𝑃 𝒍 𝒙 =෍

𝝅

𝑃 𝒍 𝝅 𝑃 𝝅 𝒙

3 Predicted labels 𝒍 𝒍
Temporal 

alignment

Rule-based alignment:

1) Remove all blanks

2) Remove repeated labels

𝑙 = {𝑎} 𝑙 = {𝑏𝑒𝑒}
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Connectionist Temporal Classification (CTC)

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)

softmax

𝒚 = 𝑓𝜃 𝒙 ,

1 Output activations (distribution):

C
T

C

𝑦1
𝑡

… … … … …𝑦𝐿
𝑡

𝑦𝐿+1
𝑡

where 𝒚𝒕 = 𝑦1
𝑡, 𝑦2

𝑡, … , 𝑦𝐿
𝑡,

for ‘blank’ or no label

𝑦𝐿+1
𝑡

2

P 𝝅 𝒙 = ෑ

𝑡=1

𝑇

𝑦𝝅𝑡
𝑡 , ∀𝝅 ∈ 𝐿′𝑇

Path 𝝅 over the activations:

Ƹ𝑧 = ℎ 𝑥 = arg max
𝑙∈𝐿𝑇

𝑃 𝒍 𝒙

𝒍

4

𝑃 𝒍 𝒙 =෍

𝝅

𝑃 𝒍 𝝅 𝑃 𝝅 𝒙

3 Predicted labels 𝒍

Most probable sequence labels
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CTC Optimization

t  ah  m  aa  t  ow

Spectogram (𝒙)

Phonemes (𝒛)

softmax

C
T

C

𝑦1
𝑡

… … … … …𝑦𝐿
𝑡

𝑦𝐿+1
𝑡

𝑧∗ = ℎ 𝑥 = arg max
𝑙∈𝐿𝑇

𝑃 𝒍 𝒙

𝒍

4 Most probable sequence labels

Option 2: Solve using dynamic programming

➢ Forward variables 𝛼
➢ Backward variables 𝛽

𝑃 𝑙 𝑥 =෍

𝑡=1

𝑇

෍

𝑠=1

|𝑙|
𝛼𝑡 𝑠 𝛽𝑡 𝑠

𝑦𝑙𝑠
𝑡

Forward-backward algorithm

Option 1: Select most probable path 𝝅

𝜋∗ = arg max
𝜋

𝑃 𝝅 𝒙

Get most probable labels 𝑧∗

directly from 𝜋∗
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Visualizing CTC Predictions

“Framewise” modeling: Learned using phoneme segmentation (vertical lines)

Why are CTC predictions so “peaky”?

(without CTC)

It gets penalized 

for mistakes 

around the 

boundaries
CTC focuses on the phoneme transitions
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Implicit alignment
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Implicit alignment

We looked how to explicitly align temporal data

Could use that as an internal (hidden) step in our models?

Can we instead encourage the model to align data when solving a 

different problem?

Yes!
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Potential Solution and Inspiration: Human Attention

Foveal vision – we only see in “high resolution” in 2 degrees of vision

▪ We focus our attention selectively to certain words (for example our names)

▪ We attend to relevant speech in a noisy room
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Implicit and “Uni-Directional” Alignment

A woman is throwing a frisbeeModality A

Modality B

(query)

(key)

1 Hard attention

2 Warping

3 Soft attention
(discussed on Thursday)
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Glimpse Network

(Hard Attention)



52

52

Hard attention

Soft attention requires computing a representation for the whole image or sentence

(more details during next lecture)

Hard attention on the other hand forces looking only at one part

▪ Main motivation was reduced computational cost rather than improved accuracy (although 

that happens a bit as well)

▪ Saccade followed by a glimpse – how human visual system works

[Recurrent Models of Visual Attention, Mnih, 2014]

[Multiple Object Recognition with Visual Attention, Ba, 2015]



53

53

Hard attention examples
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Glimpse Sensor

Looking at a part of an image at different scales

▪ At a number of different scales combined to a single multichannel image (human retina like 

representation)

▪ Given a location 𝑙𝑡 output an image summary at that location
[Recurrent Models of Visual Attention, Mnih, 2014]
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Glimpse network

▪ Combining the Glimpse and the location of the glimpse into a joint network

▪ The glimpse is followed by a feedforward network (CNN or a DNN)

▪ The exact formulation of how the location and appearance are combined varies, the important thing is 

combining what and where

▪ Differentiable with respect to glimpse parameters but not the location
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Overall Architecture - Emission network 

▪ Given an image a glimpse 

location 𝑙𝑡, and optionally an 

action 𝑎𝑡
▪ Action can be:

▪ Some action in a dynamic 

system – press a button etc.

▪ Classification of an object

▪ Word output

▪ This is an RNN with two output 

gates and a slightly more 

complex input gate!
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Recurrent model of Visual Attention (RAM)

▪ Sample locations of glimpses 

leading to updates in the network

▪ Use gradient descent to update the 

weights (the glimpse network 

weights are differentiable)

▪ The emission network is an RNN

▪ Not as simple as backprop but 

doable

▪ Turns out this is very similar and in 

some cases equivalent to 

reinforcement learning using the 

REINFORCE learning rule 

[Williams, 1992]
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Spatial Transformer 

networks (Warping)

But not the “real” transformer!
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Some limitations of grid-based attention

Can we fixate on small parts of image but still have easy end-to-end training?
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Spatial Transformer Networks

Can we make this 

function differentiable?
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Spatial Transformer Networks

Can we make this 

function differentiable?

Idea: Function mapping pixel 

coordinates (𝑥𝑡, 𝑦𝑡) of output to 

pixel coordinates (𝑥𝑠, 𝑦𝑠) of 

input 

𝑥𝑖
𝑠

𝑦𝑖
𝑠 =

𝜃1,1 𝜃1,2 𝜃1,3
𝜃2,1 𝜃2,2 𝜃2,3

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1
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Spatial Transformer Networks

Network “attends” to 

input by predicting 𝜃

Idea: Function mapping pixel 

coordinates (𝑥𝑡, 𝑦𝑡) of output to 

pixel coordinates (𝑥𝑠, 𝑦𝑠) of 

input 

𝑥𝑖
𝑠

𝑦𝑖
𝑠 =

𝜃1,1 𝜃1,2 𝜃1,3
𝜃2,1 𝜃2,2 𝜃2,3

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

Can we make this 

function differentiable?
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