

Multimodal Machine Learning

Lecture 5.2: Alignment and Representation

Louis-Philippe Morency

^{*} Original course co-developed with Tadas Baltrusaitis. Spring 2021 edition taught by Yonatan Bisk

Administrative Stuff

Deadline

Please submit your feedback about this course before this Sunday 10/3

Optional, but greatly appreciated! ©

Anonymous, by default.

 You can optionally share your email address if you want us to follow-up with you directly.

Multimodal Machine Learning

Lecture 5.2: Alignment and Representation

Louis-Philippe Morency

^{*} Original course co-developed with Tadas Baltrusaitis. Spring 2021 edition taught by Yonatan Bisk

Objectives of today's class

- Soft attention models
- Contextualized sentence embedding
- Transformer networks
 - Self-attention
 - Multi-head attention
 - Position embeddings
 - Sequence-to-sequence modeling
- Multimodal contextualized embeddings
- Language pre-training
 - BERT pre-training and fine-tuning

5

Implicit and "Uni-Directional" Alignment

Modality A (query)

Modality B (key)

A woman is throwing a frisbee

1 Hard attention

2 Warping

3 Soft attention (discussed on today!)

6

Soft Attention Models

Sequence-to-Sequence Models

What is the problem with this? What happens when the sentences are very long?

Inspiration: human attention

Decoder with Attention Module

A new intermediate hidden state is computed for each decoding iteration:

Decoder with Attention Module

A new intermediate hidden state is computed for each decoding iteration

Decoder with Attention Module

A new intermediate hidden state is computed for each decoding iteration

How do we encode attention?

Before:

$$p(y_i|y_1,...,y_{i-1},x) = g(y_{i-1},s_i,z),$$

where $z = h_T$, last encoder state and s_i is the current state of the decoder Now:

$$p(y_i|y_1,...,y_{i-1},x) = g(y_{i-1},s_i(z_i))$$

Have an attention "gate"

- A different context z_i used at each time step!
- $\mathbf{z}_i = \sum_{j=i}^{T_x} \alpha_{ij} \mathbf{h}_j$

 α_{ij} is the (scalar) attention for word j at generation step i

How do we encode attention?

So how do we determine α_{ij} ?

$$\alpha_{i,j} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{\chi}} \exp(e_{ik})}$$
 - softmax, making sure they sum to 1

where:

$$e_{ij} = \boldsymbol{v}^T \, \sigma \big(W \boldsymbol{s_{i-1}} + U \boldsymbol{h_j} \big)$$

a feedforward network that can tell us how important the current encoding is

13

v, W, U- learnable weights

$$z_i = \sum_{j=i}^{T_x} \alpha_{ij} h_j$$

expectation of the context (a fancy way to say it's a weighted average)

Example – Attention for Machine Translation

Example – Visual captioning

Recap RNN for Captioning

Why not using final layer of the CNN?

Looking at more fine grained features

Attention for (contextualized) Representation Learning

Sequence Encoding - Contextualization

How to encode this sequence while modeling the interaction between elements (e.g., words)?

Option 1: Bi-directional LSTM:

(e.g., ELMO)

But harder to parallelize...

Sequence Encoding - Contextualization

Option 2: Convolutions

Can be parallelized!

But modeling long-range dependencies require multiple layers

And convolutional kernels are static

Language Technologies Institute

Sequence Encoding - Contextualization

Option 3: Self-attention

Can be parallelized!

Long-range dependencies

Dynamic attention weights

Self-Attention

Self-Attention

Self-Attention

What if we want to attend simultaneously to multiple subspaces of x?

What happens if the words are shuffled?

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Transformer Multi-Head Attention

Sequence-to-Sequence Using Transformer

Sequence-to-Sequence Modeling

How should we connect the encoder and decoder self-attention to the transformer attention?

Language Pre-training

Token-level and Sentence-level Embeddings

Token-level embeddings

Which tasks?

Sentence-level embedding

Which tasks?

Pre-Training and Fine-Tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- 2 Same network architecture for pre-training and fine-tuning

Language Technologies Institute

BERT: Bidirectional Encoder Representations from Transformers

Advantages: Jointly learn representation for token-level and sentence level Same network architecture for pre-training and fine-tuning Can be used learn relationship between sentences Models bidirectional and long-range interactions between tokens h_5 h_{sep} h_{S} How can we do all this? x_5 do like it not enjoy time

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- 1 Jointly learn representation for token-level and sentence level
- Same network architecture for pre-training and fine-tuning
- 3 Can be used learn relationship between sentences
- Models bidirectional interactions between tokens

Pre-training BERT Model

Randomly mask input tokens and then try to predict them

What is the loss function?

Pre-training BERT Model

Next Sentence Prediction

Given two sentences, predict if this is the next one or not

What is the loss function?

Three Embeddings: Token + Position + Sentence

1 Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

How?

1 Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

2 Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

How to compare two sentences?

3 Sentence-level classification for two sentences

Examples: natural language inference

56

Language Technologies Institute

Question-answering: find start/end of the answer in the document

Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?"

Plausible Answer: later laws

Question 2: "What was the name of the 1937 treaty?"

Plausible Answer: Bald Eagle Protection Act

4 Question-answering: find start/end of the answer in the document

58

Contextualized Multimodal Embedding

Multimodal Embeddings

Simple Solution: Contextualized Multimodal Embeddings

Multimodal Transformer – Pairwise Cross-Modal

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

Cross-Modal Transformer

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

And Many More... Next week!

