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Multimodal Machine Learning

Lecture 7.1: Alignment and Translation

* Original course co-developed with Tadas Baltrusaitis.  

Spring 2021 edition taught by Yonatan Bisk
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Administrative Stuff
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Midterm Project Report Instructions

▪ Goal: Evaluate state-of-the-art models on your dataset and identify key 

issues through a detailed error analysis

▪ It will inform the design of your new research ideas

▪ Report format: 2 column (ICML template)

▪ The report should follow a similar structure to a research paper

▪ Teams of 3: 8 pages, Teams of 4: 9 pages, Teams of 5: 10 pages.

▪ Number of SOTA models

▪ Teams of 3 should have at least two baseline models

▪ Teams of 4 or 5 should have at least three baseline models

▪ Error analysis

▪ This is one of the most important part of this report. You need to understand where 

previous models can be improved.
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Examples of Possible Error Analysis Approaches

▪ Visualization (e.g., TSNE) of the correct and incorrect predictions

▪ Manually inspect the samples that are incorrectly predicted

▪ What are the commonalities?

▪ What are differences with the correct ones?

▪ Ablation studies to understand what model components are 

important
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Midterm Project Report Instructions

Main report sections:

▪ Abstract

▪ Introduction

▪ Related work

▪ Problem statement

▪ Multimodal baseline models

▪ Experimental methodology

▪ Results and discussion

▪ New research ideas

The structure is 

similar to a research 

paper submission ☺
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Upcoming Deadlines

▪ Reading assignments this week and next week

▪ Thursday October 21st : Project session (no lecture)

▪ Sunday October 31st: Midterm report deadline

▪ Tuesday and Thursday (11/2 and 11/4): midterm presentations

▪ All students are expected to attend both presentation sessions in person

▪ Each team will present either Tuesday or Thursday

▪ The focus of these presentations is about your research ideas

▪ Feedback will be given by all students, instructors and TAs
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Mid-Semester Break

No lecture on Thursday (Oct 13)

CMU official holiday!
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Learning Objectives of Today’s Lecture

▪ Graph Representations

▪ Graph Neural Networks

▪ Graph Convolution Networks

▪ Multimodal Translation

▪ Visual Question Answering

▪ Co-attention, Stacked attention

▪ Neural module networks

▪ Neural-symbolic learning

▪ Neural State Machine

▪ Biases in VQA models

▪ Visual Dialogue

▪ Causal Graph

▪ Multi-Step Reasoning



Going Beyond Sequences: 

Graph Representations
*slides adapted from Leskovec, Representation Learning on Networks. WWW 2018
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Transformers – Fully-Connected Sequences

I

𝑥1

do

𝑥2

not

𝑥3

like

𝑥4

it

𝑥5

𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞 𝑊𝑣𝑊𝑘𝑊𝑞

𝑞1 𝑘1 𝑞2 𝑘2 𝑞3 𝑘3 𝑞4 𝑘4 𝑞5 𝑘5

Should everything be connected to everything?

What if we have domain knowledge about connections?
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Graphs (aka “Networks”)

Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019
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Assume we have a graph G:
V is the set of vertices

A is the binary adjacency matrix

X is a matrix of node features:

• Categorical attributes, text, image data

e.g. profile information in a social network

• …

Y is a vector of node labels (optional)

Graph Representation
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Graphs – Supervised Task

14

Human 

or bot?

e.g., an online social network 

Goal: Learn from labels associated with a 

subset of nodes (or with all nodes)

? ?

?

?

?
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Graphs – Unsupervised Task

15

Goal: Learn an embedding space where
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Graph Neural Nets 

Key idea: Generate node embeddings 

based on local neighborhoods

in a recursive manner

Neural 

network
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Graph Neural Nets

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 17

Every node defines a unique 

computation graph!
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Graph Neural Nets 

Neural 

network

Neural 

network

Neural 

network

And multiple layers!
Layer 2 Layer 1 Layer 0

“layer-0” is the input feature xu

Shared parameters within a 

specific layer

How do we train it?
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Graph Neural Nets – Supervised Training

output node 

embedding

classification 

weights

node class label

Human or 

bot?
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Key Technical Challenge: Neighborhood Aggregation

How to 

aggregate 

multiple 

neighbors

?

Average pooling

Graph Convolution Network

Graph Attention Network

(Scarselli et al., 2005)

(Kipf et al., 2017)

(Velickovic et al., 2018)

Different weights 

for neighbors 

and self

Same weights
Different 

normalization

Very similar to a self-attention transformer

It can be efficiently implemented

𝛼𝑢𝑣
Attention 

weights
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Multimodal Translation

Visual Question 

Answering (VQA)
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Visual Question Answering

Is the skateboard airborne?

Question

Image

Answer

yes

How can we use attention?
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VQA and Attention

Is the skateboard airborne?

Question

Image

Answer

yes

Language can 

be used to 

attend the image
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VQA and Attention

Is the skateboard airborne?

Question

Image

Answer

yes

Image could 

also be used to 

attend the text
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Co-attention

Is the skateboard airborne?

Question

Image

Answer

yes

Or do both!

Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016
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Co-attention

Is the skateboard airborne?

Question

Image

Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016
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Transformed-based “Co-Attention”: ViLBERT

Lu, Jiasen, et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." arXiv (August 6, 2019).

Cross-Modal Transformer Modules

Unimodal Transformer
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Hierarchical Co-attention

Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016
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Stacked Attentions

What are sitting in the 

basket on a bicycle?

Question

Image

Answer

dogs

Attention 1 Attention 2

Attention 1 Attention 2

Yang et al., Stacked Attention Networks for Image Question Answering, CVPR 2016
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Other Attention-based Models for VQA

▪ Bottom-up and top-down attention for image captioning and visual question 

answering, CVPR 2018

▪ Adds the idea of object-based representations

▪ Bilinear Attention Pooling, NIPS 2018

▪ Extend low-rank bilinear pooling to multimodal

▪ Beyond bilinear: Generalized multimodal factorized high-order pooling for 

visual question answering, IEEE TNNLS, 2018

How can we make this attention process more interpretable?

Can we take advantage of prior knowledge (e.g., language structure)?
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Neural 

Module Networks
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32

S

VP

NP NP

Det N V Det N  
The boy saw the dog

The     boy     saw     the   dog

Syntax and Language Structure

Subject

Object

Det.

Det.

Dependency ParsingConstituency Parsing

ROOT
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Neural Module Network

Is the bus full of passengers?

root

subj.det. mod.

cop

Attend

(bus)

Attend

(full)

Combine

(and)

Measure

(is)

Computation layout

Each module work on the attention map(s):

“tie”

Attend

(tie)

Rules

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016
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Predefined Set of Modules

1) Analyze the image:

2) Make a prediction

Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016
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CLEVR: Dataset for Visual Reasoning

Perfect for a neural module network!

Johnson et al., CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, CVPR 2017
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Module Network V2: End-to-End Learning

Is the bus full of passengers?

Attend

(bus)

Attend

(full)

Combine

(and)

Measure

(is)

Computation layout

RNN

No need to parse the question!

No rule-based creation of the layout!

Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017
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Module Network V2: End-to-End Learning

Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017
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Module Network V3: Neural-symbolic VQA

1) Image Attributes

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Previously trained in a supervised way
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2) Parsing questions into programs

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Similar to neural 

module networsk

Module Network V3: Neural-symbolic VQA
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3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image

Module Network V3: Neural-symbolic VQA
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3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image

Module Network V3: Neural-symbolic VQA
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3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image

Module Network V3: Neural-symbolic VQA
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The Neuro-symbolic Concept Learner

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural 

Supervision.” ICLR 2019

Learns visual concepts, words, and semantic parsing of sentences without 

explicit supervision on any of them, but just by looking at images and reading 

paired questions and answers

Extension from Neural-symbolic VQA:
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

1. Given an image, generate a probabilistic 

scene graph that captures the semantic 

concepts.

2. Treat the graph as a state machine and 

simulate iterative computation over it to 

answer questions or draw inferences.

3. Natural language questions are translated 

into soft instructions and used to perform 

sequential reasoning over the scene 

graph/state machine.

How to solve this question 

using visual reasoning?
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Module Networks V4: The Neural State Machine 

Detect objects and create proximity graph

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019
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Module Networks V4: The Neural State Machine 

Pre-trained an alphabet of concepts
(Visual Genome)

Manually grouped 

by “properties”

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Probabilities 

computed at 

runtime for each 

object instance
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Predefined an alphabet of relations

and compute probabilities for each directed edges
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Translate each word in a concept-based representation

and group in a fixed number of instruction steps
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Finally, perform reasoning using instructions 

and state machine to answer question
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Module Networks V4: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

1. Compute the scene graph (blue boxes & image on the right)

2. Convert the question into a sequence of instructions (bed, left, tall, made)

3. Reason over the scene graph by attending to the relevant nodes using the 

instructions.
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Studying Biases 

in VQA models
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Studying Biases in VQA Models

Agarwal, Vedika, Rakshith Shetty, and Mario Fritz. "Towards causal vqa: Revealing and reducing spurious correlations 

by invariant and covariant semantic editing." 

VQA models may be finding spurious correlations (e.g., confounding variables)

Why one question was correctly answered and not the others?

Research idea: Try to remove visual objects to see 

if they are confounding variables. 
Propose a new evaluation 

metric to measure it.
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Studying Biases in VQA Models

Agarwal, Vedika, Rakshith Shetty, and Mario Fritz. "Towards causal vqa: Revealing and reducing spurious correlations 

by invariant and covariant semantic editing." 

Consistency metric: Study the change in performance when 

individual objects are removed from the image

using GAN to manipulate the images
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Studying Biases in VQA Models

Agarwal, Vedika, Rakshith Shetty, and Mario Fritz. "Towards causal vqa: Revealing and reducing spurious correlations 

by invariant and covariant semantic editing." 

State-of-the-art models often exploit spurious correlations…
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Studying Biases in VQA Models

Agarwal, Vedika, Rakshith Shetty, and Mario Fritz. "Towards causal vqa: Revealing and reducing spurious correlations 

by invariant and covariant semantic editing." 

Proposed solution: training the model on original VQA datasets plus

synthetic datasets, consisting of images with removed objects. 
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Visual Dialog
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Visual Dialogue

I

Q

H
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Visual Dialogue Expressed with Causal Graph

I

Q

H

A

X Y

Causal graph: acyclic graph where nodes 

denote variables and edges 

denote causal relationships

cause effect

How to represent this 

visual dialogue problem?

Visual 

knowledge

Important assumption: the output of a neural 

network is the effect of the input (the cause)
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Two Causal Principles for Improving Visual Dialog 

1. Harmful shortcut bias between dialog history (H) and the answer (A)

2. Unobserved confounder between H, Q and A leading to spurious 

correlations. 

Qi, Jiaxin, et al. "Two causal principles for improving visual dialog.“ CVPR 2020

Two causal principles that are holding back Visual Dialolg models:
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Two Causal Principles for Improving Visual Dialog 

Qi, Jiaxin, et al. "Two causal principles for improving visual dialog.“ CVPR 2020

Principle 1: Harmful shortcut bias between 

dialog history (H) and the answer (A)

Dataset bias example:
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Two Causal Principles for Improving Visual Dialog 

Principle 2: Unobserved confounder between H and 

A (as well as between H and Q) leading 

to spurious correlations. 

Qi, Jiaxin, et al. "Two causal principles for improving visual dialog.“ CVPR 2020

Confounding 

variable

Explaining confounding variable:

We may think that Q is primarily causing A, 

but U is a common cause for both Q and A

U has a spurious relation with Q and A

In our case, U is unobserved, and most likely because 

answerers (aka “users”) could see the history.



62

Two Causal Principles for Improving Visual Dialog 

Principle 2: Unobserved confounder between H, Q 

and A leading to spurious correlations. 

Dataset bias example:

Qi, Jiaxin, et al. "Two causal principles for improving visual dialog.“ CVPR 2020
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Two Causal Principles for Improving Visual Dialog 

Qi, Jiaxin, et al. "Two causal principles for improving visual dialog.“ CVPR 2020

Proposed method

1. Removes the Harmful shortcut bias 

between dialog history (H) and the 

answer (A)

2. Explicitly model the unobserved 

confounder between H, Q and A
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Visual Dialog – Another Challenge

Gan, Zhe, et al. "Multi-step reasoning via recurrent dual attention for visual dialog.“ ACL 2019

Hypothesis: The failure of visual dialog is caused by the inherent 

weakness of single-step reasoning.

Intuition: Humans take a first glimpse of an image and a dialog 

history, before revisiting specific parts of the image/text to understand 

the multimodal context.

Proposal: Apply Multi-step reasoning to visual dialog by using a 

recurrent (aka multi-step) version of attention (aka reasoning). This is 

done on both text and questions (aka, dual).

Recurrent Dual Attention Network 
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Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog

1st Step Reasoning: Attend to 

all relevant objects and dialog 

turns.

2nd Step Reasoning: Narrow 

down to context relevant 

regions (shorts, young boy).

In the 2nd step, the attention 

becomes sharper. 

Gan, Zhe, et al. "Multi-step reasoning via recurrent dual attention for visual dialog.“ ACL 2019
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Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog

Gan, Zhe, et al. "Multi-step reasoning via recurrent dual attention for visual dialog.“ ACL 2019

Coupling of the dual attentions


