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Part 1: Generative models

Learn to model p(x) where x = text, images, videos, multimodal data

Given x, evaluate p(x) - realistic data should have high p(x) and vice versa

Sample new x according to p(x) - sample realistic looking images

Unsupervised representation learning - we should be able to learn what these images have in
common, e.g., ears, tail, etc. (features)

INPUT (X) RECONSTRUCTION (AUTR) RECONSTRUCTION (Gen-RNN)
unable to stop herself, she briefly, unable to stop herself, she leaned unable to help her, and

gently, touched his hand. forward, and touched his eyes. her back and her into my way.
why didn’t you tell me? why didn’t you tell me? why didn’t you tell me?”

a strange glow of sunlight shines  the light of the sun was a tiny light on the door,

down from above, paper white shining through the window, and a few inches from behind
and blinding, with no heat. illuminating the room. him out of the door.

he handed her the slip of paper. he handed her a piece of paper. he took a sip of his drink.




Part 1: Generative models

Sometimes we also care about p(x|c) - conditional generation
- cisacategory (e.g. faces, outdoor scenes) from which we want to generate images

We might also care about p(x2|x1,c) - style transfer
- cis astylistic change e.g. negative to positive

From negative to positive

consistently slow .
consistently good .
consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .




Latent variable models

- Lots of variability in images x due to gender, eye color, hair color, pose, etc.

- However, unless images are annotated, these factors of variation are not explicitly available
(latent).

- Idea: explicitly model these factors using latent variables z




Latent variable models

() Ethnicity

Image X

- Only shaded variables x are observed in the data

- Latent variables z are unobserved - correspond to high-level features
- We want z to represent useful features e.g. hair color, pose, etc.
- But very difficult to specify these conditionals by hand and they’re unobserved
- Let’s learn them instead



Latent variable models

- Putaprioronz z~N(0,/)
p(x | z) =N (ue(z), Xo(z)) where pg,Xp are neural networks

- Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

- Given a new image x, features can be extracted via p(z|x)



Starting simple: Mixture of Gaussians

Mixture of Gaussians (Bayes network z -> x)
z ~ Categorical(l, - - - , K)

p(x | 2= k) = N (s1k, )
A

X

>
Xi

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian



Starting simple: Mixture of Gaussians




Starting simple: Mixture of Gaussians

Combining simple models into more expressive ones

.
-4

K
p(x) =Y p(x,2) =Y p(2)p(x | 2) = > p(z = k) N(x; ik, T«)
z z k=1 com;)gnent

can solve using expectation maximization



Starting simple: Mixture of Gaussians

Unsupervised clustering of digits

- Discovers clusters corresponding to factors of
variation in the data

- Can generate new samples

- Cannot learn features of data i.e. p(z|x)

N
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From GMMs to VAEs

X Image X

- Putaprioronz z~N(0,/)
p(x | z) =N (ue(z), X9(z)) where pg,Xg are neural networks

- Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

- Even though p(x]|z) is simple, marginal p(x) is much richer/complex/flexible

- Given a new image x, features can be extracted via p(z|x): natural for unsupervised learning
tasks (clustering, representation learning, etc.)



Learning parameters of VAE

- Learning parameters of VAE: we have a joint distribution P(X, Z; 9)

- We have a dataset D where for each datapoint the x variables are observed (e.g. images, text)
and the variables z are not observed (latent variables)

- We can try maximum likelihood estimation:

log H p(x; ) = Z log p(x; 0) = Z log Z p(x,z;6)

xeD xED xeD z



Learning parameters of VAE

- Learning parameters of VAE: we have a joint distribution P(X, Z; 9)

- We have a dataset D where for each datapoint the x variables are observed (e.g. images, text)
and the variables z are not observed (latent variables)

- We can try maximum likelihood estimation:

log H p(x; ) = Z log p(x; 0) = Z log Z p(x,z;0)

xeD xeD xeD z
(. J
Y
intractable :-(
Need cheaper approximations to - if z binary with 30 dimensions, need
optimize for VAE parameters sum 2730 terms

- if z continuous, integral is hard



Evidence Lower Bound

! _ . p(2|zs;6)
£(6:35) = — / ofele ) In ZEEE2S s

p(z|zs; 0)p(xs; 0)
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dz
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L(8]e:) = KL (go(zl:)

‘ p9(2|$i)) + V(g 0l7;)

V(45,812) = Eqyoja) [0 polal2) | = KL(g0(2) || Po(2))



Evidence Lower Bound

Log-likelihood function with partially observed latent variables is hard to compute:
log Zpg(x,z = log Z 9(z pg(x z) | =log ( — [pg(x, z)])
o iz 9 9(2)

Use Jensen’s inequality for concave functions, i.e. log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

108 (Exra(n [F(2)]) = log (Z q(z)f(z)> >3 a(2) log (2)

log '
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Evidence Lower Bound

Log-likelihood function with partially observed latent variables is hard to compute:

log (Z po(x, z) ) log (Z q(z pe(x z)) log (lEz~q(z) [Peq((xz,)z)])

zeZ zeZ

Use Jensen’s inequality for concave functions, i.e. log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

log (Ez~q(z) [f(2)]) = log (Z q(z)f (Z)) > ) " q(2)log (2)

Choosing f(z) = %

log (Ezwq(z) [Peq((xz,)z)]> > Eyrq(z) [log (Poq(z(z,)z))]

Evidence Lower Bound (ELBO)




Evidence Lower Bound

- ELBO holds for any probability distribution q(z) over latent variables:

logp(x;6) > > q(z)log <Pe(x, z))

- q(2)
- Z q(z) log ps(x,2z) — Z q(z) log q(z)

A\ >4

Entropy H(q) of q

- Z q(z) log pe(x,2) + H(q)

- Equality holds if g(z) = p(z]|x):
log p(x; )= Z q(z) log p(z,x; 0) + H(q)

- We want to choose q(z) to be as close to p(z]|x) as possible, while being easy to compute



The KL divergence
- The KL divergence for variational inference is:
D (q(2)lp(2le)) = [ q(2) log A dz

- Intuitively, there are three cases
a. Ifgislowthen we don’t care (because of the expectation).

b. If qis highand p is high then we are happy.
c. Ifgishigh and p is low then we pay a price.
- Note that p must be > 0 wherever q >0

OK, KL small

_
P(Z)



Evidence Lower Bound

- Starting from the KL divergence:

Dri(q(z)llp(z/x; 6)) = = _ q(2) log p(z, x; 6) + log p(x; ) — H(q) >0

- Re-derive ELBO from KL divergence:
log p(x; 6) > ) _ q(z) log p(z,x; 6) + H(q)

- Equality holds if g = p(z|x) because KL(q| | p) = O:
log p(x; )= _ q(z) log p(z,x; 8) + H(q)



Evidence Lower Bound

Starting from the KL divergence:

Dri(q(z)llp(z/x; 6)) = = _ q(2) log p(z, x; 6) + log p(x; ) — H(q) >0

Re-derive ELBO from KL divergence:
log p(x; 6) > ) _ q(z) log p(z,x; 6) + H(q)

Equality holds if g = p(z|x) because KL(q] | p) = O:
log p(x; )= _ q(z) log p(z,x; 8) + H(q)

In general, logp(x;0) = ELBO + Dk (q(z)||p(z|x; 6))
The closer the chosen g is to p(z]|x), the closer the ELBO is to the true likelihood.




Variational Inference

s

Suppose q(z; ¢) is a (tractable) probability distribution over the hidden
variables parameterized by ¢ (variational parameters)

e For example, a Gaussian with mean and covariance specified by ¢

q(z; ¢) = N(¢1, #2)
q(z; ¢)

- Variational ir‘;“(;Tx'j@S: optimize variational parameters so that IS as close as possible to
while being simple to compute
- E.g.infigure, posterior (in blue) is better approximated by orange Gaussian than green



Variational Inference

9

©

E

2 ... | Dkr(gs(2]x), ps(z]x))

-§ R, log pg(x)
= L UL T * ELBO
2

o

ie)

¢

log p(x;0) > > q(z; ¢)log p(z,x;0) + H(q(z: ¢)) = L(x; 6, ¢)
z ELBO
= L(x;0,9)+ Dki(q(z: 9)lp(z|x; 6))

- In practice how can we learn encoder parameters p(z|x; 0)
and variational (decoder) parameters jointly? q(z; ¢)



L(x;0,¢9) = Eg,@llogp(z,x;0) — log q4(z|x))]
= Eg,(zlvllog p(z,x; 0) — log p(z) + log p(z) — log q4(2|x))]
= Eqyzpwllog p(x|z; 0)] — Dki(as(z[x)[lp(z))

Learning the parameters ¢—>’?¢e
WED Po(x|2)
inference model \‘g/ generative model
N )

Figure courtesy: Kingma & Welling, 2014

Slides from Ermon and Grover



L(x;0,¢0) = Eg,zx[logp(z,x;0) — log q4(z|x))]
= Eg,(zlvllog p(z,x; 0) — log p(z) + log p(z) — log q4(2|x))]
= Eqyzpwllog p(x|z; 0)] — Dki(as(z[x)[lp(z))

— - 7
Y Y

reconstruction prior

Learning the parameters ¢—>’?¢e
WED Po(x|2)
inference model \‘g/ generative model
N )

Figure courtesy: Kingma & Welling, 2014

What does the training objective L£(x; 6, ¢) do?
@ First term encourages X ~ x' (x' likely under p(x|2; 0))

@ Second term encourages 2 to be likely under the prior p(z)

Slides from Ermon and Grover



L(x;0,¢0) = Eg,zx[logp(z,x;0) — log q4(z|x))]
= Eg,(zlvllog p(z,x; 0) — log p(z) + log p(z) — log q4(2|x))]
= Eg (e log p(x|z; 0)] — Dr(qs(z|x)p(2))

- - —
Y Y

reconstruction prior

Learning the parameters ¢-»’?¢9
99 (21%) .’ po(xl2)
inference model \‘®/ generative model
_ N

Figure courtesy: Kingma & Welling, 2014

encode decode
Inference Generative

What does the training objective L£(x; 6, ¢) do?
@ First term encourages X ~ x' (x' likely under p(x|2; 6)) Input Image

@ Second term encourages 2 to be likely under the prior p(z) ->

@ Take a data point x’
@ Map it to 2 by sampling from q,(z|x’) (encoder)

© Reconstruct X by sampling from p(x|2; 8) (decoder)

Latent distribution

Slides from Ermon and Grover



Learning the parameters

L(x;0,8) = Eg,@mllogp(z,x;0) — log g4(z|x))]
Eq,(zix)[log p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]
Eq¢(ZIX)[|°g p(x|z; 0)] — Dki(q4(z|x)|lp(2))

We need to compute the gradients VoL(x;0,9) and V4L(x; 0, @)

W_/

easy



Learning the parameters

L(x;0,9) = Eg,(zx[logp(z,x;0) — log q4(z|x))]
Eqy(zx)[log p(z, x; 8) — log p(z) + log p(z) — log q4(z|x))]
Eq¢(ZIX)[|°g p(x|z; 0)] — Dki(q4(z|x)|lp(2))

We need to compute the gradients VoL(x;0,9) and V4L(x; 0, @)

W_/

easy

VoL(x;0,9) = VoEq,(zx)[log p(x|z; 0)] — Dki(qs(zx)||p(2))
= Vy Eq¢(z|x) [|Og p(X|Z; 9)]



Learning the parameters

L(x;0,¢0) = Eg,zx[logp(z,x;0) — log q4(z|x))]
= Eg,(zlvllog p(z,x; 0) — log p(z) + log p(z) — log q4(2|x))]
= Eqyzpwllog p(x|z; 0)] — Dki(as(z[x)[lp(z))

We need to compute the gradients VoL(x;0,9) and V4L(x; 0, @)

R/_/

easy
VoL(x;0,9) = VoEq,(zx)[log p(x|z; 0)] — Dki(qs(zx)||p(2))
= Vy Eq¢(z|x) [|Og p(X|Z; 9)]
- Eqd)(z]x) [VG log p(XlZ; 9)]



Learning the parameters

L(x;0,9) = Eg,(zx[logp(z,x;0) — log q4(z|x))]
Eqy(zx)[log p(z, x; 8) — log p(z) + log p(z) — log q4(z|x))]
= Eq,(llog p(x|z; 0)] — Dki(q4(2]x)|p(2))

We need to compute the gradients VoL(x;0,9) and V4L(x; 0, @)

R/_/

easy

VoL(x;0,0) = VoEq, (z1x)[log p(x|z; 0)] — Dri(qs(z[x)|p(2))
= Vy Eq¢(z|x) [|Og p(X|Z; 9)]
— Eqd)(z]x) [VG log p(X|Z; 9)]

1 n
~ Z Vg log p(x|z;; )
=1



Learning the parameters

L(x;0,¢9) = Eg,@llogp(z,x;0) — log q4(z|x))]
= Eg,(zlvllog p(z,x; 0) — log p(z) + log p(z) — log q4(2|x))]
= Eqyzpwllog p(x|z; 0)] — Dki(as(z[x)[lp(z))

We need to compute the gradients VoL(x;0,9) and V4L(x; 0, @)

W_/W_/

easy tricky

Expectations also depend on Cb

Vo L(x: 0, 8) = VyEq, () [log p(x|z; 8)] — Dkr(gy(z[x)]|p(2))



Reparameterization trick

@ Want to compute a gradient with respect to ¢ of

Exeolr@)] = [ a(zi 9)r(2)dz

where z is now continuous

Slides from Ermon and Grover



Reparameterization trick

@ Want to compute a gradient with respect to ¢ of

Exwolr(@)] = [ a(zi 6)r(2)dz
where z is now continuous

@ Suppose q(z; ¢) = N'(u,0?1) is Gaussian with parameters ¢ = (i, o). These
are equivalent ways of sampling:

o Sample z ~ q,(z)
o Sample e ~ N(0,/), z= pu+ oe = g(€; ¢)

Slides from Ermon and Grover



Reparameterization trick

@ Want to compute a gradient with respect to ¢ of

Exwolr(@)] = [ a(zi 6)r(2)dz
where z is now continuous

@ Suppose q(z; ¢) = N'(u,0?1) is Gaussian with parameters ¢ = (i, o). These
are equivalent ways of sampling:

e Sample z ~ g4(2)
o Sample e ~ N(0,/), z= p+ oe = g(€; ¢)
@ Using this equivalence we compute the expectation in two ways:
Einq@e)r(z)] = Ecano,nlr(g(e ¢))] = /p(e)r(u + o€)de
Vs Eqz)r(2)] = VoEclr(g(e: ¢))] = Ec[Vor(g(e: ¢))]

Slides from Ermon and Grover



Reparameterization trick

@ Want to compute a gradient with respect to ¢ of

Exeolr@)] = [ a(zi $)r(2)dz
where z is now continuous

@ Suppose q(z; ¢) = N'(u,0?1) is Gaussian with parameters ¢ = (i, o). These
are equivalent ways of sampling:

e Sample z ~ g4(2)
o Sample e ~ N(0,1), z= p+ oe = g(€; ¢)
@ Using this equivalence we compute the expectation in two ways:
Einq@e)r(z)] = Ecano,nlr(g(e ¢))] = /p(e)r(u + o€)de
VEqzg)|r(2)] = VoEc[r(g(e: ¢))] = Ec[V4r(g(e: ¢))]

@ Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ¢ and €
is easy to sample from (backpropagation)

o E.[Vyr(g(ed))] = Yk Vor(g(e¥; ¢)) where e, - -+, ek ~ N(0, /).

Slides from Ermon and Grover



Reparameterization trick

VoL(x0.0) = VoEq, apllos px|z: 0)] — Dt (du(2lx)l|p(2))

V¢Eq¢(z|x)[log P(X|Z; 9)] = V¢E€[|Og P(X|M + o€, 9)] reparameterize



Reparameterization trick

VoL(x0.0) = VoEq, apllos px|z: 0)] — Dt (du(2lx)l|p(2))

V¢Eq¢(z|x)[log P(X|Z; 9)] = V¢E€[|Og P(X|M + o€, 9)] reparameterize
= E[Vlog p(x|p + oe; 0)]



Reparameterization trick

VoL(x0.0) = VoEq, apllos px|z: 0)] — Dt (du(2lx)l|p(2))

V¢Eq¢(z|x)[log P(X|Z; 9)] = V¢E€[Iog P(X|,u + o€, 9)] reparameterize
= E[Vlog p(x|p + o¢; 0)]

1 n
~ Z[V¢ log p(x|p + o€;; 0)]
i=1
Original form Reparameterized form

bottleneck'

-----------------------

: Deterministic node
q(z|d.x) : | —>

. : Random node

D

e

(S

<
e\

: >

2
<



==

Learning the parameters

L(x;0,8) = Eg,(zxllogp(z,x;0) — log g (z|x))]

= Eg,(zwllog p(z,x; 0) — log p(z) + log p(z) — log q4(z|x))]

= Eg,(zxlog p(x|z; 0)] — Dr(qs(z|x)p(2))

p - - N 7
Y Y

reconstruction prior

Take a datapoint x;.

Map it to p1, o using gy(z|X;). encoder
Sample € ~ N(O, /) and compute Z = i + O€. reparameterize
Reconstruct X by sampling from p(x|Z; ). decoder

Differentiable using reparameterization trick

" SEEE—
-1 0
q¢(z|x) 1 po(¥|2)
inference model \@/ generative model
L N

Figure courtesy: Kingma & Welling, 2014

encode decode
Inference Generative

Input Image

Latent distribution



VAE for disentanglement

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

- - - consistently slow .
consistently good .

disentanglement_lib consistently fast . [Shen et al., NeurlPS 2017]

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

From negative to positive

it was super dry and had a weird taste to the entire slice .

[Locatello et al., ICML 2019] it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .



VAE for disentanglement

Disentangled representation learning

Very useful for style transfer: disentangling style from content

LX) = Eq, 20 [l08 pa(X[2)] — 8 - KL(q4(2]X)||p(2))

beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger
constraint on the latent variables to have independent
dimensions

[Mathieu et al., ICML 2019]

o Ve

A}
5
Generative :| f
nrerence
Model ]
(shape) " Model
'l
bk
Zn /\
(scale)

Zm (angle)
Independent

Factors



VAE for disentanglement

- Very useful for style transfer: disentangling style from content

Disentangled representation learning -\ /'
X

LX) = Eq,(z19[l08 po(X]2)] = 8 - KL(q4(2]X)||p(2))

\ )
1
L}
1

Generative
Model . .:Inference
- beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger a7 el
constraint on the latent variables to have independent ¥
dimensions (;:P;/\ Zm (e
- Difficult problem! independent

Factors

- Positive results [Hu et al., 2016, Kulkarni et al., 2015]
- Negative results [Mathieu et al., 2019, Locatello et al., 2019]
- Better benchmarks & metrics to measure disentanglement [Higgins et al., 2017, Kim & Mnih 2018]

[Mathieu et al., ICML 2019]



VAE for multimodal data

Language:  And he I don't think he got mad when hah  Too much too fast, I mean we basically just All I can say is he's a pretty average guy.
1 don't know maybe. get introduced to this character...

SN _ o 2 )
Vision: g g E é é’
G z . . . .
§ ; £ 8 - Zy Joint multimodal factor (sentiment/emotion)
Acoustic: (frustrated voice) (angry voice) (disappointed voice)

) L Za1) Language specific factor
(1) Multimodal discriminative factor
models the label and variations across both language and vision

Za>) Visual specific factor

Z3) Audio specific factor

“This movie is i
great” positive
sentiment

(2) Language generative factor
models variations within language

“That movie was

awesome” Disentangled factors

[Tsai*, Liang* et al., ICLR 2019]



VAE for multimodal data

Language:  And he I don't think he got mad when hah  Too much too fast, I mean we basically just All I can say is he's a pretty average guy.

1 don't know maybe. get introduced to this character...
£ _ é 2 ol
- z g g
Vision: 8 g 2 _ﬁ '
< SR EE
g ‘ g g
&} =) o
Acoustic: (frustrated voice) (angry voice) (disappointed voice)

Zo)—Fa)—(®) @ ..... e
Zio—Fao—> Ko — Fy— 2, 2 «@ _____ @D
Zaa—{Fas—>(%o) %) @ ..... v

MFM MFM
Generative Network Inference Network

(a)

[Tsai*, Liang™* et al., ICLR 2019]

Joint multimodal factor (sentiment/emotion)

Language specific factor

Visual specific factor

Audio specific factor

Disentangled factors



VAE for multimodal data

Language:  And he I don't think he got mad when hah  Too much too fast, I mean we basically just All I can say is he's a pretty average guy.

1 don't know maybe. get introduced to this character...
,E @ -E ‘\ 2} g‘ oo
Vision: g ‘ E - - é -‘E’ '
g 2 " ES
S 5 S
Acoustic: (frustrated voice) (angry voice) (disappointed voice)

Cx; (Xz‘, F(Gai(zai)a Gy(zy)))

M=

)
Il
Juy

Z il Do ahonss »(Z reconstruction
al @ @ : @ al

Y4 Z 7 ..... 7

a2 : 2 e y y « g > Za2 prediction 0y(Y,D(Gy(Zy)))
Za3 a s Wi eusss )Za3

(a) MFM (b) MFM
Generative Network Inference Network

prior - ADk1(Q(2[x)[|P(2))

[Tsai*, Liang™* et al., ICLR 2019]



VAE for multimodal data

Discriminative performance

ICT-MMMO Binary Accuracy

70
65
60
55
50

SVM-MD  DF  EF-LSTM  TFN  BC-LSTM MV-LSTM MARN

[Tsai*, Liang* et al., ICLR 2019]

70

datasets
MFM can be applied
. l on any multimodal

SVM-MD

CMU-MOSI Binary Accuracy

EF-LSTM

TFN

MFM achieves strong
performance on 6
multimodal time-series

fusion encoder

BC-LSTM MV-LSTM MARN

Code: https://github.com/pliang279/factorized



VAE for multimodal data

Disentangling factors of variation: controllable generation

Neural Networks

QA%ANNAWY RS E
il O ek O\\AAWY—O;
T L YT AN R LA EERY
VBN WS

0
1
J
3
9
5
¢
7
g
9

N T T e T T N

SN

Modality 1: SVHN Modality 2: MNIST

[Tsai*, Liang* et al., ICLR 2019] Code: https://github.com/pliang279/factorized



VAE for multimodal data

Disentangling factors of variation: controllable generation

Neural Networks

SN T WA M SsSAaAS
NN Y TR MNMMNNwS

e @m-hw"—o

0 2
14
>4
3 7
4 4
S &
b &
"7
8 &
9 9

0
7
2
?
4
5
é
?
4
4

Modality 1: SVHN Modality 2: MNIST

[Tsai*, Liang* et al., ICLR 2019] Code: https://github.com/pliang279/factorized



VAE for multimodal data

Interpreting modality-specific factors

[Tsai*, Liang™* et al., ICLR 2019]

Vfy(Xa)

Vfy(Xy)

VEy(Xe)

t=1 t=20

language Umm, in a way, a lot of the themes in “never let me go”, which were very profound and deep.
—_ ~

visual

acoustic

2 \J 84
(emphasis)

s x.l &”
(hesitancy)

(uninformative
(uninformative

(neutral)

Code: https://github.com/pliang279/factorized



VAE for multimodal data

VAEs beyond reconstruction

. Inputs Decoders
- It can be hard to reconstruct high-

Action-conditional
dimensional input modalities robot - optical flow
. . . ti
- Combine VAEs with self-supervised aeten . —— 3
learning: reconstruct important RGB image n
signals from the input [ ]
Ry 0/1
\ M,lﬂ J»« % Encoder . — contact in
Force data H the next step?
4 L
w %
Robot state Representation . 0/1
time-aligned?
L. -’

V

Self-supervised signals

[Lee et al., ICRA 2019]



VAE for multimodal data

High success rate from multimodal signals

100

80

60

40
20 49
0
0

Force Image Force & Image

Success Rate (%)

Simulation Results
(Randomized box location)

[Lee et al., ICRA 2019]

Force Only: Can’t find box

Image Only: Struggles with peg
alignment

Force & Image: Can learn full task
completion




VAE for multimodal data

Robustness to:
- external forces
- camera occlusion
- moving targets

The policy is able to recover
‘_ from external pushes on the arm.

[Lee et al., ICRA 2019]



Summary: generative models

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

VAESs Query

e Relatively easier to train
e Explicit inference network q(z|x)
e More blurry images (due to reconstructi

VAE/GAN
Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Query Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.
> b
GAN

VAE/GAN



Part 3: Generative Adversarial Nets

Beyond likelihood-based learning:
- Difficulty in evaluating and optimizing p(x) in high-dimensions
- High p(x) might not correspond to realistic samples

6 eEM

Model family



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

S1 = {x~P}

Given a finite set of samples from two distributions, how can we tell if these samples are from the
same distribution? (i.e. P = Q?)



Part 3: Generative Adversarial Nets

Given 51 = {x ~ P} and 5; = {x ~ Q}, a two-sample test
considers the following hypotheses

e Null hypothesis Hy: P = Q

o Alternate hypothesis Hi: P # @
Test statistic T compares S; and 5> e.g., difference in means,
variances of the two sets of samples

If T is less than a threshold «, then accept Hj else reject it

Key observation: Test statistic is likelihood-free since it does not involve the densities P or Q, only

samples



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

d(P gatar Po)

Pdata
xt~Pdata e
i=12,..,n Model family
- Assume we have access to 51 =D = {x ~ pdata}
- In addition, we have our model’s distribution Po _
- Assume that our model’s distribution permits efficient sampling of S2 = {x~ py}

- Alternate notion of distance between distributions: Train the generative model to minimize a
two-sample test objective between S1 and S2



Part 3: Generative Adversarial Nets

Towards likelihood-free learning

Two Gaussians with different means Two Gaussians with different variances

Gaussian and Laplace densities

Prob. Density
ﬂ i

X

- Problem: finding a two-sample test objective in high-dimensions is hard

- In the generative model setup, we know that S1 and S2 come from different distributions
- Key idea: learn Pdata and pg respectively ;yitable notion of distance between the two sets of

samples S1 and S2



Part 3: Generative Adversarial Nets

- A2 player minimax game between a generator and a discriminator

Gy

- @enerator: a directed latent variable model from z to x
- Minimizes the two-sample test objective: in support of null hypothesis Pdata — Po



Part 3: Generative Adversarial Nets

- A2 player minimax game between a generator and a discriminator

Dy

- Discriminator: any function (e.g. neural network) that tries to distinguish ‘real’ samples from
the datasets from ‘fake’ samples generated by the model
- Maximizes the two-sample test objective: in support of alternative hypothesis Pdata 7 P



Training the discriminator
- Training objective for discriminator
max V(G, D) = Exvpyeia[108 D(X)] + Exvps[log(1 — D(x))]
- For afixed generator G, the discriminator performs binary classification between true samples

(assign label 1) vs fake samples (assign label 0)
- Optimal discriminator:

* . pdata(x)
D) = 5 nal) + pa )



Training the generator

- Training objective for generator
min V(G, D) = Ex~pyaia[108 D(X)] + Exvps[log(1 — D(x))]

o For the optimal discriminator DZ(-), we have

V(6, Dg(x))
= E

P. ata(x) p(;(X)
X~Pdata ['Og pdatix)m(x)] + Bxpg {'Og pdata(x)+pc(x)}

— Pdata(X) pa(x)
o Eprdata [Iog Pdata(X)+PG(X)] + EXNPG [Iog Pdata()tPc(x) | log 4
2 2

Pdata + PG
2

Pdata + PG

D
] + DL [PG, 5

= D1 [pdataa :| — log 4

Vo

2x Jenson-Shannon Divergence (JSD)

= 2D,sp|pdata, PG| — log 4

Slides from Ermon and Grover



More about divergences

Also known as the symmetric KL divergence

1 + +
Djsplp, q] = > (DKL [P, %l + Dki [q, %D

@ Properties
o Dysp[p,q] >0
o Dysp[p,q] =01iff p=gq
o Dysp|p,q]l = Dyspla, pl
° \/DJSD[p, q| satisfies triangle inequality — Jenson-Shannon Distance

e Optimal generator for the JSD/Negative Cross Entropy GAN

PG = Pdata

Slides from Ermon and Grover



GAN training

@ Sample minibatch of m training points x(1),x® ... x(m from D
mlz)ax mgin V(G,D) Optimization:

@ Sample minibatch of m noise vectors z(1),z(?) ... 2(™) from p,
@ Fix generator, and update discriminator

@ Update the generator parameters 6 by stochastic gradient descent
@ Fix discriminator, and update generator

Random

1o O .
Vo V(Ge, Dqs) = ;V@ E |og(1 - D¢(G9(Z(’)))) vector
i=1

Generator

0.3
0.1
0.9

Vs V(Go, Dg) = V> llog Dy(x(?) + log(1 ~ Dy(Gy(2")))] S\
i=1

Real
or
fake

@ Update the discriminator parameters ¢ by stochastic gradient ascent Discriminator

@ Repeat for fixed number of epochs

Slides from Ermon and Grover



GAN extensions

Progress in face generation

2018

Figure from Goodfellow



GAN extensions

1 p+q p+q
Djsplp, q] = 5 (DKL [P, T] + Dyt [q, 5
OK, KL small

- If our data are on a low-dimensional manifold of a high
dimensional space, the model’s manifold and the true
data manifold can have a negligible intersection in
practice

- KL divergence is undefined or infinite so the loss
function and gradients may not be continuous and well
behaved

P(Z)

[Arjovsky et al., ICML 2017]



GAN extensions

P = inf E =
WPIQ) = __inf g lz — ]

o II(P, Q) denotes the set of all joint distributions y(z, y)
whose marginals are P and @, respectively

o v(z,y) indicates a plan to transport “mass” from z to y,
when deforming P into Q.
The Wasserstein (or Earth-Mover) distance is then the
“cost” of the optimal transport plan

- The Wasserstein Distance is well defined
- Earth Mover’s Distance: minimum transportation cost
for making one pile of dirt in the shape of one

probability distribution to the shape of the other
distribution

[Arjovsky et al., ICML 2017]

Eﬂ'll |

Compare in this direction

X I}\@n this direction




GAN extensions o —————

— Density of fake |
—— GAN Discriminator

Wasserstein GAN: —— WGAN Critic
Dual form of Earth Mover’s distance oor

0.8

W(Pr,Pg) = sup Egnp, [f(2)] — Eonr,[f(2)]

Ifll<1
Discriminator/Critic Generator
i ; ; = ; ‘ ~
GAN L S S )] Va3 e (2({0()) 02| | Vanishing gradients
m 4 in regular GAN
WGAN %z [£(@®) - f(c (29))] vo%; f(c(z9)) o4 ‘ ‘ ‘ ‘ ‘ 9 ‘ .
i=1 S 8 -6 -4 -2 0 2 4 6 8

Optimal discriminator and critic when learning to differentiate two
Gaussians. The discriminator of a GAN saturates and results in vanishing
gradients. WGAN critic provides clean gradients on all parts of the
space. (Arjovsky et al. 2017)

[Arjovsky et al., ICML 2017]



GAN extensions

Wasserstein GAN:
Dual form of Earth Mover’s distance

W(Pr,Pg) = sup Eowp,[f(2)] — Eznp, [f ()]
Ifllz<1
Discriminator/Critic Generator
GAN Vois i": [0 0 () +10g (1 - D ( (:)))] Vo, — EZ g (0 (¢ (=)))
WGAN %g [£(@®) - f(c (29))] vo%g f(c(z9))

I (x1) = FO)Il < Kllx1 — x|

- Bounded derivative -> function cannot change too quickly
- In practice, use gradient clipping to enforce Lipschitz continuity

[Arjovsky et al., ICML 2017]

1.0 T T T
— Density of real

08l — Density of fake |
—— GAN Discriminator
——  WGAN Critic

0.6 |

~
—0.2 Vanishing gradients
in regular GAN
-0.4 - - - - - - '
-8 -6 -4 -2 0 2 4 6 8

Optimal discriminator and critic when learning to differentiate two
Gaussians. The discriminator of a GAN saturates and results in vanishing
gradients. WGAN critic provides clean gradients on all parts of the
space. (Arjovsky et al. 2017)



GAN extensions

Progressive GAN

e Starts with low resolution and gradually add layers to generator and discriminator

G Latent Latent Latent
+
—
:  ———
E [ : : ]
: : L ]
1 h [ ]
§ g 1024x1024 |
BE. A. - 8
! iReals i iReals . iReaIs
T & H v
D g P 1024x1024 |
: : [ | - ]
[ ]
[ ]
vy v ——
1
8x8 C—

4x4

Training progresses

v

[Karras et al., ICLR 2018]



GAN extensions

Scaling up GANs

1. Self-Attention and Hinge Loss (focus)

H fx) |
transpose e
convolution Ixlcony attention
feature maps (x) o map
1 ® s .ﬂ self-attention
‘ ) feature maps (0
g [l feature maps (0)
(I ' i
Ixlcony _'_ -t ® l |

ﬂ h(x) -
Ixicony

1. Class-conditioned generation (accuracy)
2. Spectral normalization (stability)

[Brock et al., ICLR 2019]

Examples of Large High-Quality 512x512 Class-Conditional Images Generated by BigGAN.
Taken from: Large Scale GAN Training for High Fidelity Natural Image Synthesis.



GAN extensions

Lots of current work:

- Better loss functions (see Lucic et al., 2018 for a large-scale comparison)

- Optimization tricks (Tim Salimans et al. 2016, Soumith Chintala and more)

- Better evaluation metrics
- Inception Score (IS) (Salimans et al 2016)
- Frechet Inception Distance (FID) (Heusel et al. 2017)
- Precision, Recall and F1 (Lucic et al. 2018)

- Applications:
- Text style transfer (Shen et al., NeurlIPS 2017; Zhao et al., ICML 2018; Li et al., AAAI 2020)
- Cross-modal generation



GAN applications

Image generation from text
- MirrorGAN: text to image via
redescription
- Bears resemblance to conditional GANs
for with text as context variable
- CycleGAN: ensuring cycle consistency of
generated outputs

[Qiao et al., CVPR 2019]

this bird is
blue with
(a) white and
has a pointy
beak

text

and has a pointy beak

this bird is blue with white

| this bird has a grey side

and a brown back

this bird is blue with white
and has a pointy beak

| a small bird !
| with a white

| breast and

| blue wings I
| |
——

text




GAN applications

Image generation from text
- StackGAN: generation over
multiple stages
- Stage 2 refines stage 1

[Zhang et al., ICCV 2017]

Embedding ¢,

Text descriptiont Embedding ;| |

| Conditioning |

| Augmentation (cA) | | for sketch |

64 x 64
results

64 x 64

real images
)

Conditioning I
| Augmentation |

s e e

64 x 64
Stage-| results

§

SR
256 x 256
real images

256 x 256
results

Compression and
Spatial Replication

Compression and
Spatial Replication




GAN applications

This flower has overlapping pink pointed petals surrounding a
ring of short yellow filaments

Image generation from text
- StackGAN: generation over
multiple stages
- Stage 2 refines stage 1

A small yellow bird with a black crown and a short black pointed
beak

Stage-1I & l\ﬁ' G ‘8

¢
_ N

[

Stage-I1I

[Zhang et al., ICCV 2017]



GAN applications

Semantically Multi-modal Image Synthesis
- Generating based on real image and new semantic mask
- Disentangled latent code controls semantics (e.g. clothes, hair, face, pants)

ﬂ / { Decoder ﬁ
CG- CG- CG- o JCE }
» | Encoder > ’ y > Block > > S > > e > et >
Latent code Z gl g2 Jd. gt

Generated image

Real image

( Conditional Group Normaliztion o, Conditional Group Block

F' %*FO cG—I;orm H GConv I—-l CG-!;orm I—-l GConv MP—»

GConv M M

CG—l;orm H GConv Ii

M

N Semantic mask N/ )

Figure 2: Architecture of our generator (GroupDNet). “GConv” means group convolution and “Sync BN” represents synchronized batch normalization. G f
is the group number of i-th layer. Note normally G¢ > G*t1 for > 1 for GroupDNet.

[Zhu et al., CVPR 2020]



GAN applications

- Semantically Multi-modal Image Synthesis

Sel:ln:sill(tsic Controller Generated images Semantic style sources Semantic mask source
------ : > @ *—
l —— :
s \ L
\
II Hair | J 9 B 7»44?.*V
: N « A “N « Generated images using mixed semantic styles
B - fp
g
‘5il ; )
- \ : . o
L e @8 ene 0ec LN N e e e
(a) Semantically multi-modal image synthesis (b) Appearance mixture
Semantic masks Generated images Semantic masks Generated images

Generated images through latent code extrapolation

Style b

z ﬁﬁ

(c) Semantic manipulation (d) Style morphing
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[Zhu et al., CVPR 2020]



GAN applications

GANSs for text generation

1. Text datais discrete
o Discriminator gradient does not exist for samples from categorical distribution
O Gradient sparse due to large dictionary size

2. Text is sensitive to noise (small disturbances easily alters the meaning of text)
3. Sparse discriminator feedback (feedback only makes sense on full sentences)

Categorical 7=10.0

e Lot L L L
I N A

category

o
—

o
-

sample  expectation

Gumbel-softmax to approximate samples from the
categorical generator distribution (Jang et al. 2016) Dense feedback with policy gradients and reward signals
(d’Autume et al. 2019)



Summary: generative models

VAEs GANs
e Relatively easier to train ® Requires many optimization tricks (prone to mode
e Explicit inference network q(z|x) collapse, adversarial objective)
e More blurry images (due to reconstruction) e Implicit generative model (unless using

bidirectional GAN)
e Sharper images (due to discriminator)

- Adversarial autoencoders (Makhzani et al., 2015)
- Autoencoder GANs (Rosca et al., 2017)




Summary: multimodal applications

disentanglement_lib
[Locatello et al., ICML 2019]

External Eorce

[Lee et al., ICRA 2019]

1 27
L N
(1) Multimodal discriminative factor F———- |
models the label and variations across both language and vision this bird is : I
blue with . 5
@ |hiend | ——— e
has: Loy blue wings
eak | |
| |
e ]
text text
“This movie is dede e this bird is blue with white
” - and has a pointy beak
great” positve @==@Z0 === |

. . ™ this bird h id
(2) Language generative factor sentiment | inda brown back
models variations within language
“That movie was

awesome”

®
[Tsai et al., ICLR 2019] [Qiao et al., CVPR 2019]



