

Deep Generative Models

11-777 Multimodal Machine Learning Fall 2021

Paul Liang

pliang@cs.cmu.edu

Used Materials

Acknowledgement: Some of the material and slides for this lecture were borrowed from the 10-708 PGM class at CMU taught by Eric Xing with guest lectures by Zhiting Hu, and the DGM class at Stanford taught by Stefano Ermon and Aditya Grover.

Contents

- Generative models
- Variational autoencoders
- Generative adversarial nets

$$x_i \sim P_{\text{data}}$$

 $i = 1, 2, ..., n$

Part 1: Generative models

Learn to model p(x) where x = text, images, videos, multimodal data

- Given x, evaluate p(x) realistic data should have high p(x) and vice versa
- **Sample** new x according to p(x) sample realistic looking images
- Unsupervised **representation** learning we should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

Input (\mathbf{x})	RECONSTRUCTION (AUTR)	RECONSTRUCTION (Gen-RNN)
unable to stop herself, she briefly, gently, touched his hand.	unable to stop herself, she leaned forward, and touched his eyes.	unable to help her, and her back and her into my way.
why didn't you tell me?	why didn't you tell me?	why didn't you tell me?"
a strange glow of sunlight shines down from above, paper white and blinding, with no heat.	the light of the sun was shining through the window, illuminating the room.	a tiny light on the door, and a few inches from behind him out of the door.
he handed her the slip of paper.	he handed her a piece of paper.	he took a sip of his drink.

Part 1: Generative models

Sometimes we also care about p(x|c) - conditional generation

- c is a category (e.g. faces, outdoor scenes) from which we want to generate images

We might also care about p(x2|x1,c) - style transfer

- c is a stylistic change e.g. negative to positive

From negative to positive

consistently slow . consistently good . consistently fast .

my goodness it was so gross . my husband 's steak was phenomenal . my goodness was so awesome .

it was super dry and had a weird taste to the entire slice . it was a great meal and the tacos were very kind of good . it was super flavorful and had a nice texture of the whole side .

Latent variable models

- Lots of variability in images **x** due to gender, eye color, hair color, pose, etc.
- However, unless images are annotated, these factors of variation are not explicitly available (latent).
- Idea: explicitly model these factors using latent variables z

Latent variable models

- Only shaded variables x are observed in the data
- Latent variables **z** are unobserved correspond to high-level features
 - We want z to represent useful features e.g. hair color, pose, etc.
 - But very difficult to specify these conditionals by hand and they're unobserved
 - Let's **learn** them instead

Latent variable models

- Put a prior on z $\mathbf{z} \sim \mathcal{N}(0, I)$ $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Hope that after training, z will correspond to meaningful latent factors of variation useful features for unsupervised representation learning
- Given a new image x, features can be extracted via p(z|x)

Mixture of Gaussians (Bayes network z -> x)

$$\mathbf{z} \sim \text{Categorical}(1, \cdots, K)$$

$$p(\mathbf{x} \mid \mathbf{z} = k) = \mathcal{N}(\mu_k, \Sigma_k)$$

Generative process

- Pick a mixture component by sampling z
- 2. Generate a data point by sampling from that Gaussian

Combining simple models into more expressive ones

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) \underbrace{\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)}_{\text{component}}$$

can solve using expectation maximization

Unsupervised clustering of digits

- Discovers clusters corresponding to factors of variation in the data
- Can generate new samples
- Cannot learn features of data i.e. p(z|x)

From GMMs to VAEs

- Put a prior on z $\mathbf{z} \sim \mathcal{N}(0, I)$ $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Hope that after training, z will correspond to meaningful latent factors of variation useful features for unsupervised representation learning
- Even though p(x|z) is simple, marginal p(x) is much richer/complex/flexible
- Given a new image x, features can be extracted via p(z|x): natural for unsupervised learning tasks (clustering, representation learning, etc.)

Learning parameters of VAE

- Learning parameters of VAE: we have a joint distribution $p(X, Z; \theta)$
- We have a dataset **D** where for each datapoint the **x** variables are observed (e.g. images, text) and the variables **z** are not observed (latent variables)
- We can try maximum likelihood estimation:

$$\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$$

Learning parameters of VAE

- Learning parameters of VAE: we have a joint distribution $p(X, Z; \theta)$
- We have a dataset **D** where for each datapoint the **x** variables are observed (e.g. images, text) and the variables **z** are not observed (latent variables)
- We can try maximum likelihood estimation:

$$\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$$

Need cheaper approximations to optimize for VAE parameters

intractable :-(

- if z binary with 30 dimensions, need sum 2^30 terms
- if z continuous, integral is hard

$$\mathcal{L}(\theta; x_i) = -\int q(z|x_i; \phi) \ln \frac{p(z|x_i; \theta)}{q(z|x_i; \phi)} dz$$

$$+ \int q(z|x_i; \phi) \ln \frac{p(z|x_i; \theta)p(x_i; \theta)}{q(z|x_i; \phi)} dz$$

$$\mathcal{L}(\theta|x_i) = \text{KL}\Big(q_{\phi}(z|x_i) \Big|\Big| p_{\theta}(z|x_i)\Big) + \mathcal{V}(q_{\phi}, \theta|x_i)$$

$$\mathcal{V}(q_{\phi}, \theta | x_i) = \mathbb{E}_{q_{\phi}(z|x_i)} \left[\ln p_{\theta}(x|z) \right] - \text{KL} \left(q_{\phi}(z) \mid | p_{\theta}(z) \right)$$

- Log-likelihood function with partially observed latent variables is hard to compute:

$$\log\left(\sum_{\mathbf{z}\in\mathcal{Z}}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\sum_{\mathbf{z}\in\mathcal{Z}}\frac{q(\mathbf{z})}{q(\mathbf{z})}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\mathbb{E}_{\mathbf{z}\sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q(\mathbf{z})}\right]\right)$$

 $f(z_1)$

- Use Jensen's inequality for concave functions, i.e. $\log(px + (1-p)x') \ge p \log(x) + (1-p)\log(x')$.

$$\log\left(\mathbb{E}_{\mathbf{z}\sim q(\mathbf{z})}\left[f(\mathbf{z})
ight]
ight) = \log\left(\sum_{\mathbf{z}}q(\mathbf{z})f(\mathbf{z})
ight) \geq \sum_{\mathbf{z}}q(\mathbf{z})\log f(\mathbf{z})$$

 $f(z_2)$

- Log-likelihood function with partially observed latent variables is hard to compute:

$$\log\left(\sum_{\mathbf{z}\in\mathcal{Z}}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\sum_{\mathbf{z}\in\mathcal{Z}}\frac{q(\mathbf{z})}{q(\mathbf{z})}p_{\theta}(\mathbf{x},\mathbf{z})\right) = \log\left(\mathbb{E}_{\mathbf{z}\sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q(\mathbf{z})}\right]\right)$$

- Use Jensen's inequality for concave functions, i.e. $\log(px + (1-p)x') \ge p \log(x) + (1-p) \log(x')$.

$$\begin{split} \log\left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[f(\mathbf{z})\right]\right) &= \log\left(\sum_{\mathbf{z}} q(\mathbf{z}) f(\mathbf{z})\right) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log f(\mathbf{z}) \\ \text{Choosing } f(\mathbf{z}) &= \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \\ \log\left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right]\right) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[\log\left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right)\right] \end{split}$$

Evidence Lower Bound (ELBO)

- ELBO holds for any probability distribution q(z) over latent variables:

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

- Equality holds if q(z) = p(z|x):

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

- We want to choose q(z) to be as close to p(z|x) as possible, while being easy to compute

The KL divergence

The KL divergence for variational inference is:

$$\mathbf{D}_{KL}(q(z)||p(z|x)) = \int q(z) \log \frac{q(z)}{p(z|x)} dz$$

- Intuitively, there are three cases
 - a. If **q** is low then we don't care (because of the expectation).
 - b. If **q** is high and **p** is high then we are happy.
 - c. If **q** is high and **p** is low then we pay a price.
- Note that p must be > 0 wherever q > 0

- Starting from the KL divergence:

$$D_{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x};\theta)) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z},\mathbf{x};\theta) + \log p(\mathbf{x};\theta) - H(q) \geq 0$$

- Re-derive ELBO from KL divergence:

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

Equality holds if q = p(z|x) because KL(q||p) = 0:

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

Starting from the KL divergence:

$$D_{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x};\theta)) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z},\mathbf{x};\theta) + \log p(\mathbf{x};\theta) - H(q) \geq 0$$

- Re-derive ELBO from KL divergence:

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

- Equality holds if q = p(z|x) because KL(q||p) = 0:

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

- In general, $\log p(\mathbf{x}; \theta) = \mathrm{ELBO} + D_{\mathcal{KL}}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x}; \theta))$
- The closer the chosen q is to p(z|x), the closer the ELBO is to the true likelihood.

Variational Inference

Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)

ullet For example, a Gaussian with mean and covariance specified by ϕ

$$q(\mathbf{z};\phi) = \mathcal{N}(\phi_1,\phi_2)$$

- Variational information optimize variational parameters so that while being simple to compute
- E.g. in figure, posterior (in blue) is better approximated by orange Gaussian than green

 $q(\mathbf{z}; \phi)$ is as close as possible to

Variational Inference

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$
$$= \mathcal{L}(\mathbf{x}; \theta, \phi) + D_{KL}(q(\mathbf{z}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))$$

- In practice how can we learn encoder parameters $p(\mathbf{z}|\mathbf{x};\theta)$ and variational (decoder) parameters jointly? $q(\mathbf{z};\phi)$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Figure courtesy: Kingma & Welling, 2014

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$= reconstruction \qquad prior$$

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i \ (\mathbf{x}^i \text{ likely under } p(\mathbf{x}|\hat{\mathbf{z}};\theta))$
- Second term encourages \hat{z} to be likely under the prior p(z)

Figure courtesy: Kingma & Welling, 2014

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
reconstruction prior

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i$ (\mathbf{x}^i likely under $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$)
- Second term encourages $\hat{\mathbf{z}}$ to be likely under the prior $p(\mathbf{z})$
- Take a data point xⁱ
- $oldsymbol{arphi}$ Map it to $\hat{oldsymbol{\mathsf{z}}}$ by sampling from $q_{\phi}(oldsymbol{\mathsf{z}}|oldsymbol{\mathsf{x}}^i)$ (encoder)
- 3 Reconstruct $\hat{\mathbf{x}}$ by sampling from $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$ (decoder)

Figure courtesy: Kingma & Welling, 2014

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x})]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x})]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\begin{split} \nabla_{\theta} \mathcal{L}(\mathsf{x}; \theta, \phi) &= \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})} [\log p(\mathsf{x}|\mathsf{z}; \theta)] - D_{\mathsf{KL}}(q_{\phi}(\mathsf{z}|\mathsf{x})||p(\mathsf{z})) \\ &= \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})} [\log p(\mathsf{x}|\mathsf{z}; \theta)] \end{split}$$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\begin{split} \nabla_{\theta} \mathcal{L}(\mathsf{x}; \theta, \phi) &= \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})} [\log p(\mathsf{x}|\mathsf{z}; \theta)] - D_{\mathsf{KL}}(q_{\phi}(\mathsf{z}|\mathsf{x})||p(\mathsf{z})) \\ &= \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})} [\log p(\mathsf{x}|\mathsf{z}; \theta)] \\ &= E_{q_{\phi}(\mathsf{z}|\mathsf{x})} [\nabla_{\theta} \log p(\mathsf{x}|\mathsf{z}; \theta)] \end{split}$$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

easy
$$\nabla_{\theta} \mathcal{L}(\mathsf{x}; \theta, \phi) = \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\log p(\mathsf{x}|\mathsf{z}; \theta)] - D_{\mathcal{KL}}(q_{\phi}(\mathsf{z}|\mathsf{x})||p(\mathsf{z}))$$

$$= \nabla_{\theta} E_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\log p(\mathsf{x}|\mathsf{z}; \theta)]$$

$$= E_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\nabla_{\theta} \log p(\mathsf{x}|\mathsf{z}; \theta)]$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \log p(\mathsf{x}|\mathsf{z}_{i}; \theta)$$

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

- We need to compute the gradients

- Expectations also depend on

$$\nabla_{\phi} \mathcal{L}(\mathsf{x}; \theta, \phi) = \nabla_{\phi} E_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\log p(\mathsf{x}|\mathsf{z}; \theta)] - D_{\mathsf{KL}}(q_{\phi}(\mathsf{z}|\mathsf{x})||p(\mathsf{z}))$$

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

- Suppose $q(\mathbf{z}; \phi) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathbf{z} \sim q_{\phi}(\mathbf{z})$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = g(\epsilon; \phi)$

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

- Suppose $q(\mathbf{z}; \phi) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathbf{z} \sim q_{\phi}(\mathbf{z})$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = g(\epsilon; \phi)$
- Using this equivalence we compute the expectation in two ways:

$$egin{aligned} E_{\mathbf{z} \sim q(\mathbf{z};\phi)}[r(\mathbf{z})] &= E_{\epsilon \sim \mathcal{N}(0,l)}[r(g(\epsilon;\phi))] = \int p(\epsilon)r(\mu + \sigma\epsilon)d\epsilon \ &
abla_{\phi} E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] =
abla_{\phi} E_{\epsilon}[r(g(\epsilon;\phi))] = E_{\epsilon}[
abla_{\phi} r(g(\epsilon;\phi))] \end{aligned}$$

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

- Suppose $q(\mathbf{z}; \phi) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathbf{z} \sim q_{\phi}(\mathbf{z})$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = \mathbf{g}(\epsilon; \phi)$
- Using this equivalence we compute the expectation in two ways:

$$egin{aligned} E_{\mathbf{z} \sim q(\mathbf{z};\phi)}[r(\mathbf{z})] &= E_{\epsilon \sim \mathcal{N}(0,I)}[r(g(\epsilon;\phi))] = \int p(\epsilon)r(\mu + \sigma\epsilon)d\epsilon \ &
abla_{\phi}E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] =
abla_{\phi}E_{\epsilon}[r(g(\epsilon;\phi))] = E_{\epsilon}[
abla_{\phi}r(g(\epsilon;\phi))] \end{aligned}$$

- Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ϕ and ϵ is easy to sample from (backpropagation)
- $E_{\epsilon}[\nabla_{\phi} r(g(\epsilon;\phi))] \approx \frac{1}{k} \sum_{k} \nabla_{\phi} r(g(\epsilon^{k};\phi))$ where $\epsilon^{1}, \cdots, \epsilon^{k} \sim \mathcal{N}(0,I)$.

Reparameterization trick

$$\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi) = \nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] = \nabla_{\phi} E_{\epsilon}[\log p(\mathbf{x}|\mu + \sigma\epsilon; \theta)] \quad \text{reparameterize}$$

Reparameterization trick

$$\begin{split} \nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi) &= \nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{\mathcal{K}L}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \\ \nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}; \theta)] &= \nabla_{\phi} E_{\epsilon} [\log p(\mathbf{x}|\mu + \sigma\epsilon; \theta)] \quad \text{reparameterize} \\ &= E_{\epsilon} [\nabla_{\phi} \log p(\mathbf{x}|\mu + \sigma\epsilon; \theta)] \end{split}$$

Reparameterization trick

$$\begin{split} \nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi) &= \nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \\ \nabla_{\phi} E_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}; \theta)] &= \nabla_{\phi} E_{\epsilon} [\log p(\mathbf{x}|\mu + \sigma\epsilon; \theta)] \quad \text{reparameterize} \\ &= E_{\epsilon} [\nabla_{\phi} \log p(\mathbf{x}|\mu + \sigma\epsilon; \theta)] \\ &\approx \frac{1}{n} \sum_{i=1}^{n} [\nabla_{\phi} \log p(\mathbf{x}|\mu + \sigma\epsilon_{i}; \theta)] \end{split}$$

: Deterministic node

: Random node

Learning the parameters

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
reconstruction prior

- 1. Take a datapoint x_i .
- 2. Map it to μ, σ using $q_{\phi}(\mathbf{z}|\mathbf{x}_i)$. encoder
- 3. Sample $\epsilon \sim N(0, I)$ and compute $\hat{z} = \mu + \sigma \epsilon$. reparameterize
- 4. Reconstruct \hat{x} by sampling from $p(x|\hat{z};\theta)$. decoder

Differentiable using reparameterization trick

Figure courtesy: Kingma & Welling, 2014

Latent distribution

VAE for disentanglement

Disentangled representation learning

- Very useful for style transfer: disentangling **style** from **content**

[Gatys et al., CVPR 2016]

From negative to positive

consistently slow. consistently good. consistently fast.

[Shen et al., NeurIPS 2017]

my goodness it was so gross . my husband 's steak was phenomenal . my goodness was so awesome .

it was super dry and had a weird taste to the entire slice . it was a great meal and the tacos were very kind of good . it was super flavorful and had a nice texture of the whole side .

VAE for disentanglement

Disentangled representation learning

Very useful for style transfer: disentangling style from content

$$\mathcal{L}_{\beta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta \cdot \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

 beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger constraint on the latent variables to have independent dimensions

VAE for disentanglement

Disentangled representation learning

Very useful for style transfer: disentangling style from content

$$\mathcal{L}_{\beta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta \cdot \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

- beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger constraint on the latent variables to have independent dimensions
 - Difficult problem!
 - Positive results [Hu et al., 2016, Kulkarni et al., 2015]
 - Negative results [Mathieu et al., 2019, Locatello et al., 2019]
 - Better benchmarks & metrics to measure disentanglement [Higgins et al., 2017, Kim & Mnih 2018]

[Tsai*, Liang* et al., ICLR 2019]

[Tsai*, Liang* et al., ICLR 2019]

Discriminative performance

MFM achieves strong performance on 6 multimodal time-series datasets

MFM can be applied on any multimodal fusion encoder

Disentangling factors of variation: controllable generation

Modality 1: SVHN

Modality 2: MNIST

Disentangling factors of variation: controllable generation

Interpreting modality-specific factors

VAEs beyond reconstruction

- It can be hard to reconstruct highdimensional input modalities
- Combine VAEs with self-supervised learning: reconstruct important signals from the input

Self-supervised signals

High success rate from multimodal signals

(Randomized box location)

Force Only: Can't find box

Image Only: Struggles with peg alignment

Force & Image: Can learn full task completion

Robustness to:

- external forces
- camera occlusion
- moving targets

Summary: generative models

Prominent attributes: White, Fully Visible Forehead, Mouth Closed, Male, Curly Hair, **VAEs** Query Eyes Open, Pale Skin, Frowning, Pointy Nose, Teeth Not Visible, No Eyewear. Relatively easier to train VAE Explicit inference network q(z|x)More blurry images (due to reconstructi GAN VAE/GAN Prominent attributes: White, Male, Curly Hair, Frowning, Eyes Open, Pointy Nose, Query Flash, Posed Photo, Eyeglasses, Narrow Eyes, Teeth Not Visible, Senior, Receding Hairline. VAE GAN VAE/GAN

Beyond likelihood-based learning:

- Difficulty in evaluating and optimizing p(x) in high-dimensions
- High p(x) might not correspond to realistic samples

Towards likelihood-free learning

Given a finite set of samples from two distributions, how can we tell if these samples are from the same distribution? (i.e. P = Q?)

Given $S_1 = \{\mathbf{x} \sim P\}$ and $S_2 = \{\mathbf{x} \sim Q\}$, a **two-sample test** considers the following hypotheses

- Null hypothesis H_0 : P = Q
- Alternate hypothesis H_1 : $P \neq Q$

Test statistic T compares S_1 and S_2 e.g., difference in means, variances of the two sets of samples

If T is less than a threshold α , then accept H_0 else reject it

Key observation: Test statistic is **likelihood-free** since it does not involve the densities P or Q, only samples

Towards likelihood-free learning

- Assume we have access to $S_1 = \mathcal{D} = \{\mathbf{x} \sim p_{\mathrm{data}}\}$
- In addition, we have our model's distribution p_{θ}
- Assume that our model's distribution permits efficient sampling of $S_2 = \{ \mathbf{x} \sim p_{\theta} \}$
- **Alternate notion of distance between distributions:** Train the generative model to minimize a two-sample test objective between S1 and S2

Towards likelihood-free learning

- Problem: finding a two-sample test objective in high-dimensions is hard
- In the generative model setup, we know that S1 and S2 come from different distributions
- **Key idea: learn** p_{data} **and** p_{θ} **respectively** ;uitable notion of distance between the two sets of samples S1 and S2

- A 2 player minimax game between a **generator** and a **discriminator**

- **Generator**: a directed latent variable model from z to x
- Minimizes the two-sample test objective: in support of null hypothesis

 $p_{\mathrm{data}} = p_{\theta}$

- A 2 player minimax game between a **generator** and a **discriminator**

- **Discriminator**: any function (e.g. neural network) that tries to distinguish 'real' samples from the datasets from 'fake' samples generated by the model

 $p_{\text{data}} \neq p_{\theta}$

- Maximizes the two-sample test objective: in support of alternative hypothesis

Training the discriminator

- Training objective for **discriminator**

$$\max_{D} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_G}[\log(1 - D(\mathbf{x}))]$$

- For a fixed generator G, the discriminator performs binary classification between true samples (assign label 1) vs fake samples (assign label 0)
- Optimal discriminator:

$$D_G^*(\mathbf{x}) = rac{p_{ ext{data}}(\mathbf{x})}{p_{ ext{data}}(\mathbf{x}) + p_G(\mathbf{x})}$$

Training the generator

- Training objective for **generator**

$$\min_{G} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

• For the optimal discriminator $D_G^*(\cdot)$, we have

$$V(G, D_G^*(\mathbf{x}))$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_G(\mathbf{x})} \right] + E_{\mathbf{x} \sim p_G} \left[\log \frac{p_G(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_G(\mathbf{x})} \right]$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_G(\mathbf{x})}{2}} \right] + E_{\mathbf{x} \sim p_G} \left[\log \frac{p_G(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_G(\mathbf{x})}{2}} \right] - \log 4$$

$$= D_{KL} \left[p_{\text{data}}, \frac{p_{\text{data}} + p_G}{2} \right] + D_{KL} \left[p_G, \frac{p_{\text{data}} + p_G}{2} \right] - \log 4$$

$$= 2D_{JSD}[p_{\text{data}}, p_G] - \log 4$$

More about divergences

- Also known as the **symmetric** KL divergence

$$D_{JSD}[p,q] = rac{1}{2} \left(D_{KL} \left[p, rac{p+q}{2}
ight] + D_{KL} \left[q, rac{p+q}{2}
ight]
ight)$$

- Properties
 - $D_{JSD}[p, q] \ge 0$
 - $D_{JSD}[p, q] = 0$ iff p = q
 - $D_{JSD}[p,q] = D_{JSD}[q,p]$
 - $\sqrt{D_{JSD}[p,q]}$ satisfies triangle inequality \rightarrow Jenson-Shannon Distance
- Optimal generator for the JSD/Negative Cross Entropy GAN

$$p_G = p_{\text{data}}$$

GAN training

- Sample minibatch of m training points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ from \mathcal{D}
- Sample minibatch of m noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(m)}$ from p_z
- ullet Update the generator parameters heta by stochastic gradient **descent**

$$abla_{ heta} V(\mathit{G}_{ heta}, \mathit{D}_{\phi}) = rac{1}{m}
abla_{ heta} \sum_{i=1}^{m} \log(1 - \mathit{D}_{\phi}(\mathit{G}_{ heta}(\mathbf{z}^{(i)})))$$

 \bullet Update the discriminator parameters ϕ by stochastic gradient \mathbf{ascent}

$$abla_{\phi} V(\textit{G}_{ heta}, \textit{D}_{\phi}) = rac{1}{m}
abla_{\phi} \sum_{i=1}^{m} [\log \textit{D}_{\phi}(\mathbf{x}^{(i)}) + \log(1 - \textit{D}_{\phi}(\textit{G}_{ heta}(\mathbf{z}^{(i)})))]$$

Repeat for fixed number of epochs

Slides from Ermon and Grover

Progress in face generation

Figure from Goodfellow

$$D_{JSD}[p,q] = rac{1}{2} \left(D_{KL}\left[p,rac{p+q}{2}
ight] + D_{KL}\left[q,rac{p+q}{2}
ight]
ight)$$

- If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice
- KL divergence is undefined or infinite so the loss function and gradients may not be continuous and well behaved

$$W(P||Q) = \inf_{\gamma \in \Pi(P,Q)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||]$$

- $\Pi(P,Q)$ denotes the set of all joint distributions $\gamma(x,y)$ whose marginals are P and Q, respectively
- $\gamma(x,y)$ indicates a plan to transport "mass" from x to y, when deforming P into Q.
 - The Wasserstein (or Earth-Mover) distance is then the "cost" of the **optimal** transport plan
- The Wasserstein Distance is well defined
- Earth Mover's Distance: minimum transportation cost for making one pile of dirt in the shape of one probability distribution to the shape of the other distribution

Wasserstein GAN: Dual form of Earth Mover's distance

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

Discriminator/Critic

Generator

$$\mathbf{GAN} \qquad \qquad \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right] \qquad \qquad \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right)$$

WGAN
$$\nabla_{w} \frac{1}{m} \sum_{i=1}^{m} \left[f(x^{(i)}) - f(G(z^{(i)})) \right] \qquad \qquad \nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f(G(z^{(i)}))$$

Optimal discriminator and critic when learning to differentiate two Gaussians. The discriminator of a GAN saturates and results in vanishing gradients. WGAN critic provides clean gradients on all parts of the space. (Arjovsky et al. 2017)

Wasserstein GAN: Dual form of Earth Mover's distance

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

Discriminator/Critic

Generator

$$\begin{aligned} \mathbf{GAN} & \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right] & \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \ \log \left(D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \\ \mathbf{WGAN} & \nabla_w \frac{1}{m} \sum_{i=1}^m \left[f\left(\boldsymbol{x}^{(i)} \right) - f\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right] & \nabla_{\theta} \frac{1}{m} \sum_{i=1}^m \ f\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \end{aligned}$$

$$||f(x_1) - f(x_2)|| \le K||x_1 - x_2||$$

- Bounded derivative -> function cannot change too quickly
- In practice, use gradient clipping to enforce Lipschitz continuity

Optimal discriminator and critic when learning to differentiate two Gaussians. The discriminator of a GAN saturates and results in vanishing gradients. WGAN critic provides clean gradients on all parts of the space. (Arjovsky et al. 2017)

Progressive GAN

• Starts with low resolution and gradually add layers to generator and discriminator

Scaling up GANs

Self-Attention and Hinge Loss (focus)

- 1. Class-conditioned generation (accuracy)
- 2. Spectral normalization (stability)

Examples of Large High-Quality 512×512 Class-Conditional Images Generated by BigGAN. Taken from: Large Scale GAN Training for High Fidelity Natural Image Synthesis.

Lots of current work:

- Better loss functions (see Lucic et al., 2018 for a large-scale comparison)
- Optimization tricks (Tim Salimans et al. 2016, Soumith Chintala and more)
- Better evaluation metrics
 - Inception Score (IS) (Salimans et al 2016)
 - Frechet Inception Distance (FID) (Heusel et al. 2017)
 - Precision, Recall and F1 (Lucic et al. 2018)
- Applications:
 - Text style transfer (Shen et al., NeurIPS 2017; Zhao et al., ICML 2018; Li et al., AAAI 2020)
 - Cross-modal generation

Image generation from text

- MirrorGAN: text to image via redescription
- Bears resemblance to conditional GANs for with text as context variable
- CycleGAN: ensuring cycle consistency of generated outputs

Image generation from text

- StackGAN: generation over multiple stages
- Stage 2 refines stage 1

Image generation from text

- StackGAN: generation over multiple stages
- Stage 2 **refines** stage 1

Semantically Multi-modal Image Synthesis

- Generating based on real image and new semantic mask
- Disentangled latent code controls semantics (e.g. clothes, hair, face, pants)

Figure 2: Architecture of our generator (GroupDNet). "GConv" means group convolution and "Sync BN" represents synchronized batch normalization. \mathcal{G}^i is the group number of *i*-th layer. Note normally $\mathcal{G}^i \geq \mathcal{G}^{i+1}$ for $i \geq 1$ for GroupDNet.

Semantically Multi-modal Image Synthesis

GANs for text generation

- Text data is discrete
 - O Discriminator gradient does not exist for samples from categorical distribution
 - Gradient sparse due to large dictionary size
- 2. Text is sensitive to noise (small disturbances easily alters the meaning of text)
- 3. Sparse discriminator feedback (feedback only makes sense on full sentences)

Gumbel-softmax to approximate samples from the categorical generator distribution (Jang et al. 2016)

Dense feedback with **policy gradients** and **reward** signals (d'Autume et al. 2019)

Summary: generative models

VAEs

- Relatively easier to train
- Explicit inference network q(z|x)
- More blurry images (due to reconstruction)

Encoder → real/fake Discriminator Decoder

GANs

- Requires many optimization tricks (prone to mode collapse, adversarial objective)
- Implicit generative model (unless using bidirectional GAN)
- Sharper images (due to discriminator)

- Adversarial autoencoders (Makhzani et al., 2015)
- Autoencoder GANs (Rosca et al., 2017)

Summary: multimodal applications

disentanglement_lib

[Locatello et al., ICML 2019]

[Tsai et al., ICLR 2019]

[Lee et al., ICRA 2019]

[Qiao et al., CVPR 2019]