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Louis-Philippe Morency

Multimodal Machine Learning
Lecture 9.1: Fusion, co-learning 

and new trends

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

§ Quick recap: multimodal fusion
§ Model-agnostic fusion

§ Multimodal fusion architecture search
§ Fusion and kernel function

§ Transformers through the lens for kernel
§ Multiple Kernel Learning

§ Co-learning
§ Paired and weakly-paired data

§ Research trends in Multimodal ML
§ Few-shot and weakly supervised learning
§ Multi-lingual multimodal grounding

papers
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Quick Recap:
Multimodal Fusion



Multimodal fusion

§ Process of joining information 
from two or more modalities to 
perform a prediction 

§ Examples
§ Audio-visual speech recognition
§ Audio-visual emotion recognition 
§ Multimodal biometrics
§ Speaker identification and 

diarization
§ Visual/Media Question answering
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Fusion – Probabilistic Graphical Models 

Prediction

Domain knowledge
a) Latent sub-structure

Emotion

Valence

PerformanceLearning Focus

b) Structured output prediction

EmotiontEmotion t-1



Multimodal Fusion

“Model-agnostic” fusion:
§ Early and late fusion
§ Fusion architecture search

Intermediate fusion (aka model-based):
§ Neural Networks
§ Graphical models
§ Kernel Methods

Modality 1 Modality 2 Modality 3

Prediction

Fancy 
algorithm
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Model-free Fusion



Model-agnostic approaches – early fusion

§ Easy to implement – just concatenate the features
§ Exploit dependencies between features
§ Can end up very high dimensional
§ More difficult to use if features have different granularities

Classifier

Modality 1

Modality 2

Modality n



Model-agnostic approaches – late fusion

§ Train a unimodal predictor and a multimodal fusion one
§ Requires multiple training stages
§ Do not model low level interactions between modalities
§ Fusion mechanism can be voting, weighted sum or an ML approach

Modality 2

Classifier
Modality 1

Modality n

Fusion 
mechanism

Classifier

Classifier

What should be the Fusion Mechanism for 
multi-layer neural classifiers?



Late Fusion on Multi-Layer Unimodal Classifiers

Unimodal classifier 1

What layer(s) should we fuse?

Unimodal classifier 2

One of the last layers? Or more than one layer?

Trying all combinations may be computationally expensive…
L=1 L=2



Multimodal Fusion Architecture Search (MFAS)

Proposed solution: Explore the search space with 
Sequential Model-Based Optimization

Start with simpler models first (all L=1 models) and 
iteratively increase the complexity (L=2, L=3,…)

Use a surrogate function to predict performance 
of unseen architectures 

e.g., the performance of all the L=1 models should give 
us an idea of how well the L=2 models will perform

“Perez-Rua, Vielzeuf, Pateux, Baccouche, Frederic Jurie,MFAS: Multimodal Fusion Architecture Search, CVPR 2019

paper
-ish



Multimodal Fusion Architecture Search (MFAS)

“Perez-Rua, Vielzeuf, Pateux, Baccouche, Frederic Jurie,MFAS: Multimodal Fusion Architecture Search, CVPR 2019

Unimodal classifier 1

Unimodal classifier 2

Fusion layer unit

With three hyper-parameters:

Basic building block: a “fusion layer” unit

a) Layer index for modality 1
b) Layer index for modality 2
c) Activation/fusion function



Multimodal Fusion Architecture Search (MFAS)

“Perez-Rua, Vielzeuf, Pateux, Baccouche, Frederic Jurie,MFAS: Multimodal Fusion Architecture Search, CVPR 2019

Dataset: Audio-Visual MNIST

LeNet trained on 
spoken digits

LeNet trained on 
visual digits

Example of discovered fusion architecture with MFAS:

What should be the Fusion Mechanism for 
variable length unimodal classifier?
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Memory-Based Fusion

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]

𝑡 𝑡 + 1𝑡 − 1 𝑡 + 2

Memory

Local 
evidences

Ø This model can also be trained end-to-end.
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Local Fusion and 
Kernel Functions
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Recap: Self-Attention
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Recap: Transformer Self-Attention
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Transformer Self-Attention
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Transformer’s Attention Function
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Scale dot-
product 
attention
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This attention function is a 
similarity function. This is 

related to kernel function…



What is a Kernel function?

A kernel function: Acts as a similarity metric between data 
points

𝐾 𝒙%, 𝒙& = 𝜙 𝒙% #𝜙(𝒙&) = 𝜙 𝒙% , 𝜙(𝒙&) , where 𝜙:𝐷 → 𝑍

§ Kernel function performs an inner product in feature map 
space 𝜙

§ Inner product (a generalization of the dot product) is often 
denoted as . , . in SVM papers

§ 𝒙 ∈ ℝ!(but not necessarily), but 𝜙 𝒙 can be in any space –
same, higher, lower or even in an infinite dimensional space



Non-linearly separable data

§ Want to map our data to a linearly separable space
§ Instead of 𝒙, want 𝜙(𝒙), in a separable space (𝜙(𝒙) is a feature map)

What if 𝜙(𝒙) is much higher dimensional? We do not want to learn more 
parameters and mapping could become very expensive

Not linearly separable
Same data, but now linearly separable



Radial Basis Function Kernel (RBF)

Arguably the most popular kernel function ( for Support Vector Machine)

𝐾 𝑥", 𝑥# = exp−
1
2𝜎$

𝑥" − 𝑥#
$

𝜙 𝒙 =?
§ It is infinite dimensional and fairly involved, no easy way to actually 

perform the mapping to this space, but we know what an inner product 
looks like in it

𝜎 = ?
§ a hyperparameter
§ With a really low sigma the model becomes close to a KNN approach 

(potentially very expensive)



Some other kernels

Other kernels exist
§ Histogram Intersection Kernel

§ good for histogram features
§ String kernels

§ specifically for text and sentence features
§ Proximity distribution kernel
§ (Spatial) pyramid matching kernel



Kernel CCA

If we remember CCA it used only inner products in definitions when 
dealing with data, that means we can again use kernels

[Lai et al. 2000]

We can now map into a high-dimensional non-linear space instead
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Transformer’s Attention Function
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Scale dot-product attention:

Scale dot-
product 
attention

𝜶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝒙𝒒𝑾𝒒 𝒙𝒌𝑾𝒌

#

𝑑$

How can you interpret it as a 
kernel similarity function?
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Transformer’s Attention Function
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Scale dot-
product 
attention

Kernel-formulated attention:

𝜶 =
𝑘 𝒙𝒒, 𝒙𝒌

∑{𝒙𝒌# }𝑘 𝒙𝒒, 𝒙𝒌*

Tsai et al., Transformer Dissection: An Unified Understanding for Transformer’s
Attention via the Lens of Kernel, EMNLP 2019

What is the 
impact of the 
kernel function?

Scale dot-product attention:

𝜶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝒙𝒒𝑾𝒒 𝒙𝒌𝑾𝒌

#

𝑑$
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Transformer’s Attention Function
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Scale dot-
product 
attention

Tsai et al., Transformer Dissection: An Unified Understanding for Transformer’s
Attention via the Lens of Kernel, EMNLP 2019

What is the impact of the kernel function?

Conventional
Transformer

What is the best way to integrate the 
position embedding?
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Transformer’s Attention Function
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attention

Tsai et al., Transformer Dissection: An Unified Understanding for Transformer’s
Attention via the Lens of Kernel, EMNLP 2019

Vaswami et al

What is the best way to integrate the 
position embedding?

Transformer XL

Proposed

Same weight 
matrices!

Can Kernels be used as a Fusion 
Mechanism (for late fusion)?



Multiple Kernel Learning

§ Instead of providing a single kernel and validating which one works optimize 
in a family of kernels (or different families for different modalities)

§ Works well for unimodal and multimodal data, very little adaptation is needed

[Lanckriet 2004]



MKL in Unimodal Case

§ Pick a family of kernels and learn which 
kernels are important for the classification 
case

§ For example a set of RBF and polynomial 
kernels

K



MKL in Multimodal/Multiview Case

§ Pick a family of kernels for 
each modality and learn which 
kernels are important for the 
classification case

§ Does not need to be different 
modalities, often we use 
different views of the same 
modality (HOG, SIFT, etc.)

K
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Co-Learning
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Co-Learning - The 5th Multimodal Challenge

Definition: Transfer knowledge between modalities, including their 
representations and predictive models.

Modality 1

Prediction

Modality 2

Help during 
training

ParallelA Non-ParallelB

paired data weakly paired data
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Learn vector representations for 
text using visual co-occurrences

Four types of co-occurrences:

(a) Object - Attribute
(b) Attribute - Attribute
(c) Context 
(d) Object-Hypernym

Co-learning Example with Paired Data

ViCo: Word Embeddings from Visual Co-occurrences
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Relatedness through Co-occurrences

Since ViCo is learned from multiple types of co-occurrences, it is 
hypothesized to provide a richer sense of relatedness

ViCo: Word Embeddings from Visual Co-occurrences

ØLearned using a multi-task Log-Bilinear Model
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ViCO leads to more homogenous clusters compared to GloVe

ViCo: Word Embeddings from Visual Co-occurrences



Cyclic
Loss

Decoder

Another Example of Co-Learning with Paired Data: 
Multimodal Cyclic Translation

Verbal modality
Visual modality

“Today was a great day!”

(Spoken language) Co-learning
Representation

Sentiment

Encoder

Paul Pu Liang*, Hai Pham*, et al., “Found in Translation: Learning Robust Joint Representations by 
Cyclic Translations Between Modalities”, AAAI 2019



Another Example of Co-Learning with Paired Data: 
Multimodal Cyclic Translation

Paul Pu Liang*, Hai Pham*, et al., “Found in Translation: Learning Robust Joint Representations by 
Cyclic Translations Between Modalities”, AAAI 2019

Results on CMU-MOSI Dataset (Multimodal Sentiment Analysis)

MC
TN

Trained 
using 
multimodal 
co-learning 
but tested 
with only 
verbal input!

Trained and tested using all multimodal inputs 
(visual, vocal and verbal)

Only  the 
verbal input!



Co-Learning Example with Weakly Paired Data

End-to-End Learning of Visual Representations from Uncurated Instructional Videos 
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020

it’s turning into a much thicker mixture

… by taking advantage of large-scale video+language resources

The biggest mistake is not kneading it enough

…

Goal: Learn better visual representations…

Instructional videos
(weakly-paired data)

paper



Weakly Paired Data

“a short 3.2 seconds video clip (32 frames at 10 FPS) together 
with a small number of words (not exceeding 16)”

Data point:

How to handle this misalignment? Multi-instance learning!
How to do it self-supervised? Contrastive learning!

End-to-End Learning of Visual Representations from Uncurated Instructional Videos 
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020



Multiple Instance Learning Noise Contrastive Estimation

Given video x and text y from a positive set Pi and a negative set Ni, 
maximize the positive / total score ratio

Objective

Note: Doing so requires 
maximizing
for only positive examples

1. Using sets of positive and negative examples to ~wash out the misaligned text
2. Ideally, we would maximize all positives over all possible negatives (intractable)

End-to-End Learning of Visual Representations from Uncurated Instructional Videos 
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020



Experiments – HowTo100M Dataset

End-to-End Learning of Visual Representations from Uncurated Instructional Videos 
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman – CVPR 2020
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Co-Learning

New Directions



Learning by Abstraction: The Neural State Machine 

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

1. Given an image, generate a probabilistic 
scene graph that captures the semantic 
concepts.

2. Treat the graph as a state machine and 
simulate iterative computation over it to 
answer questions or draw inferences.

3. Natural language questions are translated 
into soft instructions and used to perform 
sequential reasoning over the scene 
graph/state machine.

paper
How to solve this question 

using visual reasoning?



Learning by Abstraction: The Neural State Machine 

Detect objects and create proximity graph

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019



Learning by Abstraction: The Neural State Machine 

Pre-trained an alphabet of concepts(Visual Genome)

Manually 
grouped by 
“properties”

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurIPS 2019

Probabilities 
computed at 
runtime for 
each object 

instance



Cross-Modality Relevance 
for Reasoning on Language and Vision

Cross-Modality Relevance for Reasoning on Language and Vision, ACL 2020

Visual Question AnsweringNatural Language for Visual Reasoning

Solving these problems requires:
(1) Knowing relevance (aka, alignment) between visual and language entities
(2) Knowing relevance between visual pairs and language pairs

paper



Cross-Modality Relevance 
for Reasoning on Language and Vision

Computing Cross Modality 
Relevance affinity matrix

Cross-Modality Relevance for Reasoning on Language and Vision, ACL 2020

Similar bilinear 
models



Emotions are Often Context Dependent

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020

paper



Commonsense and Emotion Recognition

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020

Proposed approach (COSMIC): 

For each utterance, try to infer
speaker’s intention
effect on the speaker/listener
reaction of the speaker/listener

Example: “Person X gives Person Y a compliment”
→ Intend of X: “X wanted to be nice”
→ Reaction of Y: “Y will feel flattered”



Commonsense and emotion recognition

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020


