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Lecture Objectives

= Quick recap: multimodal fusion
* Model-agnostic fusion
= Multimodal fusion architecture search

»= Fusion and kernel function
= Transformers through the lens for kernel
= Multiple Kernel Learning

= Co-learning
= Paired and weakly-paired data
= Research trends in Multimodal ML #papers

= Few-shot and weakly supervised learning
=  Multi-lingual multimodal grounding
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Quick Recap:
Multimodal Fusion
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Multimodal fusion

= Process of joining information . -
from two or more modalities to
perform a prediction
= Examples
= Audio-visual speech recognition . .
= Audio-visual emotion recognition ! - !
= Multimodal biometrics ! .
= Speaker identification and
diarization

Visual/Media Question answering Wies|
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Fusion — Probabilistic Graphical Models

4= Domain knowledge
a) Latent sub-structure

Emotion

b) Structured output prediction

Emotion.q Y Emotiont
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Multimodal Fusion

“Model-agnostic” fusion:
= Early and late fusion
= Fusion architecture search

Intermediate fusion (aka model-based):
= Neural Networks

= Graphical models
= Kernel Methods

Prediction

Fancy

algorithm
s m s
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Model-free Fusion



Model-agnostic approaches — early fusion

Modality 1

Modality 2
Classifier

Modality n

= Easy to implement — just concatenate the features

= Exploit dependencies between features

= Can end up very high dimensional

= More difficult to use if features have different granularities
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Model-agnostic approaches — late fusion

Modality 1

Classifier
Modality 2 Fusion
Classifier - - " mechanism
Modality n
. Classifier

= Train a unimodal predictor and a multimodal fusion one

= Requires multiple training stages
= Do not model low level interactions between modalities

. Fuy

. _ nproach
What should be the Fusion Mechanism for

multi-layer neural classifiers?




Late Fusion on Multi-Layer Unimodal Classifiers

Unimodal classifier1 |~ = % % . >y
fi(x) fa(x1) fa(x2) - fa() 2«

Unimodal classifier2 | 0wl w0
g1(y) g2(y1) g3(y2) gn() 2y

What layer(s) should we fuse?

One of the last layers? Or more than one layer?
s e L2

Trying all combinations may be computationally expensive...



11@@%%
Multimodal Fusion Architecture Search (MFAS) “ paper

Proposed solution: Explore the search space with
Sequential Model-Based Optimization

Start with simpler models first (all L=1 models) and
iteratively increase the complexity (L=2, L=3,...)

Use a surrogate function to predict performance
of unseen architectures

e.g., the performance of all the L=1 models should give
us an idea of how well the L=2 models will perform

“Perez-Rua, Vielzeuf, Pateux, Baccouche, Frederic Jurie, MFAS: Multimodal Fusion Architecture Search, CVPR 2019
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Multimodal Fusion Architecture Search (MFAS)

Basic building block: a “fusion layer” unit

Unimodal classifier 1 vafl(x)4f2(x1)»2f3(x2)»3---»fM(')—Mix
(x) o \| \| y
Fusion layer unit 8 |
Unimodal classifier 2 Ij """" e
g1(y) gz(yl) g3(y2) gn() %y

With three hyper-parameters: a) Layer index for modality 1
D) Layer index for modality 2
C) Activation/fusion function

“Perez-Rua, Vielzeuf, Pateux, Baccouche, Frederic Jurie, MFAS: Multimodal Fusion Architecture Search, CVPR 2019
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Multimodal Fusion Architecture Search (MFAS)

Dataset: Audio-Visual MNIST

Example of discovered fusion architecture with MFAS.:

LeNet trained on 1 audio
spoken digits
S - B-RelU-

/ | ——=—®»RellU
ReLU
|/ Zx.y

LeNet trained on 4
visual digits

g : image

rerez-ria Vel \Ahat should be the Fusion Mechanism for

- variable length unimodal classifier? -
Languag



Memory-Based Fusion

-

Local
evidences /

__________

\ t—1 t t+1 t+2 )

» This model can also be trained end-to-end.

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]
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Local Fusion and
Kernel Functions
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Recap: Self-Attention
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Recap: Transformer Self-Attention

t t A;f t t
L T@
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Transformer Self-Attention

t
Scale dot- @

product r@,_
attentionin ------ .--- E

‘

a1

al'l V1

0
T%
X2

I do not like it
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Transformer’s Attention Function

Scale dot-product attention:

Scale dot- T
x, W (kak)

product ’—% a = softmax 4 1 =

attentlonin ------ :--- E dk

+

This attention function is a
similarity function. This is
related to kernel function...
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What is a Kernel function?

A kernel function: Acts as a similarity metric between data
points

K(x;,x;) = dpx)Td(x)) = (p(x), p(x;)), where ¢: D - Z

= Kernel function performs an inner product in feature map
space ¢

= |nner product (a generalization of the dot product) is often
denoted as (.,.) in SVM papers

= x € RP(but not necessarily), but ¢(x) can be in any space —
same, higher, lower or even in an infinite dimensional space
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Non-linearly separable data

A
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Not linearly separable | el : X Label
v Same data, but now linearly separable

= Want to map our data to a linearly separable space
» |Instead of x, want ¢(x), in a separable space (¢(x) is a feature map)

What if ¢(x) is much higher dimensional? We do not want to learn more
parameters and mapping could become very expensive
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Radial Basis Function Kernel (RBF)

Arguably the most popular kernel function ( for Support Vector Machine)

1

K(xl-,xj) = exp 5oz

2
Sy P—

» |tis infinite dimensional and fairly involved, no easy way to actually
perform the mapping to this space, but we know what an inner product

looks like in it

= a hyperparameter
= With a really low sigma the model becomes close to a KNN approach
(potentially very expensive)
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Some other kernels

Other kernels exist

= Histogram Intersection Kernel
= good for histogram features

= String kernels
= gpecifically for text and sentence features

= Proximity distribution kernel
= (Spatial) pyramid matching kernel
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Kernel CCA

If we remember CCA it used only inner products in definitions when
dealing with data, that means we can again use kernels
’wllzlgwg

/
(w],ws) = argmax / / = argmax w1 X12Ws
wi,w2 \/w1211w1w2222w2 w’1211w1:w’2222w2:1

We can now map into a high-dimensional non-linear space instead

/
« KlKQOéQ
(o], @) = argmax . = argmax o] K1 Koan
1> ™2 I 172 I 172 1 ’

[Lai et al. 2000]

Language Technologies Institute




Transformer’s Attention Function

Scale dot-product attention:

Scale dot- 14 w T
roduct _ Xq q(xk k)

b a = softmax

attentiong' """ / dk

+

How can you interpret it as a
kernel similarity function?
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Transformer’s Attention Function

Scaledot- % W (w3 a
x (x Wi )i

product ,—% a = softmax [— WalkWi) |

attentlon llllllllll i dk

s :
g 21
1,1 Uq
| R | : 4
@] Kernel-formulated attention:

k(x x) What is the
¢k , impact of the
Z{x;(} k(xq Xi) kernel function?

a =
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Transformer’s Attention Function

What is the impact of the kernel function?

Scale dot-
roduct
p . T K IF NMT (BLEU?Y)
Jerszssgues - ype ernel Form
4 : : :
: a 2,1 - Linear (faWq, fuWi) not converge not converge
i H 2
| P d11 V1 Polynomial CAusAs) 390 32.43
: | 0 : M1 Conventions
: J)H/’,HH(JH’,“ wrfu,r)
| - - i , Exponential exp( Yoo So Wi 33.98 33.78
x4 . ranstormer ( Vi )
" " _ L faWy=r Wi |2
E : RBF exp( e ) 34.26 34.14

What is the best way to integrate the
position embedding?
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Transformer’s Attention Function

},” What is the best way to integrate the

Scale dot- position embedding?

Z’I’Seci\l:i((:)tn SN s PE Incorporation Kernel Form NMT (BLEU?)
4 : /aswami et a Direct-Sum besp (fo + ts fi + 11 33.98
i Look-up Table Ly, ¢, 7, - kexp( fo: fi) 34.12

‘ ransformer XL —product Kernel ke ( for fi) -k, (fg- i) 33.62
Proposed ——Product Kemnel kg (fy, fi) -k (tq.1r) 34.71

((quF,fHWF)) Same weight

mnatrices

with kr(fq, fr) = exp

e
and k?T(tq,tk) = exp< <t@\/di@>a
k

'l Can Kernels be used as a Fusion
Mechanism (for late fusion)?
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Multiple Kernel Learning

[Lanckriet 2004]

= Instead of providing a single kernel and validating which one works optimize
in a family of kernels (or different families for different modalities)

= Works well for unimodal and multimodal data, very little adaptation is needed
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MKL in Unimodal Case

= Pick a family of kernels and learn which
kernels are important for the classification

case

= For example a set of RBF and polynomial r'
kernels

i '

.‘ .... - 3 .‘- .'.. - 2
g2 a ek d.
vhiv b gt hi| (3
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MKL in Multimodal/Multiview Case

» Pick a family of kernels for
each modality and learn which
kernels are important for the
classification case

= Does not need to be different
modalities, often we use

different views of the same ~ #+% ¥
modality (HOG, SIFT, etc.)  #usl B

W,
|||||||
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Co-Learning

Language Technologies Institute
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Co-Learning - The 5" Multimodal Challenge

Definition: Transfer knowledge between modalities, including their
representations and predictive models.

@ Parallel Non-Parallel

Prediction Dataset

Dataset Dataset

paired data weakly paired data
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Co-learning Example with Paired Data

Learn vector representations for
text using visual co-occurrences

Four types of co-occurrences:

(a) Object - Attribute
man, person, adult, mammal muscular, smiling
. . - woman, person, adult, mammal lean, smiling
( b) Att rl b u ‘te - A‘t‘t rl b u te ] table, tablecloth, furniture striped, oval
- rice, carbohydrates, food white, grainy, cooked
- salad, roughage, food leafy, chopped, healthy, red, green
C t t [ ] glass, glassware, utensil clear, transparent, reflective, tall
(C) O n eX plate, crockery, utensil ceramic, white, round, circular
fork, cutlery, utensil metallic, shiny, reflective
(d ) O bj eCt_ H yp e rn ym - spoon, cutlery, utensil serving, metallic, shiny, reflective

ViCo: Word Embeddings from Visual Co-occurrences

34

Language Technologies Institute




ViCo: Word Embeddings from Visual Co-occurrences

Relatedness through Co-occurrences

Word Pair  ViCo Obj-Attr  Attr-Attr Obj-Hyp Context GloVe

crouch /squat  0.61 0.18 0.25 0.05
sweet / dessert.  0.66 0.56 0.43
man / male 0.38 0.34
purple / violet 0.24 0.03 0.52

hosiery /sock  0.52 0.27 0.18 0.23
aeroplane / aircraft_ 0.43 0.07 0.43
bench / pew  0.63 0.67 0.09 0.1
keyboard / mouse  0.19 0.63 0.19 0.52
laptop /desk  0.39 0.23 0.24 0.28
window / door  0.59 0.46 0.35 0.67
hair / blonde  0.16 0.56 0.32 -0.15 0.17 0.51
thigh / ankle 0.09 0.19 0.03 0.01
garlic /onion  0.36 -0.03 0.3 0.37
driver /car  0.27 0.16 0.26 0.12
girl /boy 041 0.38 0.22 0.44

Since ViCo is learned from multiple types of co-occurrences, it is
hypothesized to provide a richer sense of relatedness

» Learned using a multi-task Log-Bilinear Model
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ViCo: Word Embeddings from Visual Co-occurrences

ViCO leads to more homogenous clusters compared to GloVe

% transport
food
O buildings
D animals
appliances
% actions
clothes
|:| utensils
M bodyparts
* colors
\/ electronics
. numbers

X humans

(a) GlovVe+ViCo(linear) (b) GloVe
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Another Example of Co-Learning with Paired Data:
Multimodal Cyclic Translation

Sentiment

-

Encoder 1

“Today was a great day!”
Co-learning

Representation
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Another Example of Co-Learning with Paired Data:
Multimodal Cyclic Translation

/ Results on CMU-MOSI Dataset (Multimodal Sentiment Analysism

79.1
80

75
Trained

F1

‘ & V«*“ V«“‘ V«’*“ & &é@' v N ngsé & using
& ,@“ ¢ & & & multimodal
o d co-learning
Trained and tested using all multimodal inputs Only the but tested
\ (visual, vocal and verbal) verbal input] with only
verbal input!

Paul Pu Liang*, Hai Pham*, et al., “Found in Translation: Learning Robust Joint Representations by
Cyclic Translations Between Modalities”, AAAI 2019
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Co-Learning Example with Weakly Paired Data ﬂ%ﬁr

Goal: Learn better visual representations...
... by taking advantage of large-scale video+language resources

Instructional videos
(Weak|y-paired d ata) it’s turning into a much thicker mixture

14508 MUSIC

The biggest mistake is not kneading it enough

’

End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, lvan Laptev, Josef Sivic, and Andrew Zisserman — CVPR 2020
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Weakly Paired Data

Data point: “a short 3.2 seconds video clip (32 frames at 10 FPS) together
with a small number of words (not exceeding 16)”

P Positive candidates

3
0‘?29 [ sander as you're going over this entire l

1
O?jn [ area otherwise the end all product won't ]

-+ 07_y3 . [ be as flat as you would like it so just ]

2
0‘237 [ be aware now once you have them enjoy ]

03{40 [ your sanding down your one on round ]

v Y

-ow to handle this misalignment? Multi-instance learning!

-ow to do it self-supervised? Contrastive learning!

End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, lvan Laptev, Josef Sivic, and Andrew Zisserman — CVPR 2020
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Multiple Instance Learning Noise Contrastive Estimation

Objective

Given video x and text y from a positive set P; and a negative set 1V,
maximize the positive / total score ratio

S ef@ W) . .
n vy Notg: I?qlng SO reTquwes
I‘I;%X ' log Z of @) T g(y) + Z ef @) T g(y") maximizing f(w) g(y)
i=1 (2. EP, (@' N for only positive examples

1. Using sets of positive and negative examples to ~wash out the misaligned text
2. ldeally, we would maximize all positives over all possible negatives (intractable)

End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, lvan Laptev, Josef Sivic, and Andrew Zisserman — CVPR 2020
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Experiments — HowTo100M Dataset

P Positive candidates
60 | it's quite a simple technique for

.63  begdinners to learn and basically all I

@ | do is squeeze out three little circles |

49 then with the back of a teaspoon
A7 simply press the teaspoon into the

P Positive candidates

.50 main body of the laptop cover the

e Iduct tape with aluminum cover all ]

Bl [rema.im_ng gaps edges with a.luminum]

56 |tapeuse the leftover poster board to

.50 create the keyboard keys I made my

P Positive candidates

e |spinach what's the name |

.57 |keep it simple you just want to add
58 |fresh herbs maybe some oregano

59 |you can add cilantro basil they give

50 it a couple more copies and when you

End-to-End Learning of Visual Representations from Uncurated Instructional Videos
Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman — CVPR 2020
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New Directions
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Learning by Abstraction: The Neural State Machine

ﬂpaper
HOW to solve this question

using visual reasoning? 1. Given an image, generate a probabilistic
scene graph that captures the semantic
concepts.

2. Treat the graph as a state machine and
simulate iterative computation over it to
answer questions or draw inferences.

3. Natural language questions are translated
e into soft instructions and used to perform
to the right of the coffee maker? sequential reasoning over the scene
graph/state machine.

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurlPS 2019
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Learning by Abstraction: The Neural State Machine

The State Machine table

transitions

banang gmpes/@\/

girl A

states

What is the red fruit inside the bowl
to the right of the coffee maker?

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurlPS 2019
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Learning by Abstraction: The Neural State Machine

alphabet (concepts)

The State Machine table @ /

transitions

olor: brown (0.92) ===
banana ) @\/ Material: wood (0.8)  wwm
- N apple maker ap ‘Z,’.e
man |— ] y Color: red (0.95) -

L girt /*\ Shape: round (0.87) e

states
@Moodz happy (0.78) = ==
» it .82
What is the red fruit inside the bowl Posturs: Stting (0.62) ===
to the right of the coffee maker? \

Hudson, Drew, and Christopher D. Manning. "Learning by abstraction: The neural state machine.“ NeurlPS 2019
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Cross-Modality Relevance
for Reasoning on Language and Vision

Text: Where is the child sitting?

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

(aka, alignment)

Cross-Modality Relevance for Reasoning on Language and Vision, ACL 2020
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Cross-Modality Relevance
for Reasoning on Language and Vision

Example:
Entity Entity Relevance Visual Bounding Boxes
Roprescaiations 0 5 10 15 20 25 30 35
Visual Entity ___}_’iiugl____ Is { 2 :
— (63000800 i
““.':m” - *OOO C00e0 : Textual lt;:)ak?c's
T 190000000 | o
33358258 2 - -
— 9000000 < Thc bll’d on thc branch is lookmg to left
== l.- YT LI

Cross-Modality Relevance for Reasoning on Language and Vision, ACL 2020
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Dialogue

Surprise Neutral Neutral Anger
(Positive) (Neutral) (Neutral) (Negative)
. . . 5) What about the
1) You liked it? You 3) Which part scene with the 7) You fell asleep!
really liked it? exactly? kangaroo?

Joey

Chandler

Emotion

(Sentiment) :

2) Oh, yeah!

Joy
(Positive)

4) The whole thing!

Can we go?

Neutral
(Neutral)

6) | was surprised to
see a kangaroo in a

world war epic.

Surprise
(Negative)

8) Don’t go,
I’'m sorry.

Sadness
(Negative)

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020

Language Technologies Institute




Commonsense and Emotion Recognition

Proposed approach (COSMIC):

For each utterance, try to infer

speaker’s intention
effect on the speaker/listener
reaction of the speaker/listener

Example: “Person X gives Person Y a compliment”

— Intend of X: “X wanted to be nice”
— Reaction of Y: “Y will feel flattered”

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020
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Commonsense and emotion recognition

Person A Person B

Angry

Look, it's a beautiful day outside,
why are we arguing?

!

Reaction of A: Gets tired
Reaction of B: Irritated |
Effect on B: Gets yelled at | """,

Angry
4
Commonsense Inference
Well, what do you want me to do
about it? What do you want?
.t Reaction of A: Angry, annoyed
Intent of B: Help out
Effect on B: Thinks what to do
Angry
»
I want you to pretend like Commonsense Inference
he's coming back.

Influenced by the other person

“COSMIC: COmmonSense knowledge for eMotion Identification in Conversations”, Findings of EMNLP 2020
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