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Markov Decision Process (MDPs)

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’|s, a)
Reward function R(s, a, s’)
Start state s,
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Markov assumption + Fully observable
A state should summarize all past information and have the Markov
property.
]P[Rt—}-l =71,54+1 = 31|SO,AO,R1, ---aSt—lyAt—lthastaAt] = ]P[Rt—}-l =7,5t41 = S/|StaAt]

forall s' € S,r € R, and all histories

We should be able to throw away the history once state is known

- If some information is only partially observable: Partially
Observable MDP (POMDP)



Return

We aim to maximize total discounted reward:

Gt = Rip1 +YRyg2 + ... = ZW’CRHICH
k=0

Discount Y Close to 0 leads to "myopic” evaluation
factor  ~ close to 1 leads to "far-sighted” evaluation



Policy

Definition: A policy is a distribution over actions given states

n(a|s) =Pr(A,=alS,=s),Vt

- Apolicy fully defines the behavior of an agent

- The policy is stationary (time-independent)

- During learning, the agent changes its policy as a result
of experience

Special case: deterministic policies




Learn the optimal policy to maximize return

An MDP is defined by: B |
Agent
= Set of states S \ J

4 state ¢
= Set of actions 4 reward action
St RI Ar

= Transition function P(s’|s, a) L f
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= Startstate s, Return:

Gi=Rip1 + VR0 + ... = ZWkRﬂ-kH
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Reinforcement Learning vs Supervised Learning

Reinforcement Learning Supervised Learning

e Sequential decision making e One-step decision making
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Reinforcement Learning vs Supervised Learning

Reinforcement Learning Supervised Learning
e Sequential decision making e One-step decision making
e Maximize cumulative reward e Maximize immediate reward

e Sparse rewards e Dense supervision




Reinforcement Learning vs Supervised Learning

Reinforcement Learning

Sequential decision making
Maximize cumulative reward
Sparse rewards

Environment maybe unknown

Supervised Learning

One-step decision making
Maximize immediate reward
Dense supervision
Environment always known




Intersection between RL and supervised learning
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Intersection between RL and supervised learning
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Obtain expert trajectories (e.g. human driver/video demonstrations):

So, Ao, 7T0,51,01,71,52,02,72, ...



Intersection between RL and supervised learning

. . H '
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\

Obtain expert trajectories (e.g. human driver/video demonstrations):

$0,a0,70,51,Q1,71,52,0A2,72, ...
Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), ...}




Intersection between RL and supervised learning

Imitation learning! ™ Aaent |

state reward

SI Rl
Rt+l (
. Eo— .
‘i'l‘L Environment '47

Obtain expert trajectories (e.g. human driver/video demonstrations):

action
A

$0,a0,70,51,Q1,71,52,0A2,72, ...
Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), ...}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states
Sometimes not safe/possible to collect expert trajectories




Learn the optimal policy to maximize return

An MDP is defined by: B |
Agent
= Set of states S \ J

4 state ¢
= Set of actions 4 reward action
St RI Ar

= Transition function P(s’|s, a) L f
St i
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State and action value functions

- Definition: the state-value function V7 (s) of an MDP is the expected return starting
from state s, and following policy

VW(S) — En [thSt = S] Captures long term reward

- Definition: the action-value function Q" (s,a) is the expected return starting from
state s, taking action a, and then following policy

QW(S, a) = Ew [Gt|St = S, At = a,] Captures long term reward



Optimal state and action value functions

- Definition: the optimal state-value function V™*(s) is the maximum value function
over all policies

V*(s) = maxV"(s)

T

- Definition: the optimal action-value function Q*(s,a) is the maximum action-value
function over all policies

Q7(s,a) = max Q" (s, a)



Solving MDPs

 Prediction: Given an MDP (S, A, T, r,7) and a policy
w(als) =P[A, = alS, = s [ V™(s) Q"(s,a) |

find the state and action value functions.



Solving MDPs

 Prediction: Given an MDP (S, A, T, r,7) and a policy
w(als) =P[A, = alS, = s [ V™(s) Q" (s,a) |

find the state and action value functions.

« Optimal control: given an MDP (S, A, T, r,~), find the optimal

policy (aka the planning problem). Compare with the learning
problem with missing information about rewards/dynamics.

V() Q(s.a) |




Value functions

- Value functions measure the goodness of a particular state or state/action pair: how
good is it for an agent to be in a particular state or execute a particular action at a
particular state, for a given policy

- Optimal value functions measure the best possible states or state/action pairs under
all possible policies

state | action
_______________________________ values values
prediction| Vg qr

control Vi g«




Relationships between state and action values

State value functions Action value functions

V7 (s)| Q" (s,a) |

V*(s) = max V™ (s) l

T

V(s)|

Q*(s,0) |




Relationships between state and action values

State value functions Action value functions
V™(s)| Q7 (s,0)
* _ 7T %
V' (s) = maxV7(s) | | Q.0 = maxQ7(s,0)

V*(s)| 1Q*(s,0) |




Relationships between state and action values

State value functions Action value functions
V(s)| Q" (s,a) |
V' (s) = maxV7(s) | | Q.0 = maxQ7(s,0)
V¥ (s) | Q" (s,0) |

V*(s) = max Q*(s,a)



Relationships between state and action values

V™ (s) = Z m(als)Q" (s, )
V™(s) Q7 (s,0)
V' (s) = maxV7(s) | | Q.0 = maxQ7(s,0)
V*(s) | Q" (s,0)

V*(s) = max Q*(s,a)



Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

. 1, ifa=argmax, Q*(s,a)
mlals) = 0, else



Obtaining the optimal policy

Optimal policy can be found by maximizing over Q*(s,a)

. 1, if a =argmax, Q*(s,a)
mlals) = 0, else

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

. 1, if a=argmax,Ey [r(s,a,s)+~V*(s')]
mlals) = {0 else

. 1, if a =argmax, > . p(s'|s,a)(r(s,a,s") +~yV*(s
W (a|8):{0 fo [0 p(s'ls, @) (r(s,a, ") + V("))



Bellman expectation

So, how do we find Q*(s,a) and V*(s)?
. 2
Recursively: Gy = 741 + Yo + Y Teas + 7 Teta.e.

=Tyl T Y (Tt+2 T YT¢43 T+ ’727°t+4---)
=7Ti+1 + VG4



Bellman expectation

So, how do we find Q*(s,a) and V*(s)?

Recursively: Gy =141+ Yreao + ’y2rt+3 -+ 73rt+4...
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=rip1 +YGi
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Bellman expectation

So, how do we find Q*(s,a) and V*(s)?
Recursively: Gy =141+ Yreao + ’YQ’I“H_?, + 73frt+4...
= Tt41 T <7°t+2 T YTt43 T+ ’727“t+4---)
=711 + VGt
By taking expectations: VT (S) =K, :Gt|St — S]
= [E, -Tt—|—1 + vGt4+1|St = ]
= Ex [re41 + YV (St41)|S: = $]

—Zwa|




Bellman expectation

So, how do we find Q*(s,a) and V*(s)?

Recursively: Gy

By taking expectations:

= Pep1 + VT2 T VT3 + 7 Tegann.
= Tt41 T <7°t+2 T YTt43 T+ 727“t+4---)
=7ri+1 + 7G4
V7™(s) = E; [G¢|S; = ]
= [E, -Tt—i—l + vGt4+1|St = ]
= Ex [ri41 + 7YV (St41)|S: = 5]

—Zwa| s [r(s,a,8") + VT (s")]




Bellman expectation

So, how do we find Q*(s,a) and V*(s)?

Recursively: Gy

By taking expectations:

= Pep1 + VT2 T VT3 + 7 Tegann.
= Tt41 T (Tt+2 T YTt43 T+ 727“t+4---)
=7ri+1 + 7G4
V7™(s) = E; [G¢|S; = ]
=E, -Tt—i—l + vG4+1|St = ]
= Ex [ri41 + 7YV (St41)|S: = 5]

_Zwa| s [r(s,a,s8") +~yV7™(s")]
= 3 (el X0l 15,0) s, 008) 4 V()




Bellman expectation for state value functions

V™(s) = Y m(als)



Bellman expectation for state value functions

VT(s) =Y m(als) Y p(s'ls,a)



Bellman expectation for state value functions

VT(s) =Y mlals) Y p(s']s,a)[r(s,a,s) +V™(s)]



Bellman expectation for action value functions

Q" (s, a)




Bellman expectation for action value functions

Q" (s, a)

Q™ (s, a)
Q™ (s,a) = Zp(s’|s,a) (r(s,a, s')



Bellman expectation for action value functions

Q" (s, a)

Q" (s',a)
Q" (s,a) = Zp(s’|s, a) (r(s, a,s’) +~ Zﬂ(a’\s’)



Bellman expectation for action value functions

Q" (s, a)




Solving the Bellman expectation equations

VT(s) =Y mlals) Y p(s'ls,a) [r(s,a,8") + V7 (s")]



Solving the Bellman expectation equations

VT(s) =Y mlals) Y p(s']s,a)[r(s,a,s) + V()]

Solve the linear system

variables: V7™(s) foralls
constants: p(s’|s,a), r(s,a,s’)



Solving the Bellman expectation equations

= > w(als) Y p(s']s.0) [r(s, a,8") + V(")

Solve the linear system

variables: V% (s) for all s

constants: p(s’|s,a), r(s,a,s’)

Solve by iterative methods

Vi (s) = 3o wlals) 3 pls'sn) 7(s,a,) + V()]



Policy Evaluation

1. Policy evaluation
lterate until convergence:

Vit (9) = X mg(ale) (sl 7(s,a,5") + Vi (s")



Policy lteration

1. Policy evaluation
lterate until convergence:

Vit (9) = X mg(ale) (sl 7(s,a,8) + Vi (s")

2. Policy Improvement
Find the best action according to one-step look ahead

Tik+1)(als) = arg maXZp(s’|s, a) {r(s, a,s’) + Vi (8’)}



Policy lteration

1. Policy evaluation
lterate until convergence:

Vit (9) = X mg(ale) (sl 7(s,a,5") + Vi (s")

2. Policy Improvement
Find the best action according to one-step look ahead

Tik+1)(als) = arg mapr(s’|s, a) [r(s, a,s’) + YViki (s’)}




Policy lteration

1. Policy evaluation
lterate until convergence:

Vet (8 Zw[k] (als Zp 'Is,a [ s a,s’)—|—’yV[Z](3’)]

2. Policy Improvement
Find the best action according to one-step look ahead

Tie41)(als) = arg maXZp(S'|S, a) ["‘(S, a,s’) + YV (S,)]

Repeat until policy converges. Guaranteed to converge to optimal policy.



Bellman optimality for state value functions

The value of a state under an optimal policy must equal the expected return for the
best action from that state

V7 (s)

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Vi)
V*(s) = maxQ*(s, a)
= mngS/ [r(s,a,s") +~yV*(s)]



Bellman optimality for state value functions

The value of a state under an optimal policy must equal the expected return for the
best action from that state

V7 (s)

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Vi)
V*(s) = max Q" (s, a)
= mngs/ [r(s,a,s") +~yV*(s)]

— mgx Zp(8,|8, a)(r(s,a, S/) +V* (5/))



Bellman optimality for action value functions

Q" (s, a)

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Q"(s,a) =Ey [r(s,a,s") + V()]
=E, [r(s, a,s’) +ymax Q" (s, a’)]



Bellman optimality for action value functions

Q" (s, a)

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Q*(s,a) =Ey [r(s,a,5") +yV*(s)]
=R, [rr(s, a,s’) +ymax Q" (s, C’/)]

— Zp(s’|s, a) (r(s, a,s’) + Y max Q* (s, a’))



Solving the Bellman optimality equations

V*(s) = max Zp(s’|s, a)(r(s,a,s") +yV*(s"))



Solving the Bellman optimality equations

V*(s) =max | Y p(s'|s,a)(r(s,a,5') +7V*(s"))

Solve by iterative methods

Vi) (8) = max |} p(s'[s,a)(r(s, a,8") +7Vjjy(5)

a

| s/




Value lteration

Algorithm:
Start with V;’(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:

Vi(s) + méxxz P(s'|s,a) (R(s,a,8") +vVi_1(s"))

Slides from Fragkiadaki




Value lteration

Algorithm:
Start with V;(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:
Vk*(s) T maxz P(S,|Sa a) (R(S, a, S/) i 7Vk*—1(8,))

75(s) + argmax Y P(s'|s,a) (R(s,a,s’) +~yV (s
k £ k—1

Find the best action according to one-step look ahead
This is called a value update or Bellman update/back-up

Slides from Fragkiadaki



Val ue Ite I'atlon Repeat until policy converges. Guaranteed to converge to optimal policy.

Algorithm:
Start with V;(s) =0 foralls.
Fork=1, ..., H:

For all statessin S:
Vii(s) < max »  P(s'|s,a) (R(s,a,s") + Vi 1(s))

7 (8) « arg maxz P(s'|s,a) (R(s,a,s") +vVi_1(s"))

Find the best action according to one-step look ahead
This is called a value update or Bellman update/back-up

Slides from Fragkiadaki



Q-Value lteration

Q’(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q*(s,a) =Y P(s|s,a)(R(s,a,s") + ymax Q*(s', a’))
Q-Value Iteration:

Qri1(5,0) < D P(s|s,a)(R(s,a,5') + ymax Q;(s',a’))

Slides from Fragkiadaki



Summary: Exact methods

Bellman Q* (S, a,) Q-value iteration

optimality " _ _
Fully known / equations V (3) Value iteration
MDP

states
transitions
rewards

Repeat until policy converges. Guaranteed to converge to optimal policy.



Summary: Exact methods

Bellman Q* (S, a,) Q-value iteration

optimality " . .
Eully known equations V (3) Value iteration
MDP
states
transitions
rewards Bellman Qﬂ- (5 a) Q-policy iteration
: )
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.



Summary: Exact methods

Bellman Q* (S, a,) Q-value iteration

optimality " . .
Eully known equations V (3) Value iteration
MDP
states
transitions
rewards Bellman Qﬂ- (3 a) Q-policy iteration
: )
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete
state and action space
Update equations require fully observable MDP and known transitions



Solving unknown MDPs using function
approximation



Recap: Q-value iteration

Q’(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:
Q*(s,a) = Y P(s'|s,a)(R(s,a,5) + ymax Q*(s',a’))
Q-Value Iteration:

Qry1(s,a) <Y P(s'|s,a)[R(s,a,s) + ymax Qj(s',a))

This is problematic when do not know the transitions
Slides from Fragkiadaki



Tabular Q-learning

= Q-valueiteration: Q+1(s,a) + Z P(s'|s,a)(R(s,a,s") +ymax Qx(s',a’))

= Rewrite as expectation: Qii1 <+ Egp(s/s,a) [R(s, a,s’) +ymax Qr(s, a’)]
a/

Slides from Fragkiadaki



Tabular Q-learning

= Q-valueiteration: Qr+1(s,a) < Z P(s'|s,a)(R(s,a,s") + max Qir(s',a"))
= Rewrite as expectation: Qii1 <+ Egp(s/s,a) [R(s, a,s’) +vymax Q(s, a’)]
a/

= (Tabular) Q-Learning: replace expectation by samples
= For an state-action pair (s,a), receive: s’ ~ P(s'|s,a) simulation and exploration
= Consider your old estimate: Qx(s,a)

= Consider your new sample estimate:

target(s’) = r(s,a,s’) +ymax Qx(s’,a’)

error(s’) = (r(s, a,s") +ymax Qr(s',a’) — Qx (s, a))

Slides from Fragkiadaki



Tabular Q-learning update

learning rate

l

Qri1(s,a) = Qr(s,a) + « error(s’)
= Qr(s,a) + « ('r(s, a,s’) + 7 max Qr(s',ad') — Qu(s, a))

Key idea: implicitly estimate the transitions via simulation



Tabular Q-learning

Bellman optimality

Sl “(s,a) = Eg {r s,a,s max Q" (s, a’ ]
Start with QO(S,a)foraIIs,a. Q (’ ) s (’ ’ )‘|"Y pr Q( ’ )

Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =1(s, a, s') + Yy max Qr(s',a)

Qk—l—l(saa’) — Qk<87 CL) + (T(Sa a, Sl) T ’YHL@X Qk(sla CL/) _ Qk(87 a’))
s« s

Slides from Fragkiadaki



Tabular Q-learning

Bellman optimality

Algorithm: *(s,a) = E [r s.a.s max Q* (s, a’ ]
Start with QO(S,a)foraIIs,a. Q <’ ) 5 <’ ’ )+fy g Q( ) )

Get initial state s
Fork=1, 2, ... till convergence
I Sample action a, get next state s’ I
If s’ is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s, a, s') + Yy max Qr(s',a’)
Qk‘-l—l(saa‘) = Qk(87 a’) +a (’I“(S, a, S/) + ’YHL@X Qk(sla a'/) T Qk<87 CL))
s« s

Slides from Fragkiadaki



Tabular Q-learning

Algorithm:
Start with Qo (s, a) foralls, a. = Choose random actions?
Get initial state s s Choose action that maximizes Qk (S, a) (i.e. greedily)?

Fork=1, 2, ... till convergence

e-Greedy: choose random action with prob. g, otherwise choose

| Sample action a, get next state s’ I . " dil
action greedily

If s” is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =1(s, a, s') + Yy max Qr(s',a)

Qk—l—l(saa’) — Qk(sv CL) +Q (T(Sa a, Sl) T ’ynzf}x Qk(sla CI,/) - Qk(37 CL))
s« &

Slides from Fragkiadaki



Epsilon-greedy

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal region,
and never explore further.

r(s) = 4 ma%a Q(s,a)  with probabilty 1 — e
| random action  otherwise

Gradually decrease epsilon as policy is learned.



Tabular Q-learning

Algorithm:
Start with Qo (s, a) foralls, a.
Get initial state s
Fork=1, 2, ... till convergence

e-Greedy: choose random action with prob. €, otherwise choose

| Sample action a, get next state s’ I . " dil
action greedily

If s” is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =1(s, a, s') + Yy max Qr(s',a)

Qk—|—1(37a) — Qk(87 CL) + (T(Sa a, Sl) T ’YHL@X Qk(sla CL/) _ Qk<87 CL))
s« s

Slides from Fragkiadaki



Convergence

=  Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

= This is called off-policy learning

s Caveats:
= You have to explore enough

= You have to eventually make the learning rate

small enough

= ... but not decrease it too quickly

Slides from Abbeel



Tabular Q-learning
Tabular: keep a |S| x |A] table of Q(s,a)
Still requires small and discrete state and action space

Algorithm: :
& How can we generalize to unseen states?

Start with Qo (s, a) foralls, a.
Get initial state s
Fork=1, 2, ... till convergence

€-Greedy: choose random action with prob. g, otherwise choose

| Sample action a, get next state s’ I . " dil
action greedily

If s” is terminal:
target = r(s, a, s’)
Sample new initial state s’
else:

target =7(s, a, s') + Yy max Qr(s',a’)
a

Qk-l—l(saa) = Qk(37a’) +Q (7‘(8, a, 3/) T ’yrrze}x Qk(8/7a'/) T Qk(saa’))
s« &




Summary: Tabular Q-learning

MDrI: Bellman Replaqe true
wit — . optimalty ——— €xpectation over Tabular Q-learning
unknown . transitions with
- equations )
transitions estimates

s’ ~ P(3’|3, a) simulation and exploration, epsilon greedy is important!

Q*(s,a) = Eg ['r(s, a,s’) + 7y max Q* (s, a’)]

old estimate target




Summary: Tabular Q-learning

MDrI: Bellman Replaqe true
wit — . optimalty ——— €xpectation over Tabular Q-learning
unknown . transitions with
- equations )
transitions estimates

s’ ~ P(3’|3, a) simulation and exploration, epsilon greedy is important!

Q*(s,a) = Eg ['r(s, a,s’) + 7y max Q* (s, a’)]

old estimate target

Qk+1(87 CL) A Qk’(sa CL) +a (T(Sa a, S/) + ")’HlaalJX Qk(sl7 CL,) - Qk(87 CL))



Summary: Tabular Q-learning

MDP

: Bellman Replage true
with — optimality ——— expec.t:.:mon over Tabular Q-learning
unknown . transitions with
. equations _
transitions estimates

s’ ~ P(3’|3, a) simulation and exploration, epsilon greedy is important!

Q* <S7 a’) — ESI |:’r(87 a’7 8/) + fY H]C-La,JX Q* (8,7 a’/):|

old estimate target

Qk+1(8a a’) A Qk’(sa CL) +a (T(87 a, S/) + ’YHLE}X Qk(sla CI,/) - Qk(37 CL))

Tabular: keep a |S| x |A] table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?



Deep Q-learning

Q-learning with function approximation to extract
informative features from high-dimensional
input states.

DQN, 2015



Deep Q-learning

Represent value function by Q network with weights w

Slides from Fragkiadaki

Q(s,a,w)

Q(s,a,w)

i

~ Q(s,a)

Q(s,ay,w) - Q(s,a,,w)

I
VA

w

+ high-dimensional, continuous states
+ generalization to new states



Deep Q-learning
- Optimal Q-values should obey Bellman equation
Q*(s,a) = Ey [r + max Q(s’,a)* | s, a]
- Treatright-hand r 4 ~ ma;;\x Q(s’, - w) as a target

- Minimize MSE loss by stochastic gradient descent

2
| = (r—i— Y max Q(s',a,w) — Q(s, a,w))



Deep Q-learning

- Minimize MSE loss by stochastic gradient descent

Q(s,aq,w) - Q(s,a,,w)

= (r 47 max Q(s', &, w) — Q(s, a,w))’ T T

- Converges to Q* using table lookup representation .

- But diverges using neural networks due to: /\/\
w

- Correlations between samples
- Non-stationary targets




Experience replay

- To remove correlations, build data-set from agent’s own experience

S1,d1,M,52

/
S$2,4d2,13,53 — S,a,I,S
53, d3, s, 54

exploration, epsilon greedy is important!

St, dt, I't+1, St+1

- Sample random mini-batch of transitions (s,a,r,s’) from D



Fixed Q-targets

. . , S1,d1, 12,52

- Sample random mini-batch of transitions (s,a,r,s’) from D S, 3. 13, 53
- Compute Q-learning targets w.r.t. old fixed parameters w- = =

53,43, I'4, 54

- Optimize MSE between Q-network and Q-learning targets

Sty dpy Ne4-1, St41

2 Q(s,aq,w) - Q(s,a,,w)
(r +7 max Q(s',d;w ) — Q(s, a w,-))
N\ Z %

® .
Y Y
Q-learning target Q-network /\/\
w
I

Li( Wi) = ]Es,a,r,s’w’D,-




Fixed Q-targets

. . , S1,d1, 12,52

- Sample random mini-batch of transitions (s,a,r,s’) from D S, 3. 13, 53
- Compute Q-learning targets w.r.t. old fixed parameters w- = =

53,43, I'4, 54

- Optimize MSE between Q-network and Q-learning targets

Sty dpy Ne4-1, St41

¢ A Q(s,aq,w) - Q(s,a,,w)
! 8 . .
(r + 7 max Q(s',a;w ) — Q(s, a; w,-))
N\ 7 X
Y Y

® .
Q-learning target Q-network /\/\
w
I

Li( Wi) = Es,a,r,s’w’D,-

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations



Deep Q-learning for Atari




Deep Q-learning for Atari

» End-to-end learning of values Q(s,a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Output is Q(s,a) for 18 joystick/button positions

» Reward is change in score for that step

32 4xA4 filters 256 hidden units Fully-connected linear

output layer

16 8x8 filters
4x84x84
Stack of 4 previous ] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

» Network architecture and hyperparameters fixed across all games
Slides from Fragkiadaki Mnih et.al., Nature, 2014



Deep Q-learning for Atari

» End-to-end learning of values Q(s,a) from pixels s

» Input state s is stack of raw pixels frorrilast 4 framesl Encourage Markov property

» Output is Q(s,a) for 18 joystick/button positions

» Reward is change in score for that step

32 4xA4 filters 256 hidden units Fully-connected linear

output layer

16 8x8 filters
4x84x84
Stack of 4 previous ] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

» Network architecture and hyperparameters fixed across all games
Slides from Fragkiadaki Mnih et.al., Nature, 2014
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More exploration required

Super long term reward
Requires knowledge of

complex dynamics e.g. key,
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Superhuman results

|

Needs reaction speed
Short term reward
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Superhuman results on Montezuma’s Revenge

Encourages agent to explore
its environment by
maximizing curiosity.

l.e. how well can | predict
my environment?

1. less training data

2. stochastic

3. unknown dynamics

So | should explore more.

= =
= =
= =

I.l'l'r'l"l

e
N R R R R o

Burda et. al., ICLR 2019



http://www.youtube.com/watch?v=40VZeFppDEM

Summary: Exact methods

Bellman Q* (S, a,) Q-value iteration

optimality " . .
Eully known equations V (3) Value iteration
MDP
states
transitions
rewards Bellman Qﬂ- (3 a) Q-policy iteration
: )
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete
state and action space
Update equations require fully observable MDP and known transitions



Summary: Tabular Q-learning

MDP

: Bellman Replage true
with — optimality ——— expec.t:.:mon over Tabular Q-learning
unknown . transitions with
. equations _
transitions estimates

s’ ~ P(3’|3, a) simulation and exploration, epsilon greedy is important!

Q* <S7 a’) — ESI |:’r(87 a’7 8/) + fY H]C-La,JX Q* (8,7 a’/):|

old estimate target

Qk+1(8a a’) A Qk’(sa CL) +a (T(87 a, S/) + ’YHLE}X Qk(sla CI,/) - Qk(37 CL))

Tabular: keep a |S| x |A] table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?



Summary: Deep Q-learning

/ 7
Qls.a.w) - Qs,a,,w) Q* (S, CL) = Es/ |:7"(S, a,s ) -+ Y rnaa/JX Q*(S , ):|
T old estimate target
2
/\/\ Lilw ) =Ee s rstoap, (r + mazlax Q(s',d'; w; ) — Q(s, a; w,-)) ]
w
N F »,
T Y Y
Q-learning target Q-network

Stochastic gradient descent + Experience replay + Fixed Q-targets

Works for high-dimensional state and action spaces
Generalizes to unseen states



Applications: RL and Language



RL and Language

Task-independent Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered |...]
[...] unless the correct key is inserted [...]

Pre—trainingl

Action

/—>

Pre-trained Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
belt, jump to the yellow rope and again

to the platform on the right.

Environment

Vkey Vskull Vliadder Vrope

Luketina et. al., [JCAI
2019



Language-conditional RL

e Instruction following
e Rewards from instructions
e Language in the observation and action space



Language-conditional RL: Instruction following

e Navigation via instruction following

Train

| Go to the short red torch |
Go to the blue keycard
Go to the largest yellow object ‘
. Go to the green object
\

Test

Go to the red keycard

Go to the tall green torch
Go to the green torch Go to the smallest blue object

Chapilot et. al., AAAI 2018
Misra et. al., EMNLP
2017



Language-conditional RL: Instruction following

e Navigation via instruction following

Go to the green torch

Train

' Go to the short red torch

Go to the blue keycard
Go to the largest yellow object

. Go to the green object \

Test

Go to the tall green torch
Go to the red keycard ‘
Go to the smallest blue object

Fusion

Alignment

Ground language

Recognize objects

Navigate to objects
Generalize to unseen objects

Chapilot et. al., AAAI 2018
Misra et. al., EMNLP
2017



Language-conditional RL: Instruction following

Interaction with the environment

at]e

Action

Agent

,ﬁ, :

+1.0 correct

at Reward Tt ‘ —0.2 incorrect

0 otherwise

St

P,

Environment

Chapilot et. al., AAAI 2018



Language-conditional RL: Instruction following

e (ated attention via element-wise product

Image Representation . ; } .
= £(I;; Bcony) Gated-Attention Multimodal Fusion Unit
Xp f ( t» Yconv e e et

To policy
learning

i module Fusion
! Alignment
: Ground language

Recognize objects

Instruction o) Ma)
; a, = n(xg a
Representatlon Attention Vector

e e Wi T e !
Chapilot et. al., AAAI 2018



Language-conditional RL: Instruction following

e Policy learning

* Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.)
* uses a deep neural network to parametrize the policy and value functions and runs
multiple parallel threads to update the network parameters.
* use entropy regularization for improved exploration

* use Generalized Advantage Estimator to reduce the variance of the policy gradient
updates (Schulman et al.)

A3C Policy Learning Module

l (1 unit)
; Value Function !
V(L)

., Policy
Policy Function |  TI(all,, L)
(3 units) M(all;, L)

! Fully i
— ! connected LSTM
Multimodal | |ayer (256 units)

Fusion Output | (256 units)

My | ] Chaplot et. al., AAAI 2018



Language-conditional RL: Instruction following

\ EASY | | MEDIUM { HARD }

00000 0 o ®

Chapilot et. al., AAAI 2018


http://www.youtube.com/watch?v=JziCKsLrudE

Language-conditional RL: Instruction following
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Language-conditional RL: Rewards from instructions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

|

Montezuma'’s revenge



Language-conditional RL: Rewards from instructions

Montezuma'’s revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Encourages agent to explore
its environment by
maximizing curiosity.

How well can | predict my

environment? Pathak et. al., ICML
1. Less training data 2017
2. Stochastic Burda et. al., ICLR 2019

3. Unknown dynamics
So | should explore more.



Language-conditional RL: Rewards from instructions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

‘Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the
game and describe entities

Intermediate rewards to speed up learning
Montezuma'’s revenge

Goyal et. al., IJCAI 2019



Language-conditional RL: Rewards from instructions

Natural language for reward shaping

Encourages agent to take actions related to the instructions

E E . Jump over the
. = Action- skull while
E E fl‘equency going to the left.
= = vector +
LanguagE-Action
» Reward Network »
(LEARN)
Probabilities
Sequence of (RELATED /
past actions ¢——— UNRELATED)
(al,...,at,l) ‘
—» Agent =
Observation . Language
+ Action reward
’ Reward
Montezuma'’s revenge

Environment ]

Goyal et. al., IJCAI 2019



Language-conditional RL: Rewards from instructions

Natural language for reward shaping

Encourages agent to take actions related to the instructions

All tasks

U 1750 1 —— EXtOnly
2 1500 - Ext+Lang

v 1250

No. of successful

Montezuma'’s revenge . 4 . s 0 i
No. of timesteps / 100,000

Goyal et. al., IJCAI 2019



Language-conditional RL: Language in S and A

e Embodied QA: Navigation + QA

g Q: What color is the car?

- D] ; () iEaki KA Innr
@_@ ,& 4&
@]
TURN LEFT ‘
% @ t 1
Most methods similar to instruction following Das et. al., CVPR

2018


http://www.youtube.com/watch?v=gVj-TeIJfrk

Language-assisted RL

e Language for communicating domain knowledge
e Language for structuring policies



Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

from Amazon Mturk :-(
asked annotators to play
the game and describe
entities

* is 2 randomly moving enemy

' “ . is a stationary immovable wall

Narasimhan et. al., JAIR 2018



Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

(s, 2)
E is an enemy who chases you State S voi
e
is a stationary collectible :
IE‘ is 2 randomly moving enemy ( 2 RO/ L3TH .
u jat ©
“ . is a stationary immovable wall Description Q|
e
’Uzi

Narasimhan et. al., JAIR 2018



Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

&(s,2) Q(s,aq,w) - Q(s,a,w)
E is an enemy who chases you State S voi
is a stationary collectible :
' @ 2 ey moving rey (5 — o
| 25 @&
. is a stationary immovable wall Description Q. T
e
J S
’Uzi

Narasimhan et. al., JAIR 2018



Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

¢(S, Z) Q(s!a1 ,W) " Q(S,am,W)
E is an enemy who chases you State S voi
is a stationary collectible :
u O —— (5 — o
| 24 @
. is a stationary immovable wall Description . T
“ s
S
vzi

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards
Language helps in multi-task learning and transfer learning

Narasimhan et. al., JAIR 2018



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

m i

INeWaYork

Figure 1: An excerpt from the user manual of the game
Civilization II.

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

Map tile attributes:
. ) - Terrain type (e.g. grassland, mountain, etc)
The natural resources available where a population - Tile resources (e.g. wheat, coal, wildlife, etc)

settles affects its ability to produce food and goods. City attributes:

; ; : . - City population
Build your city on a plains or grassland square with _ Bmotint of o8 prodiced

a river running through it if possible. Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

The natural resources available where a population

a river running through it if possib

1. Choose relevant sentences

settles affects its ability to pgaduce.foad and goods.
Build your city on a plains o square with
e.

Map tile attributesa
- Terrain type (e. puntain, etc)
- Tile resources (&Tg=wirear=coar, wildlife, etc)
City attributes:
- City population
- Amount of food produced
Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

The natural resources available where a population

Build your city on a plains or grassland square with
a river running through it if possible.

1. Choose relevant sentences

settles affects its ability to produce food and goods.

Map tile attributes:
- Terrain type (e.g. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)
City attributes:
- City population
- Amount of food produced
Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

2. Label words into action-description, state-description, or background

Q(s,a,w)

Input layer: Z(s, a,d) L Deterministic feature
layer: f(s,a,d,v;, zj) T
l f <_Output layer /\/\
7 w
\ Hidden layer encoding

sentence relevance T
S

I Hidden layer encoding
/;_ . .

predicate labeling

» —P

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

e Phalanxes are twice as effective at defending cities as warriors. /
e Build the city on plains or grassland with a river running through it. /
e You can rename the city if you like, but we'll refer to it as washington. Relevant sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road is built, use the settlers to start improving the terrain.
5

S S A A A A A
e When the settlers becomes active, chose build road. A action-description
S s s AL A A S: state-description
) Uie settlers or engineers to improve a terrain square within the city radius
A S¥ A A S AX S Si 5 s

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals

Method % Win | % Loss | Std. Err.
Random 0 100 —
Built-in Al 0 0 —
Game only 17.3 53 £ 2.7
Sentence relevance | 46.7 2.8 + 3.5
Full model 53.7 59 + 3.5
Random text 40.3 4.3 + 34
Latent variable 26.1 3.7 + 3.1

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards
Language helps in learning

Branavan et. al., JAIR 2012



Language-assisted RL: Domain knowledge

e Learning to read instruction manuals
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20 40 60 80
Game step

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features

Branavan et. al., JAIR 2012



Language for structuring policies

e Composing modules for Embodied QA

Q: What color is the sofa
in the living room?

%9

9o LB 1 S p) .8~ J3
Ltgg- t/ffo\-"-n/ttt\o-"-»t;»?tfo\-"-» Grey

LN D O WG

Exit-room Find-room|[living] Find-object[sofa] Answer

Das et. al., CoRL 2018



Language for structuring policies

e Composing modules for Embodied QA

mmm find object
m find room
B exit room

75 100 125
Action steps from target

Das et. al., CoRL 2018



