

Intro to Reinforcement Learning Part I

11-777 Multimodal Machine Learning Fall 2021

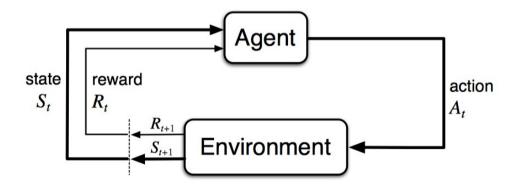
Amir Zadeh Slides from Paul Liang

Used Materials

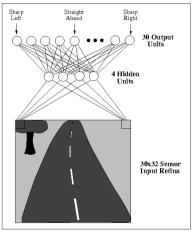
Acknowledgement: Some of the material and slides for this lecture were borrowed from the Deep RL Bootcamp at UC Berkeley organized by Pieter Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy, as well as Katerina Fragkiadaki and Ruslan Salakhutdinov's 10-703 course at CMU, who in turn borrowed much from Rich Sutton's class and David Silver's class on Reinforcement Learning.

Contents

- Introduction to RL
- Markov Decision Processes (MDPs)
- Solving known MDPs using value and policy iteration
- Solving unknown MDPs using function approximation and Q-learning



Reinforcement Learning

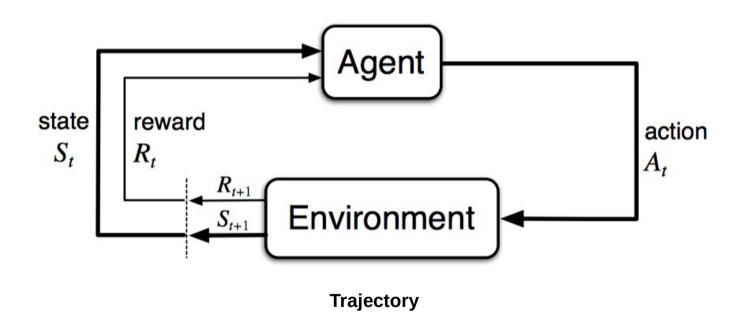


ALVINN, 1989

AlphaGo, 2016

DQN, 2015

Reinforcement Learning

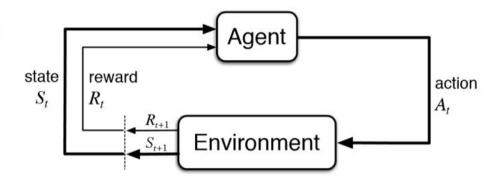


 $s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots$

Markov Decision Process (MDPs)

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H



Trajectory

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots$$

Markov assumption + Fully observable

A state should summarize all past information and have the **Markov property.**

$$\mathbb{P}[R_{t+1} = r, S_{t+1} = s' | S_0, A_0, R_1, ..., S_{t-1}, A_{t-1}, R_t, S_t, A_t] = \mathbb{P}[R_{t+1} = r, S_{t+1} = s' | S_t, A_t]$$

for all $s' \in \mathcal{S}, r \in \mathcal{R}$, and all histories

We should be able to throw away the history once state is known

 If some information is only partially observable: Partially Observable MDP (POMDP)

Return

We aim to maximize total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Discount factor

 γ close to 0 leads to "myopic" evaluation γ close to 1 leads to "far-sighted" evaluation

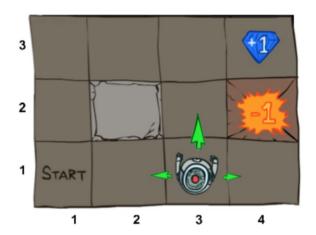
Policy

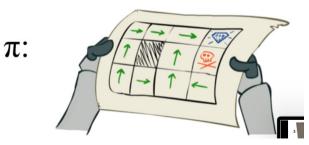
Definition: A policy is a distribution over actions given states

$$\pi(a \mid s) = \mathbf{Pr}(A_t = a \mid S_t = s), \forall t$$

- A policy fully defines the behavior of an agent
- The policy is stationary (time-independent)
- During learning, the agent changes its policy as a result of experience

Special case: deterministic policies

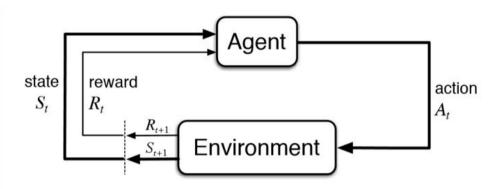




Learn the optimal policy to maximize return

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H



Return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

2

 π :

Goal:
$$\underset{\pi}{\operatorname{arg\,max}} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R_t | \pi \right]$$

Reinforcement Learning vs Supervised Learning

Reinforcement Learning

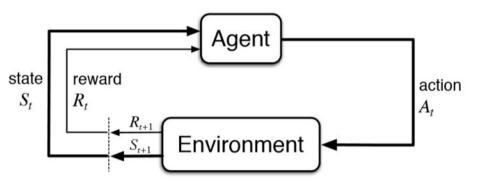
- Sequential decision making
- Maximize cumulative reward
- Sparse rewards
- Environment maybe unknown

Supervised Learning

- One-step decision making
- Maximize immediate reward
- Dense supervision
- Environment always known

Intersection between RL and supervised learning

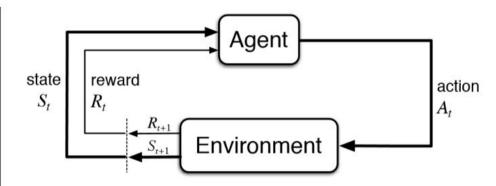
Imitation learning!



Learn the optimal policy to maximize return

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H



Return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

2

Goal:
$$\underset{\pi}{\operatorname{arg\,max}} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R_t | \pi \right]$$

State and action value functions

- Definition: the **state-value function** $V^{\pi}(s)$ of an MDP is the expected return starting from state s, and following policy

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \middle| S_t = s
ight]$$
 Captures long term reward

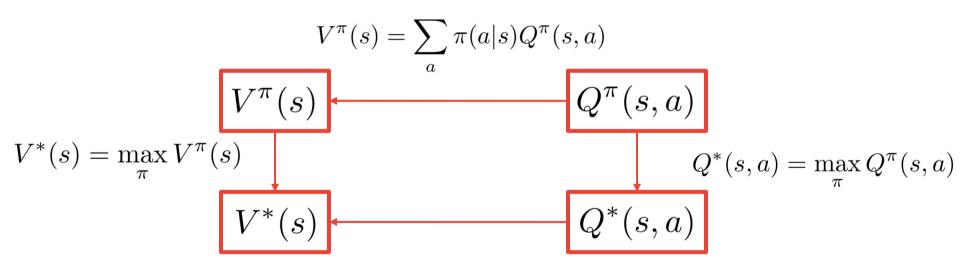
- Definition: the **action-value function** $Q^{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t | S_t = s, A_t = a
ight]$$
 Captures long term reward

Relationships between state and action values

State value functions

Action value functions



$$V^*(s) = \max_{a} Q^*(s, a)$$

Obtaining the optimal policy

Optimal policy can be found by maximizing over Q*(s,a)

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \ Q^*(s, a) \\ 0, & \text{else} \end{cases}$$

Obtaining the optimal policy

Optimal policy can be found by maximizing over Q*(s,a)

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \ Q^*(s, a) \\ 0, & \text{else} \end{cases}$$

Optimal policy can also be found by maximizing over V*(s') with one-step look ahead

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \mathbb{E}_{s'} \left[r(s, a, s') + \gamma V^*(s') \right] \\ 0, & \text{else} \end{cases}$$

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \arg\max_a \left[\sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V^*(s')) \right] \\ 0, & \text{else} \end{cases}$$

Policy Iteration

1. Policy evaluation

Iterate until convergence:

$$V_{[k+1]}^{\pi}(s) = \sum_{a} \pi_{[k]}(a|s) \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_{[k]}^{\pi}(s') \right]$$

2. Policy Improvement

Find the best action according to one-step look ahead

$$\pi_{[k+1]}(a|s) = \arg\max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_{[k]}^{\pi}(s') \right]$$

Value Iteration

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_{k-1}^*(s') \right)$$

Value Iteration

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$\pi_k^*(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

Find the best action according to one-step look ahead

This is called a value update or Bellman update/back-up

Value Iteration Repeat until policy converges. Guaranteed to converge to optimal policy.

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$\pi_k^*(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

Find the best action according to one-step look ahead

This is called a value update or Bellman update/back-up

Q-Value Iteration

 $Q^*(s, a)$ = expected utility starting in s, taking action a, and (thereafter) acting optimally

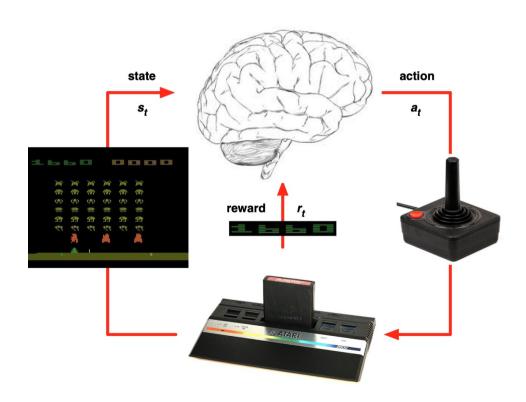
Bellman Equation:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration:

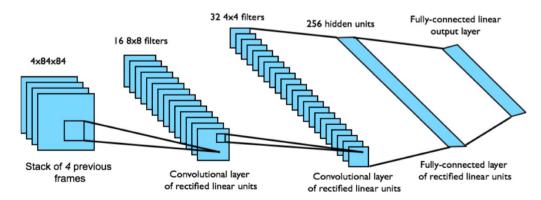
$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

Deep Q-learning for Atari



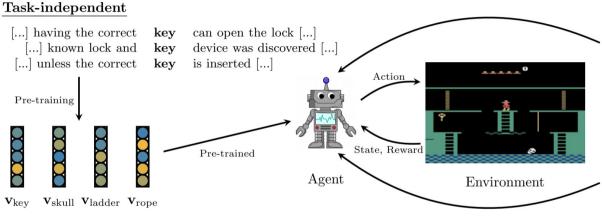
Deep Q-learning for Atari

- End-to-end learning of values Q(s,a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s,a) for 18 joystick/button positions
- Reward is change in score for that step



Network architecture and hyperparameters fixed across all games

RL and Language



Task-dependent

Language-assisted

Key Opens a door of the same color as the key.

Skull They come in two varieties, rolling skulls and bouncing skulls ... you must jump over rolling skulls and walk under bouncing skulls.

Language-conditional

Go down the ladder and walk right immediately to avoid falling off the conveyor belt, jump to the yellow rope and again to the platform on the right.

Language-conditional RL

- Instruction following
- Rewards from instructions
- Language in the observation and action space

Navigation via instruction following

Train

Go to the short red torch Go to the blue keycard Go to the largest yellow object Go to the green object

Test

Go to the tall green torch Go to the red keycard Go to the smallest blue object

Chaplot et. al., AAAI 2018 Misra et. al., EMNLP

Navigation via instruction following

Train

Go to the short red torch
Go to the blue keycard
Go to the largest yellow object
Go to the green object

Test

Go to the tall green torch Go to the red keycard Go to the smallest blue object

Fusion Alignment

Ground language Recognize objects Navigate to objects Generalize to unseen objects

> Chaplot et. al., AAAI 2018 Misra et. al., EMNLP

Applications: Hard attention

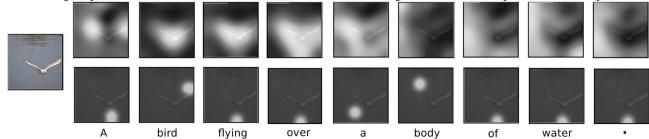
Hard attention 'gates' (0/1) rather than soft attention (softmax between 0-1)
- Can be seen as discrete layers in between differentiable neural net layers

Sentiment analysis, emotion recognition

Reject Pass Reject

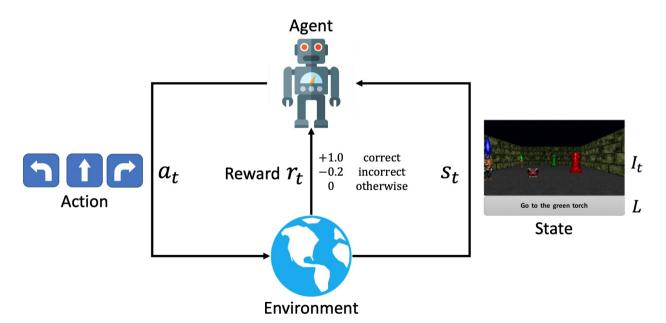
Figure 3. Visualization of the attention for each generated word. The rough visualizations obtained by upsampling the attention weights and smoothing. (top)"soft" and (bottom) "hard" attention (note that both models generated the same captions in this example).

Image captioning

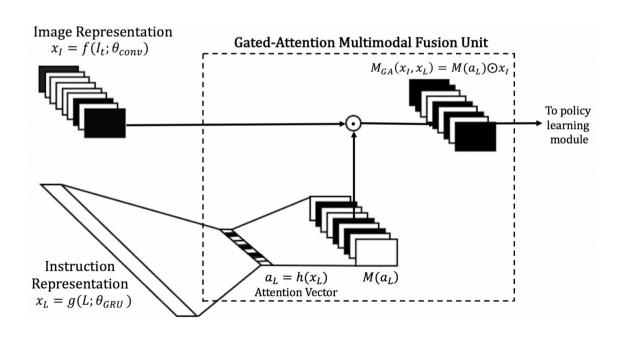


[Xu et. al., ICML 2015] [Chen et al., ICMI 2017]

Interaction with the environment



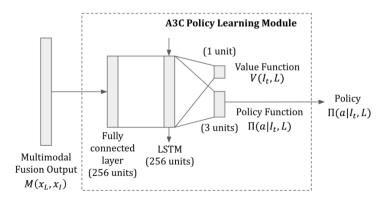
Gated attention via element-wise product



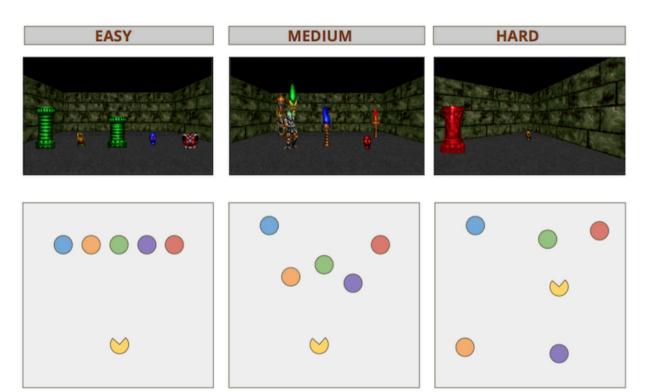
Fusion
Alignment
Ground language
Recognize objects

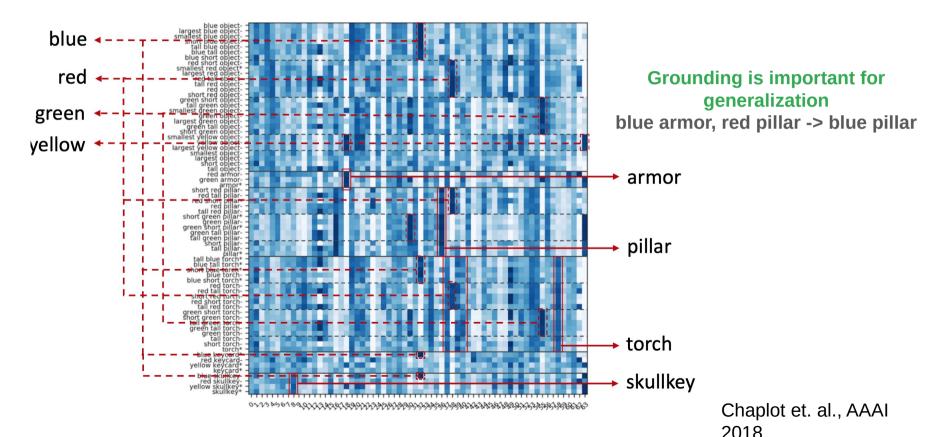
Chaplot et. al., AAAI 2018

- Policy learning
 - Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.)
 - uses a deep neural network to parametrize the policy and value functions and runs multiple parallel threads to update the network parameters.
 - use **entropy regularization** for improved exploration
 - use **Generalized Advantage Estimator** to reduce the variance of the policy gradient updates (Schulman et al.)



Chaplot et. al., AAAI 2018





Language-conditional RL: Rewards from instructions

Montezuma's revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Language-conditional RL: Rewards from instructions

Montezuma's revenge

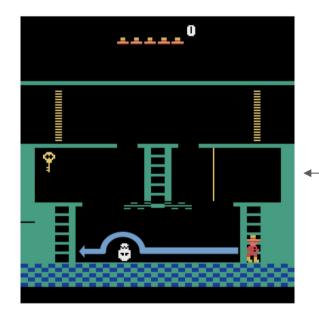
Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Encourages agent to explore its environment by maximizing curiosity. How well can I predict my environment?

- 1. Less training data
- 2. Stochastic
- 3. Unknown dynamics So I should **explore more**.

Pathak et. al., ICML 2017 Burda et. al., ICLR 2019

Language-conditional RL: Rewards from instructions



Montezuma's revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

"Jump over the skull while going to the left"

from Amazon Mturk :-(asked annotators to play the game and describe entities

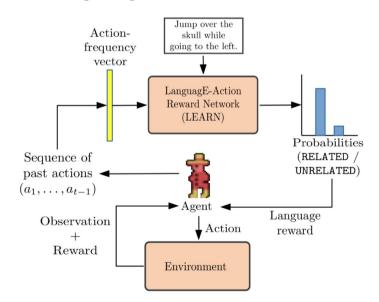
Intermediate rewards to speed up learning

Language-conditional RL: Rewards from instructions

Montezuma's revenge

Natural language for reward shaping

Encourages agent to take actions related to the instructions

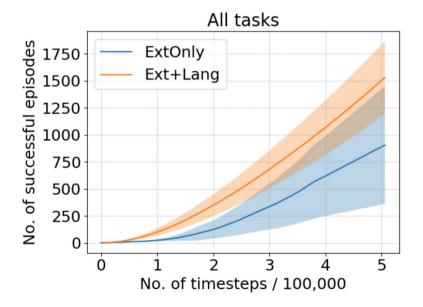


Language-conditional RL: Rewards from instructions

Montezuma's revenge

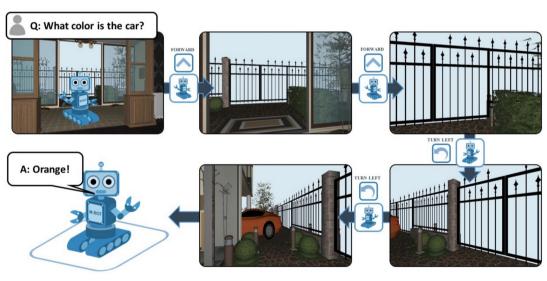
Natural language for reward shaping

Encourages agent to take actions related to the instructions



Language-conditional RL: Language in S and A

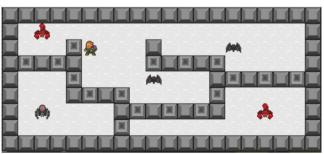
Embodied QA: Navigation + QA



Language-assisted RL

- Language for communicating domain knowledge
- Language for structuring policies

Properties of entities in the environment are annotated by language



is an enemy who chases you

is a stationary collectible

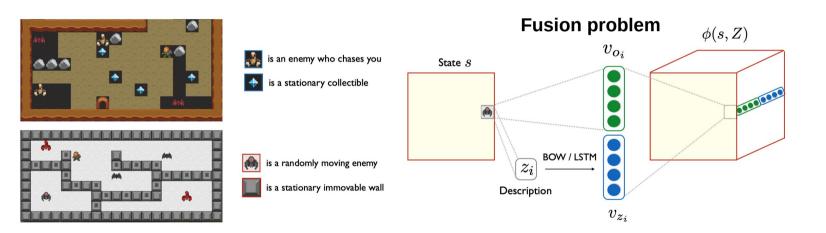
is a randomly moving enemy

is a stationary immovable wall

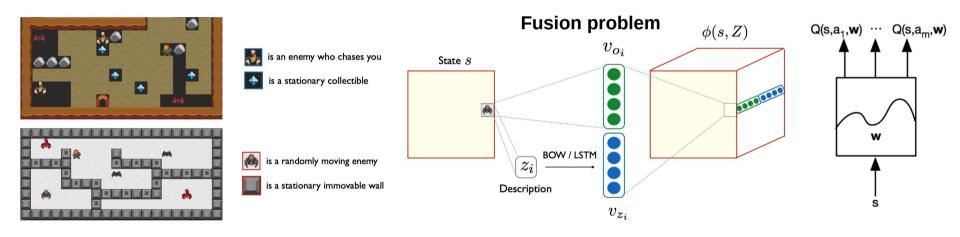
from Amazon Mturk :-(asked annotators to play the game and describe entities

Narasimhan et. al., JAIR 2018

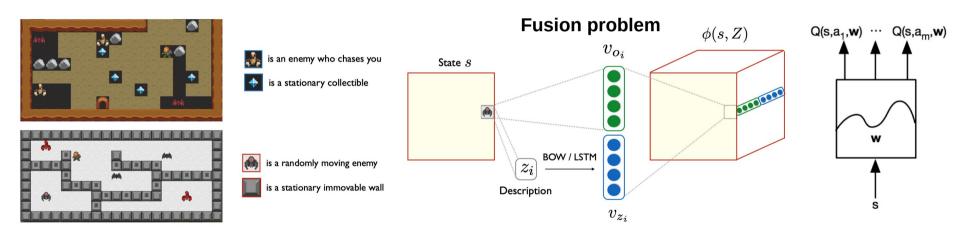
Properties of entities in the environment are annotated by language



Properties of entities in the environment are annotated by language



Properties of entities in the environment are annotated by language



Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards
Language helps in multi-task learning and transfer learning

Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Figure 1: An excerpt from the user manual of the game Civilization II.

Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

- 1. Choose **relevant** sentences
- 2. Label words into action-description, state-description, or background

Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Map tile attributes:

- Terrain type (e.g. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)

City attributes:

- City population
- Amount of food produced

Unit attributes:

- Unit type (e.g., worker, explorer, archer, etc)
- Is unit in a city?

- 1. Choose **relevant** sentences
- 2. Label words into action-description, state-description, or background

Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Map tile attributes:

- Terrain type (e.d. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)

City attributes:

- City population
- Amount of food produced

Unit attributes:

- Unit type (e.g., worker, explorer, archer, etc)
- Is unit in a city?

- Choose relevant sentences
- 2. Label words into action-description, state-description, or background

Learning to read instruction manuals

The natural resources available where a population settles affects its ability to produce food and goods. Build your city on a plains or grassland square with a river running through it if possible.

Map tile attributes:

- Terrain type (e.g. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)

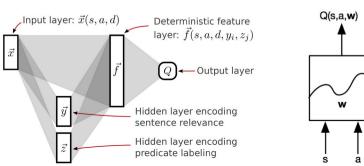
City attributes:

- City population
- Amount of food produced

Unit attributes:

- Unit type (e.g., worker, explorer, archer, etc)
- Is unit in a city?

- 1. Choose **relevant** sentences
- 2. Label words into action-description, state-description, or background



Branavan et. al., JAIR 2012

Learning to read instruction manuals

Phalanxes are twice as effective at defending cities as warriors.

• Build the city on plains or grassland with a river running through it.

- You can rename the city if you like, but we'll refer to it as washington.
- There are many different strategies dictating the order in which advances are researched

Relevant sentences

- After the road is built, use the settlers to start improving the terrain.
- When the settlers becomes active, chose build road.
- Use settlers or engineers to improve a terrain square within the city radius S 🗶

A: action-description

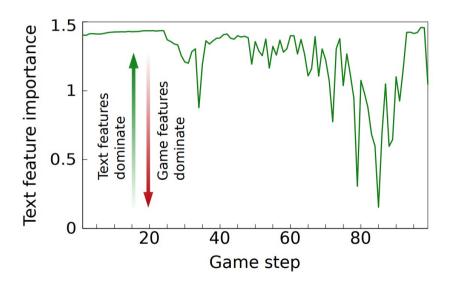
S: state-description

Learning to read instruction manuals

Method	% Win	% Loss	Std. Err.
Random	0	100	
Built-in AI	0	0	<u> </u>
Game only	17.3	5.3	± 2.7
Sentence relevance	46.7	2.8	\pm 3.5
Full model	53.7	5.9	± 3.5
Random text	40.3	4.3	± 3.4
Latent variable	26.1	3.7	± 3.1

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards
Language helps in learning

Learning to read instruction manuals



Language is most important at the start when you don't have a good policy Afterwards, the model relies on game features

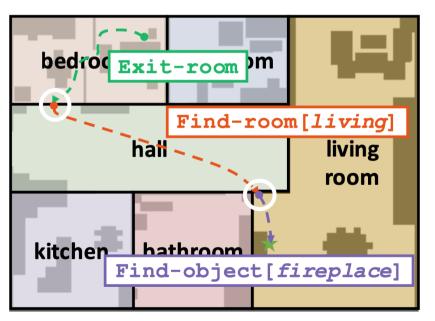
Language for structuring policies

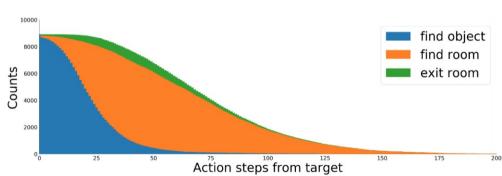
Composing modules for Embodied QA



Language for structuring policies

Composing modules for Embodied QA





Summary of applications

Stochastic optimization sentences LM

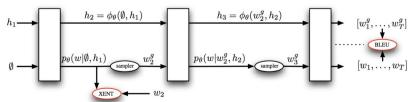
Sample
$$\mathbf{z}^1,\cdots,\mathbf{z}^K$$
 from $q_\phi(\mathbf{z})$ and estimate

$$abla_{\phi} E_{q_{\phi}(\mathbf{z})}[f(\mathbf{z})] pprox \frac{1}{K} \sum_{k} f(\mathbf{z}^{k})
abla_{\phi} \log q_{\phi}(\mathbf{z}^{k})$$

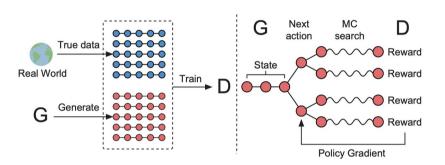
disc reward

General reward

functions



Text generation

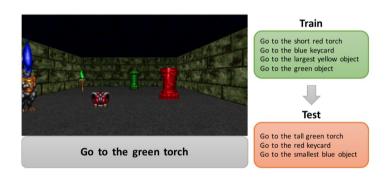


Discrete layers

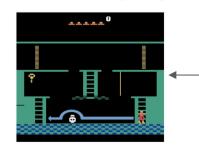
Reject Pass Reject

Summary of applications

Instruction following



Language for rewards



"Jump over the skull while going to the left"

Language to structure

