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Self-supervised 
Contrastive Learning
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Self-supervised learning

  A form of unsupervised learning where the data provides the supervision

 Predominant in NLP, but not so much in CV

 Until recently…
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Contrastive Learning for Self-Supervised Learning

 Three elements: an anchor point, 
positive samples, negative 
samples

 Construct an embedding space, 
where the positive samples are 
close to the anchor point, and the 
negative samples are away from 
the anchor point

 Recently achieving very strong 
results
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Contrastive Learning for Self-Supervised Learning

 Components (SimCLR [Chen et 
al. ICML 2020]): 

 Stochastic Data Augmentation

 Encoder (CNN and MLP)

 A contrastive loss, InfoNCE

 Model learns to distinguish 
positive from negative pairs
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BYOL (Bootstrap your own latent) [Grill et al. NeurIPS 2020]

 Stochastic data augmentation

 Encoder: two parallel networks: online and target

 Target network is more consistent than the online network (target network uses momentum update)

 An extra prediction network in the online network to create asymmetry and avoid collapsing

 MSE loss between the presentations from the online network and the target network
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BYOL (Bootstrap your own latent) [Grill et al. NeurIPS 2020]

 Significance: good contrastive learning methods used to need a large batch size (4096 
images in Google TPU) or a large dictionary (65536 images) to store negative samples

 Why it works: debatable research question (as collapsing is very easy):
 Asymmetric structure so that the slowly updated target network is different from the online network

 Other theories: batch normalization stop gradient, and more
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Visual Counting
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Visual Counting: Explicit Counting Module vs. Implicit Counting 
Module

  Explicit Counting Module: high interpretability, whereas limited scalability

Alexander Trott, Caiming Xiong, and Richard Socher. Interpretable 
counting for visual question answering. In ICLR, 2018. 
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Visual Counting: Explicit Counting Module vs. Implicit Counting 
Module

  Implicit Counting Module: high scalability and efficiency, but reduced interpretability

Nguyen, D. K., Goswami, V., & Chen, X. (2020, September). MoVie: Revisiting Modulated Convolutions 
for Visual Counting and Beyond. In International Conference on Learning Representations.
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MoVie: Modulated Convolution for Visual counting

 Modulated convolution to fuse query and image locally, not globally

.
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MoVie as a Counting Module for VQA

Results: Outperform state-of-the-arts on three major benchmarks in visual counting, namely 
HowMany-QA, Tally-QA and COCO. 
Error cases: 

1) Fail to recognize objects(Image modality)
2) Query is more complicated

Nguyen, D. K., Goswami, V., & Chen, X. (2020, September). MoVie: Revisiting Modulated Convolutions for Visual 
Counting and Beyond. In International Conference on Learning Representations.
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Robustness of 
Multimodal models
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Robustness of Multimodal models against single modality failure

 If one of the modalities (e.g., RGB) receives a worst-case or adversarial perturbation, does the model 
fail to detect the truck in the scene? 

 Does the model make a robust prediction using the remaining k − 1 unperturbed modalities (e.g., LI- 
DAR, audio, etc.)? 

Yang, K., Lin, W. Y., Barman, M., Condessa, F., & Kolter, Z. (2021). Defending Multimodal 
Fusion Models Against Single-Source Adversaries. CVPR.
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Robustness of Multimodal models against single modality failure

 Standard multimodal fusion practices are not sufficiently robust against worst-case perturbations on a 
single modality.

 E.g. Action recognition on EPIC-Kitchens. 

 Or Sentiment Analysis on CMU-MOSI. 
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Odd-one-out Network

 Odd-one-out learning is a self-supervised task that aims to identify the inconsistent modality from a set 
consistent elements.

The probability that modality 
i has been perturbed.

The probability that none of 
the modalities are perturbed.

 =
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Robust Feature Fusion Layer

• Robust Fusion Layer aims to maximize the weight for the consistent modalities excluding the 
perturbed modality, by using the output from the odd-one-out layer.

 

: a fusion of features 
from all the modalities 
except for i.

 fuses features from all 
the modalities. 

Output of Odd-one-out 
network
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Performance and Future Direction

• The model demonstrated significant robustness improvement against single modality failure, 
without affecting its performance on clean data.  

• E.g. Action recognition on EPIC-Kitchens

 Future Directions: 

1) approaches for defending attacks on multiple modalities as once

2) physically-realisable attacks, etc.
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Intermediate 
Fusion
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MMTM: Multimodal Transfer Module for CNN Fusion

▪  Late fusion is still the predominant method utilized for multimodal learning.

Joze, Hamid Reza Vaezi, et al. "MMTM: Multimodal transfer module for CNN fusion."   CVPR 2020.
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MMTM: Multimodal Transfer Module for CNN Fusion

▪  Intermediate fusion exists in neuroscience.

Emiliano Macaluso. Multisensory processing in sensory specific cortical areas. The 
neuroscientist, 2006.
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MMTM: Multimodal Transfer Module for CNN Fusion

▪  Mechanism for intermediate multimodality fusion.

Joze, Hamid Reza Vaezi, et al. "MMTM: Multimodal transfer module for CNN fusion."   CVPR 2020.
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MMTM: Multimodal Transfer Module for CNN Fusion

▪ Applying intermediate fusion in Audio visual Speech enhancement

MMTM intermediate 
fusion

SOTA model with late 
fusionHou et al. Audio-Visual Speech Enhancement Using Multimodal Deep Convolutional 

Neural Networks. 2017.
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MMTM: Multimodal Transfer Module for CNN Fusion

RGB video

▪ Applying intermediate fusion in Human Action Recognition

Joze, Hamid Reza Vaezi, et al. "MMTM: Multimodal transfer module for CNN fusion."   CVPR 2020.

3D Pose

Unimoda
l

Intermedia
te

fusion

Late 
fusion
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Deep Multimodal Fusion by Channel Exchanging

▪ Another idea of intermediate fusion using channel exchanging

Wang, Yikai, et al. "Deep multimodal fusion by channel exchanging." NIPS 2020.
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Deep Multimodal Fusion by Channel Exchanging

▪ Weak response channel in one modality get replaced by mean response in another modality 
within its group. 

Wang, Yikai, et al. "Deep multimodal fusion by channel exchanging." NIPS 2020.
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Deep Multimodal Fusion by Channel Exchanging

▪ Show performance improvement on semantic segmentation task. 

Wang, Yikai, et al. "Deep multimodal fusion by channel exchanging." NIPS 2020.
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Deep Multimodal Fusion by Channel Exchanging

▪ Show performance improvement on multimodal image translation task. 

Wang, Yikai, et al. "Deep multimodal fusion by channel exchanging." NIPS 2020.
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Wang, Yikai, et al. "Learning Deep Multimodal Feature Representation with Asymmetric Multi-layer Fusion." Proceedings of the 28th ACM International Conference on Multimedia. 2020.

Deep Multimodal Fusion by Channel Exchanging

▪ The idea of channel exchanging also exists in another work in 2020, showing similar 
performance on segmentation task.

Modality 1 
feature

Modality 2 
feature
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Multimodal Model 
Architectures
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Motivation/Overview

 Unified Backbone
 Can we come up with a unified model backbone for different inputs?

 Modality Fusion
 How to design a proper fusion mechanism under such unified backbone model?
 Early? Late? Something else?

Language Vision Audio Point Cloud

Transformer 2D conv. 1D conv. Low-res. grid
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Unified Backbone

 Transformer architecture is widely used in NLP tasks
 However, the space/time complexity is quadratic

 QKV attention:    
 ,  is  for an image

 Do we really need such a large ?
 No. There is redundant information in an image for example

Deepmind, Perceiver: General Perception with Iterative Attention, ICML 2021



33

Dimension Reduction

 Change to , where 

 Latent array is randomly initialized
 It serves as a bottleneck attention 

layer
 C and D are just #channels

 However, the model becomes less 
expressive. What should we do?
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Iterative Attention

 Similar to an unrolled RNN with the transformer architecture



35

Modailty Fusion

 We have one backbone that can be applied to each modality separately
 Input is still unimodal in each task

 What if our input data is multimodal?

perceiverperceiver perceiverperceiver perceiverperceiver

New Fusion ModelNew Fusion Model

language + vision + audio

perceiverperceiver

language
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Modality Fusion

 Apply the same bottleneck concept, but this time it’s cross-modal
 Pink and green are transformers

Google Research, Attention Bottlenecks for Multimodal Fusion, NIPS 2021
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Modality Fusion

 Insert bottleneck FSN tokens between modalities
 All cross-modal attention is retricted to flow via FSNs
 FSNs are updated twice, first with visual, and then with audio information



38

Practical Impact

 # of FSN=4 (FSNB=4 in the prev. slide) in the experiments
  => only the last 12-x layers are equipped with FSNs
 Mid-Late fusion works the best
 FSN computational cost is almost constant

 upadated separately with two modalities and B is only 4
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Missing Modality
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 Usually we have complete modality data (left)
 What if data from a modality is severly missing (90%) during both training 

AND testing time (right)
 Can we generate pseudo data for those missing instances?

Ma et al, SMIL: Multimodal Learning with Severely Missing Modality, AAAI 2021

Motivation



41

 Suppose some portion of the data is complete , and the remaining portion is 
missing 

 We want to learn a codebook from  by K-means or PCA
 4 vectors in the codebook for example:

𝑥1
2

𝑥2
2

𝑥3
2 𝑥4

2

𝑥5
2 𝑥7

2

𝑥6
2𝑀 1

𝑀 2

𝑀 3

𝑀 4

Codebook Learning
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Prior Learning

 We collect all the s and model them using a gaussian random variable
 Modeling the prior , mean field approximation

𝑀 1 𝑀 2 𝑀 3 𝑀 4
𝑥𝑖

2=𝑧1 𝑧2 𝑧3 𝑧 4+ + +

Codebook vectors
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 We can use CVAE to model the missing data
  is the observed variable and  is the conditional
 Sample  to optimize the ELBO

 The original paper also uses a meta learning framework to stabalize the 
training process
 Optimize the inference network more frequently

learned codebook prior

recognition network

inference network

Variational Inference
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Full Generative Story

 For complete data, we perform MLE training
 For missing data, we perform variational inference to infer pseudo data
 , then use it to weighted-sum codebook vectors  as 
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