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22.1 Interior-point methods

Interior-point methods are important because they are by far the most efficient methods to solve optimization
problems with relatively small numbers of variables and potentially very large numbers of linear constraints
(specially if we need very accurate solutions.) Also, they are based on geometric intuition and deriving the
interior-point method for a problem can give interesting insights.

Historical Interest: (1) First practical polynomial time algorithm for solving an LP. (It is still an open
question whether they are strongly polynomial time or not.) (2) First proposed method in literature: Ellip-
soid Method. (Though it is not practical for a lot of problems, it is a great theoretical tool.)

Combinatorial or real analysis of LPs: We can either think of solving for Linear Program (LP) as being
a combinatorial algorithm (for example, in case of the simplex algorithm, searching amongst discrete sets of
vertices for solution) or a continuous problem (for example, maximizing a continuous function over a convex
set). Interior-point methods can act as a bridge between both forms of reasoning (as we will see further in
lectures.)

22.1.1 Ball Center (aka Chebyshev center)

Suppose for a problem, the feasible region (figure 22.2) is given by

X = { x | Ax + b ≥ 0}. (22.1)

In general, this is too big of a description (e.g. intersection of too many linear inequalities), and we would
like to come up with a shorter description of this feasible region. One try might be to find the ball center,
which is the center of the largest sphere that can be inscribed inside this feasible region (dotted blue line in
figure 22.2.) As an optimization problem, we can write it as:

max
x

min
i

dist(x, aTi x + bi = 0) (22.2)

where aTi x + bi = 0 is the constraint line for the ith constraint, dist is euclidean distance of x to that
constraint line, mini finds closest constraint to the point x and maxx maximizes the distance of x to that
closest constraint. Thus, (eq. 22.2) will maximize the radius of the ball that we can inscribe centered at x.
We can find this ball center using a LP as follows:

1. If ‖ai‖ = 1 (i.e. ai is normalized), then dist(x, aTi x + bi = 0) is just aTi x + bi (a linear function of x).
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So we can re-write (eq. 22.2) as:

max
x,t

t subject to Ax + b ≥ t1 (22.3)

max
x,t

t subject to s ≥ t1 where s = Ax + b (22.4)

2. In general, we can write the constraint as
si
‖ai‖

≥ t ∀ i. Since ‖ai‖ is constant, the constraint is linear

in si and t, therefore we have a LP.

Geoff Gordon—10-725 Optimization—Fall 2012

Ball center
aka Chebyshev center

• X = { x | Ax + b ! 0 }

• Ball center:
‣  

‣ if ||ai|| = 1

‣ in general:

15Figure 22.1: Ball Center (solid blue circle) for the feasible region (white polyhedron) (corresponding ball
center in dotted blue)
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(a) Feasible region with bad conditioning
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Figure 22.2: Ball center (dashed red circle) for a feasible region (white polyhedron) (corresponding center
marked by “x”.) For two very varied feasible regions given in (a) and (b), we have the same ball center.

Bad News: Consider the feasible region shown in figure 2(a) (long skinny triangle). The selected ball center
is not a very good summary of the feasible region because we will have the same ball center if we had the
feasible region from figure 2(b), which is indeed very different from figure 2(a). A symptom of this problem
is that the ball may contain an arbitrarily small fraction of the volume of the feasible region.

22.1.2 Ellipsoid Center (aka max-volume inscribed ellipsoid)

It is the center of the inscribed ellipsoid with the largest possible volume. The ellipse centered at d is given
by

E = {Bu + d | ‖u‖2 ≤ 1} (22.5)
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i.e. a scaled and shifted version of the unit sphere. The volume of E is proportional to detB, therefore
1/volume is proportional to detB−1. It turns out that we can find the ellipse centered at d as a solution of
the semi-definite program given by

min log detB−1

subject to: aTi (Bu + d) + bi ≥ 0 ∀i ∀u with ‖u‖ ≤ 1

B � 0

The above constraints imply that the entire ellipse has to be contained in the feasible region. For each i and
each u, we have a linear constraint in B and d (actually, there are infinitely many such constraints.) The
constraints are linear, and therefore we have a convex optimization problem.

416 8 Geometric problems

Figure 8.4 The maximum volume ellipsoid (shown shaded) inscribed in a
polyhedron P. The outer ellipse is the boundary of the inner ellipsoid,
expanded by a factor n = 2 about its center. The expanded ellipsoid is
guaranteed to cover P.

the form TE , where E is an ellipsoid that covers C. In other words, the relation
Ẽ = TE gives a one-to-one correspondence between the ellipsoids covering TC and
the ellipsoids covering C. Moreover, the volumes of the corresponding ellipsoids are
all related by the ratio |det T |, so in particular, if E has minimum volume among
ellipsoids covering C, then TE has minimum volume among ellipsoids covering TC.

8.5 Centering

8.5.1 Chebyshev center

Let C ⊆ Rn be bounded and have nonempty interior, and x ∈ C. The depth of a
point x ∈ C is defined as

depth(x,C) = dist(x,Rn \ C),

i.e., the distance to the closest point in the exterior of C. The depth gives the
radius of the largest ball, centered at x, that lies in C. A Chebyshev center of the
set C is defined as any point of maximum depth in C:

xcheb(C) = argmaxdepth(x,C) = argmaxdist(x,Rn \ C).

A Chebyshev center is a point inside C that is farthest from the exterior of C; it is
also the center of the largest ball that lies inside C. Figure 8.5 shows an example,
in which C is a polyhedron, and the norm is Euclidean.

Figure 22.3: Maximum volume ellipsoid (shaded) inscribed in the feasible region (polyhedron)

As can be seen in example shown in figure 22.3, the resulting ellipsoid fills up the feasible region quite nicely.
We can show that in general the Volume(E) ≥

(
1
nn

)
Volume(X) (E from eq. 22.5 and X from eq. 22.1) i.e.

at least a polynomial fraction of the feasible region is covered by the ellipsoid.

In conclusion, we have a convex optimization problem to find a good summary of the feasible region. But
the problem is very expensive, with infinitely many constraints in an SDP (but we can still do it.)

So, the next obvious question: Is there some summary of the feasible region which can be computed cheaply,
and which can be said to be a good summary? (e.g. if it contains at least a polynomial fraction of the volume
of the feasible region, like ellipsoid center discussed above.) Find the answer in the next section!

22.1.3 Analytic Center

Take the slack s = Ax + b⇔ si = aTi x + bi from eq. 22.4. We can define analytic center as:

max
x,s>=0

∏
i

si
‖ai‖

(22.6)

This is similar to maximizing the minimum distance (from eq. 22.2, see general formulation) as if we have a
small distance, then the above product is going to be small. On the other hand, the only way to maximize the
product is to make all the slacks (si) approximately equal or at least some subset of slacks approximately
equal and others bigger than that (can be seen as a soft version of the ball center.) Since − log is anti-
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monotone function, therefore we can rewrite eq. 22.6 as

max
x,s>=0

∏
i

si
‖ai‖

(22.7)

⇔ max
x,s>=0

−
∑
i

log
si
‖ai‖

(22.8)

⇔ max
x,s>=0

−
∑
i

log si +
∑
i

log‖ai‖ (22.9)

⇔ max
x,s>=0

−
∑
i

log si (22.10)

since ‖ai‖ is constant. Thus, minimizing the sum of negative logs of the slacks is same as maximizing the
product in eq. 22.6. Therefore, the definition analytic center of a feasible region is given by eq. 22.10 (x in
figure 22.4 is the analytic center.)
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Analytic center

• Let s = Ax + b

• Analytic center:
‣  

‣  

17Figure 22.4: Analytic Center (blue “x”) for the feasible region (white polyhedron) (corresponding Dikin
Ellipsoid in dotted blue)

It turns out that we can define an ellipse, centered at the analytic center, that contains at least the polynomial
fraction of the volume of the feasible region (for e.g. dikin ellipsoid, more on this in next lecture.). More
concretely, for n dimensional problem with m constraints, we at least cover a factor of (1/mn) of the
feasible region

(
Volume(Dikin Ellipsoid) ≥

(
1

mn

)
Volume(X)

)
(the proof is in book). Therefore, we have a

similar polynomial fraction guarantee as in ellipsoid center (though weaker). But how much weaker? In n
dimensions, we need at least m = n + 1 constraints to make a closed polyhedron. So, m > n ⇔ (1/mn) <
(1/nn) . Recall from previous section that Volume(Ellipsoid Center) ≥

(
1
nn

)
Volume(X), therefore we have

Volume(Dikin Ellipsoid) ≤ Volume(Ellipsoid Center) i.e. the ellipsoid center’s volume has to be at least as
large as analytic center’s ellipsoid volume (but both are polynomial fraction of the total volume of the feasible
region)

Invariance: The analytic center is invariant to scaling of the rows of A (scaling will only change the constant
that we dropped.) i.e. it is invariant to individual scaling of the constraints (ai).

Comparison to Ball Center Unlike the ball center, analytic center will be effected by every constraint,
even the inactive ones, as the product/sum has every constraint (though far away constraints will have less
effect.) That means that the analytic center is not the analytic center of the feasible region, it is just the
center of this particular representation of the feasible region, as we could move an inactive constraint back
and forth (a bit) and it will change the analytic center.

So why analytic centers? Some cool results in next lecture!

Feasible region with bad conditioning: Analytic relieves the problem of bad conditioning by stretching
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Bad conditioning? No problem.

18

ai
Tx+bi ! 0   min –#ln(ai

Tx+bi)

y = Mx+q

Figure 22.5: Example of badly conditioned feasible region (white polyhedron). Analytic Center (blue “x”)
for the feasible region (corresponding Dikin Ellipsoid in dotted blue)

out the ellipse a lot (as shown in figure 22.5) and we still get a decent volume of the feasible region. And in
fact, we can show that not only analytic center is invariant to individual scaling of the constraints, but also
any affine scaling of the feasible region. That is, we can shift and scale our feasible region, and the analytic
center will shift and scale in exactly the same way, and the ellipsoid (dikin ellipsoid) will shift and scale the
same way as well.

22.1.3.1 Newton’s method for Analytic Center

The sum-of-logs in eq. 22.10 is very smooth and infinitely differentiable function, we know that Newton’s
method might be a good way to find the analytic center. From eq. 22.10 we have

Objective: f(x) = −
∑
i

log(aTi x + bi) =
∑
i

log(si) where s = Ax + b

Gradient:
df(x)

dx
= −

∑
i

ai
aTi x + bi

= −
∑
i

ai
1

si
= −AT

(
1

s

)
where (1/s) is component-wise.

Hessian:
d2f(x)

d2x
=
∑
i

aia
T
i

(aTi x + bi)2
= ATS−2A where S = diag(s)

Using this gradient and hessian, therefore we can run Newton’s method on f(x). Because, our objective is
strictly convex function, the hessian is strictly positive definite and hence the Newton’s direction is actually
a descent direction. This implies that the Newton’s method converges from any feasible initializer (as long
as we use line search).

But we still have to fine a strictly feasible initializer, where the objective is finite (see next lecture to get
around this requirement). It turns out that the Newton’s method will converge globally in a very small
number of iterations.
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Adding an Objective
Analytic center was for feasibility problem like finding x such that Ax+ b ≥ 0. Instead of this, now we want
to find solution to min cTx subject to Ax + b ≥ 0.
We can use the same trick and solve

min ft(x) = cTx−
(

1

t

)∑
i

log(aTi x + bi)

where t > 0, is the trade-off between two terms. As t → 0,
(
1
t

)
→ ∞ and the log part of ft(x) dominates,

and we have the solution for analytic center. As t→∞,
(
1
t

)
→ 0 and the log part vanishes, thus we just get

the LP optimal. The center path is smooth (infinitely differentiable for any finite t) and so the central path
smoothly connects the analytic center to the LP optimal (more details on this in next lecture.)
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