
CS194A 
Android Programming Workshop

Lecture 8: Nov 10, 2021
Rahul Pandey



Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



Week #

1 2 3 4 5 6 7 8 9

Industry panel 
discussion

Assn 1: Tip 
Calculator

Assn 2: 
Google Maps

Assn 3: Yelp 
Clone

10



Code review- what to look for?
● Architecture review
● Tests
● Logic/functionality errors
● Complexity
● Comments
● Style

Try it out: sample pull request

https://github.com/rpandey1234/CodeReviewSample/pull/1/files#


Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



Remote Cloud Databases

● Where does the data for your app 
come from? 
○ Local SQLite database
○ Web API
○ Your own backend service

● Remote cloud database: combines 
benefits of local storage using SQLite 
and Web APIs



Build your own backend
● Use a technology such as Django (Python), Ruby on Rails, Node (Javascript), 

etc. to create your own backend, hosted on a server
● Lots of headaches, and requires expertise in various domains: 

○ Redundancy/robustness: database backups
○ Scaling: what happens when your app becomes popular? 
○ Security: database passwords, key rotation, etc. 



BaaS = Backend as a service
● Platforms for database/service hosting, management, deployment, etc. 
● Free for most student/toy projects, you only get charged for usage beyond the 

free tier. 
● Features: 

○ Easy setup and integration with mobile apps
○ Web UI to view/modify data
○ APIs to perform CRUD operations on the data
○ As a developer, you must comply with the limitations around querying



NoSQL databases
● NoSQL databases: does not use SQL to access the data, there is no strict 

schema
○ Benefits: simplicity, flexibility, “horizontal” scalability to many servers
○ Drawbacks: some queries are more expensive, less structure around data may lead to data 

inconsistency, lack of “ACID”



Firebase
● Remote database management platform, owned by Google

○ Has become more popular since Facebook stopped managing Parse
○ Incorporates many services to develop your app, grow your user base, and monetize. 
○ Popular among hobbyists and for early-stage startups

https://firebase.google.com/docs




Firestore
● “Flexible, scalable database for mobile, web, and server development”
● Keeps data in sync across clients through real time updates
● Automatic offline support



Firestore
● NoSQL cloud database to store and sync data
● Made up of documents and collections

○ Documents are like JSON objects which have fields of various types
○ Collections are a group of documents

Collections



● Documents define the attributes for that object

Documents



I want posts by all users in the 
InstaFire app

Here’s a list of posts: 
1. Post “vacation pic!”
2. Post “Golden Gate”

3. .…………………...



Cloud Firestore





Optional: Go through the 
Instagram clone using Firebase

https://www.youtube.com/playlist?list=PL7NYbSE8uaBDFULNYVBV8kCyaG6OyMeaq


Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



Fragments
● A reusable portion of UI that lives inside an Activity. 
● Multiple fragments can be combined in one activity

○ Helps to handle different devices and screen sizes
○ Helps to reuse common UI across your app

● Has its own lifecycle similar to the Activity lifecycle





Fragment vs Activity
● Methods defined on the activity are not available in the fragment

○ Need to use the activity property to access the enclosing activity

● Passing/accessing information in a fragment (intents/bundles) is done by 
asking the enclosing activity

● Fragment initialization and lifecycle are different
○ Activity: onCreate
○ Fragment: onActivityCreated



Activity lifecycle



Fragment lifecycle



Code pointer

https://github.com/rpandey1234/FragmentDemo


Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



Source

https://www.browserstack.com/guide/testing-pyramid-for-test-automation


Android testing
Why is it hard? 

● End to end testing: directly testing the UI is flaky, e.g. dropdown takes time 
to render

○ Espresso: requires an emulator

● Integration testing: check interaction between different components
○ Robolectric: mock Android components

● Unit testing: just one component, no interaction with Android framework
○ JUnit/Mockito: very fast to run



Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



App architecture
● Architecture: “fundamental structures of a software system” 
● Architecture educates how you organize your code

○ Has consequences around how easy it is to debug your code or onboard new devs

● Different components of all mobile apps: 
○ UI or view layer
○ Data classes or models
○ Repository: holds or retrieves the data
○ “Business logic” component for responding to user input



Android app architectures
● Objective: avoid having all logic live inside Activities

● MVC: Model View Controller
● MVP: Model View Presenter
● MVVM: Model View ViewModel

https://guides.codepath.com/android/Architecture-of-Android-Apps


Outline

● Logistics
● Remote Databases (Firebase)
● Fragments
● Android testing
● App architecture
● Alternatives to native app development



Alternatives to native app development
What problem are they trying to solve? 

1. Double the effort to ship an app two platforms (Android + iOS) 
2. Developer experience sucks- gatekeepers to releasing your code



● Developed by Facebook for cross platform app development (move faster)
● Uses JavaScript, source code is converted to native elements
● Tight platform integration, ability to write modules in platform code
● Heavily used across industry: Facebook, Uber, Walmart

React Native



Flutter
● Created by Google
● UI toolkit for building native apps for mobile, web, and desktop in a single 

codebase
● Provides a full native experience by using native compilers
● Uses the Dart programming language
● Less mature than React Native but growing



Xamarin
● Bought by Microsoft
● Uses .NET and C# (Microsoft technologies)
● Also turns into native code
● 75% code sharing between platforms
● Not as popular in Silicon Valley, but has a mature community




