
Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Computational Molecular Biology and
Bioinformatics

Sequence Alignment

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
Indian Statistical Institute, Kolkata

October, 2021

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

1 Sequence alignment
Basics
Importance
Varieties of sequence alignment

2 Global alignment
Finding the best global alignment score
Deriving the optimal global alignment
Alignment with gap penalty functions
Alignment using hidden Markov models

3 Semi-global alignment

4 Local alignment
Finding the best local alignment score
Deriving the optimal local alignment

5 Multiple alignment
Scoring the alignment of multiple sequences
Deriving the best multiple alignment

6 Hands-on

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

Sequence alignment is used for finding out the similarity

between sequences by aligning them with each other.

To understand this, we need to explain the following two terms.

Similarity: This gives a measure of how similar the sequences
are by recognizing which parts of the sequences are alike and
which parts differ.

Alignment: This is a way of placing one sequence above the
other in order to make clear the correspondence between
similar characters or substrings from the sequences.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Importance

Sequence alignment is useful in different types of bioinformatics
approaches. Some of these include the following.

If the same gene is sequenced by two different labs and they
want to compare the results.

If the same long sequence is typed twice into the computer
and we are looking for typing errors.

Performing fragment assembly in programs to help large-scale
DNA sequencing.

To search for local similarities using large biosequence
databases.

For deriving the phylogenetic relationship between different
organisms by comparing their DNA or protein sequences.

To identify the sequence homologies that might establish the
existence of a shared ancestry.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Varieties of sequence alignment

We are often interested in finding the best alignments between two
sequences. This can be categorized into different types of problems
as listed below.

Global alignment: It refers to the alignment of the entire
sequence pairs.

Semi-global alignment: It refers to the alignment of prefixes
and suffixes of the given pair of sequences not any arbitrary
substrings.

Local alignment: It refers to the alignment of just the
substrings of a pair of sequences.

Multiple alignment: It refers to the alignment of multiple
(more than a pair) sequences.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

Consider the two DNA sequences given by GACGGATTAG and
GATCGGAATAG. It is obvious that we can align them one
above the other as follows.

GA–CGGATTAG

GATCGGAATAG

Note that the only two differences that are distinguishable in the
above alignment are given below.

1 There appears an extra T in the second sequence (gap), and

2 There is a change from A to T in the fourth position from
right to left (mismatch).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Scoring the similarity

Given an alignment between two sequences, each column of the
alignment will receive a certain value depending on its contents
and the total score for the alignment will be the sum of the values
assigned to its columns. We can assign a score to it as follows.

Match: If a column has two identical characters, it will
receive value +1.

Mismatch: Different characters will give the column value
−1 (a mismatch).

Gap: A space in a column drops down its value to −2.

The best alignment will be the one with the maximum total score.

Note: The choice of assignment of scores (parameters) has a
significant impact over the algorithm.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving similarity of sequences

We can store the different possible alignment scores in an array ‘a’
of dimension (m + 1)× (n + 1) by aligning the sequence prefixes.

The value for an entry (i , j), represented as a[i , j], can be
computed by looking at just three previous entries: those for
(i − 1, j), (i − 1, j − 1), and (i , j − 1). The reason is that there are
just three ways of obtaining an alignment between s[1 . . . i] and
t[1 . . . j], and each one uses one of these previous values.

In fact, to get an alignment for s[1 . . . i] and t[1 . . . j], we have the
following three choices:

1 Align s[1 . . . i] with t[1 . . . j − 1] and match a gap with t[j].

2 Align s[1 . . . i − 1] with t[1 . . . j − 1] and match s[i] with t[j].

3 Align s[1 . . . i − 1] with t[1 . . . j] and match s[i] with a gap.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basic constructions

We can formally define the similarity (S) between two
subsequences as follows:

S(s[1 . . . i], t[1 . . . j]) = max

S(s[1 . . . i], t[1 . . . j − 1]) + g
S(s[1 . . . i − 1], t[1 . . . j − 1]) + p(i , j)
S(s[1 . . . i − 1], t[1 . . . j]) + g

Based on this, we can have the following reformulation.

a[i , j] = max

a[i , j − 1] + g
a[i − 1, j − 1] + p(i , j)
a[i − 1, j] + g

Here, g denotes the gap score and p(i , j) denotes the
match/mismatch score.

Note: An arrow is used to highlight which cell contributes to the
maximum value.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving similarity of sequences

Deriving optimal global alignment between AAAC and
AGC (the corner of a cell (i , j) reflects whether s[i] = t[j])

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Finding the best global alignment score

The following dynamic programming approach (known as
Needleman-Wunsch algorithm) can be used to compute the best
alignment score (which is −1 here) for the previous example.

Input: Sequences s and t.
Output: Matrix a containing the similarities between s and t.

1: m← |s| // Length of s
2: n← |t| // Length of t
3: for i ← 0 to m do
4: a[i , 0]← i × g // Filling up the first column
5: end for
6: for j ← 0 to n do
7: a[0, j]← j × g // Filling up the first row
8: end for
9: for i ← 1 to m do

10: for j ← 1 to n do
11: a[i , j]← max(a[i − 1, j] + g , a[i − 1, j − 1] + p(i , j), a[i , j − 1] + g)
12: end for
13: end for
14: return a[m, n]

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Complexity analysis

Time complexity:
This algorithm consists of four for blocks. The first two blocks
(initialization steps) consume time O(m) and O(n), respectively.
The last two nested for blocks are used to fill the rest of the
matrix. The number of operations performed depends essentially
on the number of entries that must be computed, that is, the size
of the matrix. Thus, we spend time O(mn) in this part and the
time complexity becomes

O(m) + O(n) + O(mn) = O(mn).

Space complexity:
As we need to fill the entries of the matrix ‘a’, the space
complexity becomes O(mn).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Improving the space complexity

It is possible to improve the space complexity from quadratic to
linear and keep the same generality as follows.

Input: Sequences s and t.
Output: Matrix a containing the similarities between s and t.

1: m← |s| // Length of s
2: n← |t| // Length of t
3: for j ← 0 to n do
4: a[j]← j × g // Filling up the j th row
5: end for
6: for i ← 1 to m do
7: old ← a[0]
8: a[0]← i × g
9: for j ← 1 to n do

10: temp ← a[j]
11: a[j]← max(a[j] + g , old + p(i , j), a[j − 1] + g)
12: old ← temp
13: end for
14: end for
15: return a[m, n]

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the optimal global alignment

Input: Indices i , j , and the array a given by the previous algorithm.
Output: Alignments in align-s, align-t, and length in len.

1: if i = 0 and j = 0 then
2: len← 0
3: else
4: if i > 0 and a[i , j] = a[i − 1, j] + g then
5: Recursive-call(i − 1, j , len)
6: len← len + 1
7: Set align-s[len]← s[i] and align-t[len]← −
8: else
9: if i > 0 and j > 0 and a[i , j] = a[i − 1, j − 1] + p(i , j) then

10: Recursive-call(i − 1, j − 1, len)
11: len← len + 1
12: Set align-s[len]← s[i] and align-t[len]← t[j]
13: else
14: Recursive-call(i , j − 1, len)
15: len← len + 1
16: Set align-s[len]← − and align-t[len]← t[j]
17: end if
18: end if
19: end if

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the optimal global alignment

The optimal global alignment for the example shown earlier can be
derived using this algorithm as follows.

Step 1: Start from a[m = 4, n = 3] and align C with C.
Step 2: Move diagonally to a[m = 3, n = 2] and align A with G.
Step 3: Move up to a[m = 2, n = 2] and align A with a gap (–).
Step 4: Move diagonally to a[m = 1, n = 1] and align A with A.
Step 5: Move diagonally to a[m = 0, n = 0] and stop.

Thus, the final alignment becomes the following:

AAAC

A–GC

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the optimal global alignment

Note that, many optimal alignments may exist for a given pair of
sequences. The presented algorithm returns just one of them,
giving preference to the edges leaving (i , j) in counterclockwise
order as shown below.

So, when there is choice, a column with a gap in t has precedence
over a column with two symbols, which in turn has precedence
over a column with a gap in s. This can be changed by changing
the order of the if-else blocks in the algorithm.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Complexity analysis

Time complexity:
This algorithm consumes time O(len), where len is the size of the
returned alignment, which is essentially O(m + n).

Space complexity:
Given the already filled matrix a as input, the space complexity
becomes O(mn).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment with gap penalty functions

Let us redefine a gap as a consecutive number of k > 1 spaces.
The formation of such (consecutive) gaps with k spaces is more
probable than k isolated spaces during mutations.

As of now, no distinction has been made between the consecutive
and isolated gaps. The gaps were penalized in the previous cases
through a linear function given by

f (k) = kg ,

where g is the score associated with a single space and k is the
number of spaces.

We introduce an algorithm that computes similarities with respect
to general gap penalty functions that consider non-additive scores.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment with gap penalty functions

In this algorithm, we cannot break an alignment in two parts and
expect the total score to be the sum of the partial scores.
However, score additivity is still valid if we break the alignment in
block boundaries.

Every alignment can be uniquely decomposed into a number of
consecutive blocks. There can be three kinds of blocks as listed
below.

1 Two aligned characters from the alphabet set.

2 A maximal series of consecutive characters in t aligned with
spaces in s.

3 A maximal series of consecutive characters in s aligned with
spaces in t.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment with gap penalty functions

Consider the following global alignment between the pair of
sequences AACAATTCCGACTAC and ACTACCTCGC.

AAC——AATTCCGACTAC

ACTACCT————CGC—-

Now, consider the same alignment shown block by block as follows.

A A C – – – A A T T C C G A C T A C
A C T A C C T – – – – – – C G C – –

In the former case, the scoring of an alignment is done at the
column level, but in the latter one scoring is done at the block
level.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment with gap penalty functions

To compare sequence s of length m to sequence t of length n, we
use three arrays of size (m + 1)× (n + 1), one for each type of
ending block. Array a is used for alignments ending in
character-character blocks; b is used for alignments ending in
spaces in s and c is used for alignments ending with spaces in t.

The initialization is done as follows:

a[0, 0] = 0

b[0, j] = f (j)

c[i , 0] = f (i)

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment with gap penalty functions

The following recurrence relations are used for updating the cells:

a[i , j] = max

a[i − 1, j − 1] + p(i , j)
b[i − 1, j − 1] + p(i , j)
c[i − 1, j − 1] + p(i , j)

b[i , j] = max

{
a[i , j − k] + f (k), 1 ≤ k ≤ j
c[i , j − k] + f (k), 1 ≤ k ≤ j

c[i , j] = max

{
a[i , j − k] + f (k), 1 ≤ k ≤ j
b[i , j − k] + f (k), 1 ≤ k ≤ j

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Complexity analysis

Time complexity:
For computing a[i , j], b[i , j], and c[i , j], we need to perform
(3 + 2j + 2i) accesses. So, the total worst case time complexity
becomes

m∑
i=1

n∑
j=1

(3 + 2j + 2i)

=
m∑
i=1

(2ni + n2 + 4n)

= O(mn2 + m2n).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Introduction to Hidden Markov models

Processes are of two types – deterministic (e.g., rolling the
SHOLAY coin) and stochastic (e.g., rolling a dice).

Definition

A stochastic process X = (Xt : t ∈ I) on a probability space
(Ω,F ,P) is said to process the Markov property if, ∀A ∈ F and
s, t ∈ I , s < t, we have

P(Xt ∈ A|Fs) = P(Xt ∈ A|σ(Xs)),

where {F}t∈I is the natural filtration.

If the process takes discrete values and is indexed by a discrete
time, this can be reformulated as follows.

P(Xn = xn|Xn−1 = xn−1 · · ·X0 = x0) = P(Xn = xn|Xn−1 = xn−1).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Alignment using hidden Markov models

We can prepare a matrix of transitional probabilities (where an
entry at cell (i , j) denotes the probability of occurrence of j
immediately after i), from the given sequences. E.g., consider the
sequence AAGGAATTAGC and the corresponding transitional
probabilities as shown below.

– A T C G
– – 1 0 0 0
A 0 2/5 1/5 0 2/5
T 0 1/2 1/2 0 0
C 1 0 0 0 0
G 0 1/3 0 1/3 1/3

The alignment can be generated from these transition probabilities.
We use the relation arg maxi∈{A,T ,C ,G} P(Xn = i |Xn−1 = xn−1) to
derive the aligned sequence.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

In a semi-global comparison, we score alignments ignoring some of
the end gaps (that appear before the first or after the last
character) in the sequences. With a slight modification to the
already presented algorithms, we can control the penalty
associated with end gaps.

The end gaps are welcome because they might provide more
acceptable alignments. E.g., consider the sequences
AGCACTTGGATTCTCGG and CAGCGTGG, and their
following two possible alignments.

–AGCACTTGGATTCTCGG AGCA–CTTGGATTCTCGG
CAGC———-G–T——–GG —-CAGCGTGG—————
[Match = 7, Mismatch = 0, Gap = 11] [Match = 6, Mismatch = 1, Gap = 11]

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

Using the already adopted scoring scheme, the first alignment
turns out to be better, however, the second one appears to be
more appropriate due to its continuity. This continuity can be
effectively quantified based on the count of end gaps.

To obtain the score of the optimal alignment between s and t
without penalizing the gaps after the end of s (final gaps), all we
need to do is to find the best similarity between s and a prefix of t.
In the previous algorithms, the entry (i , j) of matrix a contains the
similarity between s[1 . . . i] and t[1 . . . j]. Therefore, it suffices to
take the maximum value in the last row (or column) of the array,
i.e.,

S(s, t) =
n

max
j=1

a[m, j].

Note: Here S(s, t) indicates the similarity score ignoring the end
gaps.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving similarity of sequences

Deriving optimal semi-global alignment between AAAC and
AGC by ignoring the end spaces at the beginning and end

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the best semi-global alignment

The maximum similarity scores over the rows (or columns)
basically gives the score of the best alignment. To recover the
alignment itself, we proceed just as in the previous algorithms, but
starting at (k,m) (or (m, k) for columns) where k is such that
S(s, t) = a[k ,m].

However, the initializations will be different based on the different
versions of the same problem as follows.

Where gaps are not charged Action
Beginning of first sequence Initialize first row with zeros
End of first sequence Look for maximum in last row
Beginning of second sequence Initialize first column with zeros
End of second sequence Look for maximum in last column

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

A local alignment between s and t is an alignment between a
substring of s and a substring of t.

To find out the highest scoring local alignments between two
sequences, we use an (m + 1)× (n + 1) array as used earlier for
obtaining the global alignment.

But here the interpretation of the array values is different. Each
entry (i , j) will hold the highest score of an alignment between a
suffix of s[1 . . . i] and a suffix of t[1 . . . j]. The first row and the
first column are initialized with zeros.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basic constructions

Following initialization, the array can be filled in the usual way,
with a[i , j] depending on the value of three previously computed
entries as shown below.

a[i , j] = max

a[i , j − 1] + g
a[i − 1, j − 1] + p(i , j)
a[i − 1, j] + g
0

For any entry (i , j), there is always the alignment between the
empty suffixes of s[1 . . . i] and t[1 . . . j], which has the score zero.
Therefore, the array will have non-negative entries only.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving similarity of sequences

Deriving optimal local alignment between the sequences
AGC and GCT

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Finding the best local alignment score

The following dynamic programming approach (known as
Smith-Waterman algorithm) can be used for the previous example.
Input: Sequences s and t.
Output: Similarity between s and t.

1: m← |s| // Length of s
2: n← |t| // Length of t
3: for i ← 0 to m do
4: a[i , 0]← 0 // Filling up the first column
5: end for
6: for j ← 0 to n do
7: a[0, j]← 0 // Filling up the first row
8: end for
9: for i ← 1 to m do

10: for j ← 1 to n do
11: a[i , j]← max(a[i − 1, j] + g , a[i − 1, j − 1] + p(i , j), a[i , j − 1] + g , 0)
12: end for
13: end for
14: return max∀m,n a[m, n]

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the optimal local alignment

The cell containing the best local alignment score (maximum
value) is used as a starting point to get the optimal local
alignment. The rest of the alignment is obtained by tracing back
into the matrix as done before. The algorithm stops if either we
have reached to an entry with the value zero or we have reached to
an entry with no arrow going out.

The optimal local alignment for the example shown earlier can be
derived using this algorithm as follows.

Step 1: Start from a[m = 2, n = 3] and align C with C.
Step 2: Move diagonally to a[m = 1, n = 2] and align G with G.
Step 3: Move diagonally to a[m = 0, n = 1] and stop.

Thus, the final local alignment is at GC.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Complexity analysis

Time complexity:
The algorithm for finding the best local alignment score consumes
time O(mn) and the algorithm for deriving the optimal local
alignment consumes O(m + n).

Space complexity:
For both the above cases, space complexity becomes O(mn).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basic Local Alignment Search Tool (BLAST)

BLAST algorithms are used to search databases. BLAST can
rapidly align and compare a query sequence with a database of
sequences. Some of the variants of BLAST are listed below.

BLASTn

BLASTp

BLASTx

tBLASTn

tBLASTx

BLAST increases the speed of alignment by decreasing the search
space (number of comparisons). Specifically, instead of comparing
every residue against each other, BLAST uses short word segments
to create alignment seeds. BLAST also calculates the statistical
significance for each sequence alignment result.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Basics

We are often required to align more than two sequences
simultaneously in the best possible way. This refers to the problem
of multiple sequence alignment.

Given a set of sequences over the same alphabet, a multiple
alignment is obtained by inserting gaps in these sequences such
that their sizes become the same. We generally place the extended
sequences in a vertical list so that characters or gaps in the
corresponding positions occupy the same column.

Such an example with protein sequences is shown below.

ADNMQPHLLL–

ADNMLR–LL–Y

ADNMK—-LLLY

–DNMPPVLHLY

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Scoring the alignment of multiple sequences

As because scoring a multiple alignment is more complex than its
pairwise counterpart, we therefore restrict ourselves to purely
additive functions here, i.e., the alignment score is the sum of
column scores.

We note the following two important requirements for deriving
such a score.

1 The function must be independent of the order of arguments.

2 The function should reward the presence of many equal or
strongly related characters and penalizes unrelated residues
and gaps.

We use the sum-of-pairs (SP) function for this purpose.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Scoring the alignment of multiple sequences

The SP function is defined as the sum of pairwise scores of all
pairs of symbols in the column.

For instance, consider the sixth column of the previously shown
alignment of four sequences. The similarity score for this column
comprising the character set {P, R, –, P} is given by

SP-score(P, R, –, P)

= S(P, R) + S(P, –) + S(P, P) + S(R, –) + S(R, P) + S(–, P),

where S(x , y) denotes the pairwise score for the pair of characters
x and y .

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Scoring the alignment of multiple sequences

To apply the SP-score, we need to define a value for S(–, –) which
was not required earlier in pairwise alignment (global, local or
semi-global). Conventionally, we take S(–, –) = 0.

Note that, only when S(–, –) = 0 we have the following interesting
relation.

SP-score(α) =
∑

i<jscore(αij),

where α is denoting the multiple alignment, and αij is the pairwise
alignment induced by α on the sequences si and sj .

This is true because it reflects two ways of doing the same thing.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Deriving the best multiple alignment

Suppose, for simplicity, that we have k sequences, all of the same
length n. We use a k-dimensional array a of length n + 1 in each
dimension to hold the optimal scores for multiple alignments of
prefixes of the sequences.

After initializing with a[0, . . . , 0]← 0, we fill in this entire array by
computing a[i]← maxb 6=0(a[i − b] + SP-score(Column(s, i , b))),
where b ranges over all nonzero binary vectors of k elements.
Here, Column(s, i , b) = (cj)1≤j≤k with cj = sj [ij], if bj = 1, and
cj = −, otherwise.

Note: The cell a[i1, . . . , ik] holds the score of the optimal
alignment involving s1[1 . . . i1], . . . , sk [1 . . . ik].

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Complexity analysis

Time complexity:
This algorithm works on every cell of the array a to compute the
values that consumes O(nk) time. Again, for each entry this
computation depends on 2k − 1 entries, thereby requiring O(2k)
time. Additionally, the algorithm uses SP-score for scoring the
alignments by computing pairwise alignments. This consumes
O(k2) time. Therefore, the total worst case complexity becomes
O(k22knk), where k is the number of sequences with length n.

Space complexity:
As we need to fill the entries of the matrix a, the space complexity
becomes O(nk).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Improving the time complexity

It is possible to improve the time complexity by using an efficient
heuristics. The heuristic is based on the relationship between a
multiple alignment and its projections on two-sequence arrays.

The outline of the method is as follows. We have k sequences of
length ni , for 1 ≤ i ≤ k, and we want to compute the optimal
alignments according to the SP-score. We will still use dynamic
programming, but now we do not want to treat all cells, rather we
will work on the cells that are relevant to optimal alignments, in
some sense.

In a preprocessing step, we create (and use) conditions that will
allow us to perform a test of relevance for arbitrary cells.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Pairwise projection of multiple alignments

Consider the following multiple sequence alignment.

ADNMQPHLLL–

ADNMLR–LL–Y

ADNMK—-LLLY

–DNMPPVLHLY

Suppose we take only the second and third one out of the above.

ADNMLR–LL–Y

ADNMK—-LLLY

By removing additional spaces, the induced pairwise alignment
(projection) is obtained as follows.

ADNMLRLL–Y

ADNMK–LLLY

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Relevance test

Theorem

A cell is relevant when each of its pairwise projections is part of an
optimal alignment of the two sequences corresponding to the
projection. Let α be an optimal alignment involving s1, . . . , sk . If
SP-score(α) ≥ L, then

score(αij) ≥ Lij ,

where Lij = L−
∑

x<y ,(x ,y) 6=(i ,j)(S(sx , sy)).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Relevance test

Proof.

The relation SP-score(α) ≥ L can be written as∑
x<y

(score(αxy)) ≥ L

⇒
∑

x<y ,(x ,y)6=(i ,j)

(score(αxy)) ≥ L− score(αij)

⇒
∑

x<y ,(x ,y)6=(i ,j)

(S(sx , sy)) ≥ L− score(αij)

⇒ score(αij) ≥ L−
∑

x<y ,(x ,y)6=(i ,j)

(S(sx , sy)).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Heuristic alignment based on the relevance test

Initially, we create a matrix c in which each entry (i , j) contains
the highest score of an alignment that includes the cut(i , j). A
pairwise alignment α contains cut(i , j) when α can be divided into
two subalignments, one aligning s[1 . . . i] with t[1 . . . j] and the
other aligning the rest of s with the rest of t. To obtain the cut
matrix c = a + b, we create a and b as follows

a[i , j] = S(s[1 . . . i], t[1 . . . j])

b[i , j] = S(s[i + 1 . . .m], t[j + 1 . . . n]).

We can identify the best alignments just by looking at c. We start
with the cell at (0, 0, . . . , 0), which is always relevant, and expand
its influence to dependent relevant cells. Each one of these will in
turn expand its influence, and so on, until we reach the final corner
cell at (n1, . . . , nk). Throughout this process, only relevant cells
are analyzed.

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline Sequence alignment Global alignment Semi-global alignment Local alignment Multiple alignment Hands-on

Hands-on

1 BLASTn (Nucleotide BLAST) the reference genome sequence
of SARS-CoV-2 using the NCBI database. BLAST is available
at: https://blast.ncbi.nlm.nih.gov/Blast.cgi

2 Download the following paper and do the following:
Li, H., Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics, 34(18), pp.3094-3100, 2018.

i) Get the implementation from:
https://github.com/lh3/minimap2

ii) Apply it on some supplementary available at:
https://academic.oup.com/bioinformatics/article/

34/18/3094/4994778
iii) Could you identify some limitations of this implementation?

How can you overcome that? Any suggestions?

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/lh3/minimap2
https://academic.oup.com/bioinformatics/article/34/18/3094/4994778
https://academic.oup.com/bioinformatics/article/34/18/3094/4994778

	Outline
	Sequence alignment
	Basics
	Importance
	Varieties of sequence alignment

	Global alignment
	Finding the best global alignment score
	Deriving the optimal global alignment
	Alignment with gap penalty functions
	Alignment using hidden Markov models

	Semi-global alignment
	Local alignment
	Finding the best local alignment score
	Deriving the optimal local alignment

	Multiple alignment
	Scoring the alignment of multiple sequences
	Deriving the best multiple alignment

	Hands-on

