Outline	Understanding the diseasome	Test case analysis	Towards personalized medicine	Hands-on

Computational Molecular Biology and Bioinformatics Disease Modelling

Malay Bhattacharyya

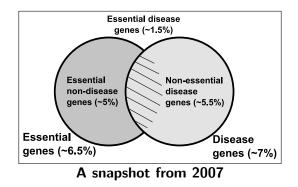
Assistant Professor

Machine Intelligence Unit Indian Statistical Institute, Kolkata January, 2022

・吊り ・ ヨト ・ ヨト

Outline	Understanding the diseasome	Test case analysis	Towards personalized medicine	Hands-on
•				

- Disease genes
- Hypotheses


2 Test case analysis

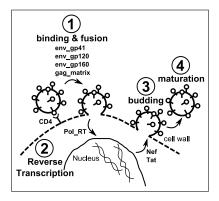
- A test case on AIDS
- A test case on alzheimer's disease

3 Towards personalized medicine

Currently, less than 10% of human genes are known to have association with specific diseases (Barabási et al., *Nat Rev Genet* 12, 2011).

Of these $\sim 20\%$ are known to be oncogenes (Cancer Genome Project, February 2014).

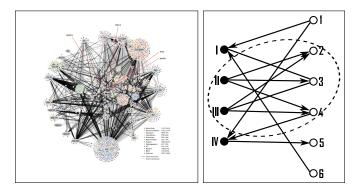
Outline	Understanding the diseasome	Test case analysis	Towards personalized medicine	Hands-on
0	○●	00000000		O
Hypot	heses			


Some interesting hypotheses applicable to disease networks are as follows.

- **Degree:** Disease biomolecules avoid hubs so finding hubs does not point to disease biomarkers.
- **Modularity:** The biomolecules specific to a disease form modules.
- **Sharing:** The diseases having common biomolecules show phenotypic similarity.
- **Closeness:** Causal pathways coincide with the connectors of known disease-specific subnetworks.

医子宫医子宫的

"The AIDS is a disease that is hard to talk about" - Bill Gates.



イロト イポト イヨト イヨト

 Outline
 Understanding the diseasome
 Test case analysis
 Towards personalized medicine
 Hands-on

 0
 0
 0
 0
 0
 0
 0

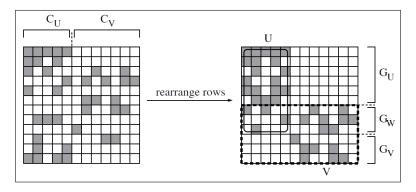
A network view of the viral-host interactions

The HIV-I human protein interaction dataset (Ptak et al., *AIDS Res Hum Retroviruses* 24, 2008).

・ 同 ト ・ ヨ ト ・ ヨ ト

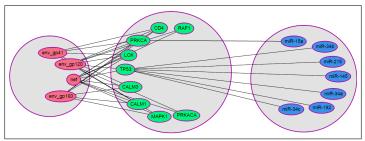
Outline Understanding the diseasome Test case analysis Towards personalized medicine Hands-on 00000000

Regulatory network analysis


DBClique

A DBClique is a fully connected subgraph $G' = (V'_1, V'_2, E') \subseteq G$ of a directed bipartite graph G such that either $i \in V'_1, j \in V'_2, \forall (i, j) \in E'$ or $i \in V'_2, j \in V'_1, \forall (i, j) \in E'$.

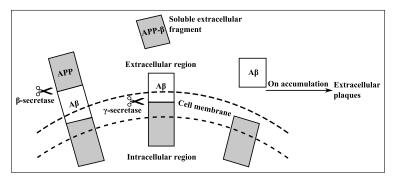
・ 同 ト ・ ヨ ト ・ ヨ ト


Directed bicliques can be obtained by rearranging the adjacency matrix of the regulatory network twice to search for ordinary bicliques with some additional constraints.

イロト イポト イヨト イヨト

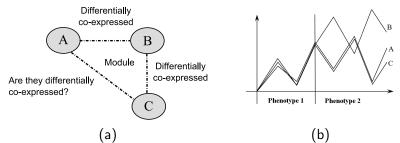
Outline 0	Understanding the diseasome	Test case analysis 0000●000	Towards personalized medicine	Hands-on O
Disea	se insights			

Directed bicliques can be further linked with other regulatory factors to explore the signalling gateway for the host system (Maulik et al., *Mol Biosyst* 7, 2011).



The propagation of HIV-I signal into human cells

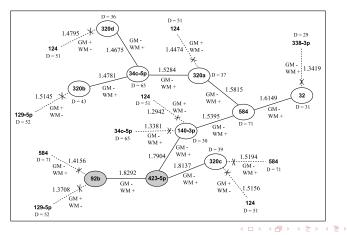
法国际 化菌素


"I haven't heard of anyone who's got better from Alzheimer's" - Terry Pratchett.

イロト イボト イヨト イヨト

Differential co-expression to module finding

(a) Possibility of the formation of differentially co-expressed module between the biomolecules A, B and C
(b) Differential co-expression patterns between A, B and C


- 4 同 ト - 4 目 ト

 Outline
 Understanding the diseasome
 Test case analysis
 Towards personalized medicine
 Hands-on

 o
 o
 o
 o
 o
 o

Differentially co-expressed switching tree

Differentially co-expressed switching tree provides a regulatory overview of the differential pattern (Bhattacharyya et al., *Mol Biosyst* 9, 2013).

Malay Bhattacharyya Computational Molecular Biology and Bioinformatics

Outline	Understanding the diseasome	Test case analysis	Towards personalized medicine	Hands-on
0		0000000	●0	O
Drugs	and biomarkers			

Drugs and biomarkers can be identified through network analyses.

A test case of cancer metastasis has been proposed pursuing the 'seed and soil' principle (Erler et al., *J Pathol* 220, 2009).

- Prepare integrative network models.
- Orrelate network dynamics and states to the phenotype and patient disease data.
- Identify potential multi-node signatures.

Outline	Understanding the diseasome	Test case analysis	Towards personalized medicine	Hands-on
0		00000000	○●	O
Drugs	and biomarkers			

More focus on aberrations and pathways has also been given recently to find drugs and biomarkers (Pe'er et al., *Cell* 144, 2011).

- Identify the genetic aberrations and the master regulators that drive proliferation, survival, metastasis, and drug resistance.
- Odel the adaptive/feedback mechanisms that thwart the efficacy of potent drugs.
- Predict additional target pathways for combinatorial drug treatment.

Outline 0	Understanding the diseasome	Test case analysis 00000000	Towards personalized medicine	Hands-on ●
Hands	5-on			

- Cancer can be subdivided into various subtypes. Do the following with any specific cancer that has subtypes.
 - Derive a weighted network between the cancer subtypes by taking data from the TCGA portal (https://portal.gdc.cancer.gov).
 - Assign weights to the node (cancer subtype) pairs based on the information that how much disease genes they share between each other.
 - Now study this network and find whether any interesting motif lies in this.
 - Also visualize the entire weighted network with a suitable tool such that the weights are reflected appropriately.

伺下 イヨト イヨト