
Lecture-1 : Introduction
ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Teaching Staff
❑ Lecturer : Vishal Karna

▪ Online office hours: Wednesday’s 6:20-7:00pm (after lecture hours)
▪ Students can request for additional 1-1 or group meeting
▪ For project discussion, additional office hours will be published

❑ Lecture Schedule :
▪ Each week Monday and Wednesday 5:00pm to 6:20pm

❑ Weekly Discussion Session :
▪ Each week Monday from 4:00pm to 4:50pm, TA and/or Instructor to conduct the discussion sessions
▪ Note : Instructor will be conducting some of the discussion session on final project which will be announced

on piazza

❑ Teaching and Support Staff :
▪ Zixiang Zhou, Teaching Assistant, email : ziz358@ucsd.edu
▪ Naman Sehgal, Teaching Assistant, email : nsehgal@ucsd.edu
▪ Brandon Saldanha, Teaching Assistant, email : bsaldanha@ucsd.edu
▪ Vijayalakshmi Swaminathan, Teaching Assistant, email : vswaminathan@ucsd.edu
▪ Shengfan Hu, Tutor, email : shh042@ucsd.edu
▪ TA online support and office hours and zoom links are posted on piazza :

• https://piazza.com/ucsd/winter2022/ece111/staff
• Students can request to TA for additional sessions to get support on homework and projects

2

mailto:ziz358@ucsd.edu
mailto:nsehgal@ucsd.edu
mailto:bsaldanha@ucsd.edu
mailto:vswaminathan@ucsd.edu
mailto:shh042@ucsd.edu
https://piazza.com/ucsd/winter2022/ece111/staff

Teaching Platforms And Resources
❑ Live streaming of lectures using Zoom Platform :

▪ Lectures will also be recorded, and links will be published to students on canvas
▪ Each week lecture online meetings are scheduled and published on class canvas :

• https://canvas.ucsd.edu/courses/33921/external_tools/628 (meeting password : galileo111)

❑ Canvas will be used to publish course material and resources :
▪ Lecture slides, Zoom meetings, homework, project, quiz, tools instructions, learning resources
▪ Canvas course webpage : https://canvas.ucsd.edu/courses/33921

❑ Piazza for Q&A and Announcements :
▪ All announcements on piazza such as quiz date, polls, project discussion sessions and more
▪ Using piazza students can ask any questions on lectures, homework, projects, quiz and more
▪ Piazza course webpage : https://piazza.com/ucsd/winter2022/ece111/info
▪ Piazza Q&A : https://piazza.com/class/kxt74scerj075n
▪ Piazza access code : ECE111WI22

❑ Gradescope to publish and upload homework and final project assignments :
▪ Homework’s and final project will be published on gradescope which is linked inside canvas
▪ Students to upload their homework and final project report on gradescope through canvas

3

https://canvas.ucsd.edu/courses/33921
https://piazza.com/ucsd/winter2022/ece111/info
https://piazza.com/class/kxt74scerj075n

Course Objectives
❑ Design synthesizable hardware models using SystemVerilog Language

▪ Design combinational and sequential logic circuits using SystemVeriog

▪ Hardware modeling styles such as gate level, behavioral, RTL, switch level

▪ Develop synchronous finite state machines, state diagrams and state tables

▪ Synthesis coding guidelines through examples

▪ Differences between Verilog and SystemVerilog language and its advantages

▪ Develop synthesizable SHA256 cryptographic and bitcoin hashing model as part of final project

❑ Learn how to use CAD Tools for hardware design and verification :
▪ Modelsim simulator to perform SystemVerilog design code simulation and debug waveform

▪ Altera Quartus Prime Lite to synthesis SystemVerilog design code and convert to gate level circuit

▪ Understand FPGA resource allocation, RTL and post mapping netlist and review timing reports

❑ FPGA and ASIC Concepts
▪ Understand FPGA architecture, application and how digital logic function is implemented inside FPGA

▪ ASIC and FPGA frontend and backend design flow

▪ Verification concepts including testbench and event driven and cycle accurate simulation

❑ Digital Design Timing Concepts
▪ Understand the fundamentals of digital design timing and synchronization techniques 4

Course Grading Policy (Tentative)
❑ Final Quiz : 20% of final grade (Note : There will be no other mid-term or final exam apart from 1 final Quiz)

▪ Final quiz will be conducted using canvas and zoom platform during one of the lecture hours

• Students will take the quiz online and it will be proctored by Instructor and TA’s.

• Students will be allowed to refer to lecture slides and it will be a 25 to 30 multiple choice and textbox-
based questions

▪ Quiz date will be reconfirmed, and Quiz outline will be published to all students on a later date

• Tentative date of Final quiz for now is February 28th, 2022. Around 2.30 hours will be provided to students
to finish the quiz. Students will be allowed to refer lecture slides during the quiz.

❑ Weekly Assignments : 45% of final grade

▪ Design hardware circuits using synthesizable RTL code using System-Verilog

▪ Synthesize design using Altera Quartus prime software and view circuit generated

▪ Simulate design using tesbench code and debug waveforms to ensure design code behavior

▪ Testbench will be provided to students for most assignments. Students can modify.

▪ For details on each assignment and deadline will be published canvas/gradescope each week

❑ Final project : 35% of final grade (It is a group project. Per group 1 or 2 or at max 3 students allowed)

▪ SHA-256 cryptographic and Bitcoin hashing RTL model development and optimization

▪ More information on the final project and separate project discussion sessions will be announced

▪ You can register yourself to a group on Canvas : https://canvas.ucsd.edu/courses/33921/groups#tab-10650 5

https://canvas.ucsd.edu/courses/33921/groups#tab-10650

ECE-111 Winter’22 Course Format and Schedule

6

Note : ECE-111 Course is Designed with Top Down Approach

** January 5 and March 2 are the two exceptions for weekly discussions which will falls
on Wednesday instead of official weekly discussion day for ECE-111 which is Monday

ECE-111 Winter’22 Course Format and Schedule

7
** January 5 and March 2 are the two exceptions for weekly discussions which will falls
on Wednesday instead of official weekly discussion day for ECE-111 which is Monday

References

RTL Modeling with SystemVerilog for Simulation and Synthesis: Using SystemVerilog for
ASIC and FPGA Design, 1st Edition
Author : Stuart Sutherland
ISBN-13: 978-1546776345
ISBN-10: 1546776346
Note : This book is not available in UCSD Library.
https://www.amazon.com/RTL-Modeling-SystemVerilog-Simulation-Synthesis-ebook/dp/B071GY6MND

Digital Design and Computer Architecture: ARM Edition 1st Edition
Author : Sarah Harris and David Money Harris
ISBN-13: 978-0128000564
ISBN-10: 9780128000564

IEEE SystemVerilog, LRM https://standards.ieee.org/standard/1800-2012.html

Accellera https://www.accellera.org/downloads/standards 8

Primary
Textbook

Note : Both these books are great learning resources however it is not mandatory to purchase
the book for passing ECE-111 class. Lecture slides will have enough material which is required to
complete homework assignments, final project and prepare for the final quiz !

https://standards.ieee.org/standard/1800-2012.html
https://www.accellera.org/downloads/standards

Software
❑ Intel Altera Quartus Prime Lite 18.1 Edition (19.1, 20.1 Editions can also be used)

▪ Includes both RTL code synthesis, implementation and simulator tools
▪ ModelSim-Altera FPGA edition simulator is part of the installation
▪ FPGA Target Device for Synthesis : Arria-II

❑ Quartus Prime Lite download and installation instructions published on Canvas in
files→tool_docs: https://canvas.ucsd.edu/courses/33921/files/folder/tools_docs
▪ For Windows OS machines refer to document name mentioned below :

• quartus_modelsim_instructions_windows.pdf
▪ For Mac OS machines refer to document mentioned below :

• guide_for_accessing_quartus_on_mac.pdf
▪ Alternatively, refer to Amazon Web Services (AWS) usage for Mac OS and Windows machines refer

to document mentioned below :
• access_quartus_using_AWS.pdf

❑ Refer to these videos listed on Canvas under Media Library :
https://canvas.ucsd.edu/courses/33921/external_tools/82
▪ How to create project and synthesize SystemVerilog code using use Quartus Prime Lite

• https://youtu.be/iLbmSTG7bpA
▪ How to invoke Modelsim-Altera from Quartus Primte-Lite and simulate SystemVerilog code

• https://youtu.be/BcvclrqZ2fc

9

https://canvas.ucsd.edu/courses/33921/files/folder/tools_docs
https://canvas.ucsd.edu/courses/33921/external_tools/82
https://youtu.be/iLbmSTG7bpA
https://youtu.be/BcvclrqZ2fc

Important Note : Only for MAC OS based Machine Users
❑ Intel Altera Quartus Prime Lite only supports Windows and Linux OS

▪ MAC OS is not supported by Quartus Prime Lite!
▪ EBU1-4309 Lab has windows machine with Quartus prime-lite installed
▪ Due to COVID-19 situation and advisory all lab rooms will be closed
▪ UCSD IT, is working on different solutions to make this software available remotely for MAC machine

users.

❑ There are multiple options for MAC OS users to access Quartus Prime-Lite
▪ Option 1 : Using remote desktop login to UCSD server and access linux version of Quartus
▪ Option 2 : Windows10 dual boot setup on MAC machine using dual boot camp free software and

install Quartus windows version. Windows10 student edition is free for UCSD students !
▪ Option 3 : Using VirtualBox free software on MAC machine and iWindow10
▪ Option 4 : Using Amazon AWS and run Quartus Prime-Lite directly on cloud

❑ Recommendations :
▪ Option 1 : Second best in terms of performance, however linux version currently is available for 17.1

Quartus lite version. Not widely used and tested.
▪ Option 2 : Preferred and suggested for best software performance. Requires at least 60GB of free

space on machine and backuping of current data onto an external drive.
▪ Option 3 : Slowest in terms of performance and this should be the very last resort.
▪ Option 4 : Login to Amazon AWS webservice and run Quartus prime on Cloud. UCSD IT is working on

this and steps are not available yet. And software performance not known yet.
10

Software Usage And Support
❑ To demonstrate Quartus Altera software usage (both for Windows & MAC Users)

▪ Teaching staff will conduct software setup and usage session on January 5th from 4 PM to 5 PM
PST.

▪ Zoom links for these software setup have been announced on Piazza and scheduled in Canvas

▪ Both these discussion sessions will be recorded and uploaded to Canvas

❑ MAC machine users should contact Teaching Assistant Zixiang Zhou and Brandon
Saldhana for questions and any support required during installation

11

❑ DFT Design For Testability

❑ OOP Object Oriented Programming

❑ HW Hardware

❑ SW Software

❑ NBA Non Blocking Assignment

❑ LHS Left Hand Side

❑ RHS Right Hand Side

❑ GPU Graphics Processing Unit

❑ DPU Data Processing Unit

❑ CPU Central Processing Unit

12

❑ HDL Hardware Description Language

❑ HVL Hardware Verification Language

❑ ASIC Application Specific Integration Circuit

❑ FPGA Field Programmable Gate Array

❑ SoC System-On-Chip

❑ IP Intellectual Property

❑ AMS Analog Mixed Signal

❑ PRD Product Requirement Document

❑ DUT Design Under Test

❑ DUV Design Under Verification

❑ FSM Finite State Machine

❑ LRM Language Reference Manual

❑ EDA Electronic Design Automation

❑ CAD Compute Aided Design

❑ VHSIC Very High Speed Integrated Circuit

❑ PCB Printed Circuit Board

Acronyms

Lecture-1 Outline
❑ Introduction to below mentioned terminology :

▪ SoC, FPGA, ASIC, HDL, HVL

❑ Full custom chip designing process and challenges, Problem Statement

❑ Role of hardware description language and why it is required ?

❑ Why learn SystemVerilog over other hardware description languages,

❑ Evolution of SystemVerilog and differences compared to VHDL

❑ SystemVerilog Language Capabilities and Syntax Summary

Note : Applications of FPGA will be covered during Weekly Discussion Session On :

▪ January 10th from 4 PM to 4.50 PM

13

What is an SoC ?

14

❑ SoC (System-On-Chip) is a collection of heterogenous components connected appropriately to perform
specific function for end user application
▪ Example : SoC inside Mobile Phones, usually holds many computer components such as the CPU, GPU, DSP,

WIFI, Memory, input/output (I/O) ports, SSD storage on a single die (silicon substrate) !

❑ Benefits of SoC :
▪ Increase Performance
▪ Low Power Consumption
▪ Reduced Size
▪ Reduced Overall System Cost

❑ SoC’s are Everywhere !
▪ Inside Smartphones :

❖ Qualcomm Snapdragon 845
❖ Apple A12 Bionic

▪ Inside Gaming Box
❖ Nvidia Tegra X1

▪ Inside Tablets
❖ Samsung Exynos 9611

▪ Inside Mesh WIFI Routers
❖ Qualcomm IPQ4019

SoC

FPGA and ASIC

15

❑ FPGA stands for Field Programmable Gate Arrays – Re-configurable and programmable hardware

❑ ASIC stands for Application Specific Integrated Circuits – Fixed function hardware

FPGA based Hardware-Software Prototyping Board Samsung Exynos Mobile Processor (ASIC)

FPGA can be programmed multiple times to implement
different hardware designs such as GPU, CPU, Mobile
Processor, etc. Runs slower than ASIC based design !

ASIC design which acts as a Mobile Processor SOC and it cannot
be re-programed to change its function to something
other than mobile processor. Runs faster than FPGA !

Circuit
generated

from
SystemVerilog

Code

Full Custom and Manual Chip Designing Process

16

Does this
work
as a

Multiplier ?

NoUpdate Schematics

Does this work
as a Multiplier

and Meet
requirements ?

No

Update Layout

Multiplier Chip

Hardware Design
Requirement &

Specification
(Design Multiplier)

Step-1 : Draw Logic Circuit
Schematics for Multiplier

Gate level Schematics (Concept Design)

Transistor level Schematics

Circuit

Simulation

Step-2 : Pre-Layout Circuit Simulation Circuit Simulation Results (Waveform)

Step-3: Draw
Transistor

Level Layout

Yes

Final Transistor Level Custom Layout
(Actual Design)

Post
Layout

Simulation

Step-4: Post-Layout Simulation

Characterization Results (Waveforms)

Step-5 : Send Layout to
Foundry for Chip Fabrication

Yes

Chip Fabrication Process

Problem Statement

17

❑Modern digital systems and designs are highly complex and made of billions of transistors !
▪ Not feasible for human’s to manually design such multi-million gate level circuits and its is transistor

level layouts – Complexity and Size

▪ There is a need for an efficient digital design methodology to *automatically* generate gate level
circuits and transistor level layouts for developing such large systems – Efficiency and Scalability

For example, Qualcomm Snapdragon 845 SoC has around 5.3 billion transistors !

Year 2017

Year 2020

2.8x number of transistors
increased in <3 years

Full Custom and Manual Chip Designing Process Limitations
❑ Can full custom and manual chip designing process address these requirements ?

▪ Shorter time to Market (Productivity and Efficiency) :
• Is it feasible to manually design large size chips which have multi-billion transistors with very high complexity

within reasonable amount of time ?
• Is it feasible to verify large size designs using circuit simulation in reasonable amount of time ?

▪ Quality (Verification Completeness and Efficiency) :
• Can verification using circuit simulation handle extremely large set of usecases and millions of input stimulus

combinations to identify bugs prior to chip fabrication ?
▪ Design Re-use (Scalability) :

• Can design blocks within a Chip easily be re-used with minor changes in next generation Chip ?

❑ Solutions
▪ Higher Level of Abstraction to describe complex logic circuit behavior

• Invent of Hardware Description Languages (Verilog, VHDL, SystemVerilog)
▪ Re-use Design Methodology

• Invent of modern ASIC block-to-top design methodology
▪ Efficient and Effective Verification Methodology

• Invent of Constraint Random, Coverage driven and Object oriented base modern verification methodology
▪ CAD Automation

• Invent of Logic Synthesis and Physical Synthesis tools :
o to convert hardware description language-based design to logic gates and then to transistor level design

• Invent of Simulator for Verification :
o Verify designs that are developed using Hardware Description Languages prior to fabrication process

18

Why Hardware Description Language ?

19

❑ Hardware description languages such as SystemVerilog, Verilog, VHDL allows digital design engineers :

▪ To concisely express complex *digital logic* circuit behavior and hardware algorithms using constructs which are
very close to natural programming languages such as ‘C’

▪ To design large scale digital systems without dealing with the complexity of gate and transistor level implementation

❑ Computer Aided Design (CAD) tools provides a software platform to virtualize and mimic real hardware before the
actual chip is fabricated

▪ Using logic simulator, engineers can perform simulation on SystemVerilog code to test circuit behavior on computer
before actual hardware (chip) is manufactured

▪ Using synthesis tool, a SystemVerilog program can be automatically converted to gate-level circuit and then to
transistor level layout

▪ Synthesis tools takes away the burden from the design engineer the complexity of hardware implementation
using logic gates and transistors

Logic

Synthesis

Physical

Synthesis

Gate Level Circuit Transistor Level Layout

ASIC

Waveform to Virtually
Confirm Hardware Design

behavior before
manufacturing

Simulator

System Verilog Digital Design
& Testbench
Code

SystemVerilog HDL Code to Model Digital Hardware Design

Design Spec

HDL Code

To

Modern Hardware Design Languages

❑ There are two major Hardware Design Languages :
▪ VHDL (Very High Speed Integrated Circuit Hardware Description Language)

▪ SystemVerilog (extension of Verilog)

20

VHDL
❑ VHDL is more verbose language and it is also has a

non-C like syntax (More lines of code)

❑ It is a strongly typed language
▪ Each data type (integer, character, or etc.) has

been predefined by the language itself.
▪ All values or variables defined in the code

must be described by one of the data types

❑ Advance OOP based verification constructs are
not supported !

SystemVerilog
❑ SystemVerilog is more compact language and it is

more like C language (lesser lines of code) with
lower level of implementation

❑ It is not a strongly typed language
▪ Supports user defined data types

❑ It is a unified language for design and verification
▪ Advance OOP based verification constructs

are supported ! – Enables scalability and re-
used of test code across designs

❑ SystemVerilog covers best features of VHDL and
Verilog hardware description languages

VHDL and SystemVerilog Example Code

21

SystemVerilog code for a 4-bit unsigned down
counter with synchronous set

VHDL code for a 4-bit unsigned down counter
with synchronous set

module counter (
input logic clock, S;
output logic [3:0] Q

);
logic [3:0] tmp;
always@(posedge clock)
begin

if (S)
tmp = 4'b1111;

else (S)
tmp = tmp – 1;

end
assign Q = tmp;

end
endmodule

Concise Representation
of Hardware Design

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity counter is
port(clock, S : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counter;
architecture behavioral of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (clock)
begin

if (clock'event and clock='1') then
if (S='1') then
tmp <= "1111";

else
tmp <= tmp - 1;

end if;
end if;

end process;
Q <= tmp;

end behavioral;

Verbose Representation
of Hardware Design

SystemVerilog Evolution

22

Gateway Design
Automation
developed a
logic simulator,
Verilog-XL

1983-1985

SystemVerilog-2012
revised standard published
IEEE Standard 1800-2012

2013

1989-1991

Cadence acquires Gateway,
puts Verilog to public domain (OVI)
OVI & VHDL international merges,
Accellera is born and maintains
Verilog language

Verilog HDL became
IEEE 1364-1995 standard

1995

2001

Revised version published,
IEEE1364-2001 standard

Clarifications published with
Verilog-AMS**, IEEE standard 1364-2005.
Accellera developed SystemVerilog
extending Verilog, published
IEEE standard (1800-2005)

2005

2009

Verilog and SystemVerilog merged,
IEEE standard 1800-2009

** Note :
❖ Verilog-AMS was developed to describe Analog logic of a System and verify it along

with digital logic prior to fabrication of a chip
❖ Circuit described in Verilog-AMS cannot be converted to transistor layout using

automation such as physical synthesis

ASIC
Design

FPGA
Design

Why learn SystemVerilog Hardware Description Language ?

23

❑ Both FPGA and ASIC based Hardware Solutions are designed using SystemVerilog

❑Most of the modern System-On-Chip and hardware designs are built using SystemVerilog

❑Most hardware engineering jobs requires SystemVerilog based design knowledge

GPUCPUMobile Phone SOC

Why SystemVerilog over other Hardware Programming Languages ?

24

❑ SystemVerilog is a unified language for both design and verification !
▪ SystemVerilog is both HDL and HVL. Seamless data flow from testbench world to design world !

▪ Design described using synthesizable constructs. More concise representation of design compared to VHDL

▪ Re-usable, scalable, constraint and coverage driven verification environment using C++ like constructs (not
supported in VHDL)

▪ Advance methodologies such as UVM, VMM for verification and enables hardware acceleration

❑ Can interface with C and System-C languages.

❑ Provides extensions to create Analog Mixed Signal Models (Verilog AMS)

Digital Design
(RTL Model)

In
te

rf
ac

e

In
te

rf
ac

e

Scoreboard / Checker

Driver

Monitor

se
q

u
en

ce
r

Master Agent

Driver

Monitor

se
q

u
en

ce
r

Slave Agent

SVA SVA
resetclk

System Level Coverage Model

sequence
sequence

sequence

Application Testcase

sequence
sequence

sequence

Testbench Environment

Top Testbench

Transaction Level Communication

HDL

HVL ❑ HDL is used for developing
design code (RTL)

▪ HDL code is synthesizable
and is part of final product

▪ Non-OOP based constructs

❑ HVL is used for developing
testbench to stimulate and
verify design
▪ HVL code is non-

synthesizable and is not
part of final product

▪ OOP based constructsTraffic Generator

Stimulus

Traditional SystemVerilog Testbench
❑ Traditional SystemVerilog Testbench

▪ No usage of SystemVerilog advance OOP constructs. No UVM or VMM based environment

▪ No usage of coverage and constraints.

▪ One or more initial blocks running concurrently to apply stimulus to input signals

▪ Monitor input and output signals in initial block with self directed checking mechanism

25

Digital Design
Under Test

SystemVerilog HDL

Initial
block-1

Initial
block-N

Initial block-M
(Compare Input &

output Data)

Generate Waveform /
timing diagram

Generate stimulus
to drive Input signals

Monitor input and output signals.
Simple checker with pass/fail criteria

SystemVerilog Top Testbench Module (no ports)

resetClock

SVA

SVA

Visualize & debug
Waveform using
waveform viewer

ECE-111 course assignments to
use this style of simple
testbench to simulate RTL code

Observed
Input data

Stimulus

Stimulus

Observed
Output data

SystemVerilog Unified Language !

26

Models

(Concept Design)

❑ Transaction and Register accurate models of design and SOC for architecture
exploration and software validation. (Non-synthesizable code)

❑ Cycle accurate reference models which can be used during architecture
exploration and during verification to speed up simulations and also as a checker

Design

(Actual Design)

❑ Synthesizable RTL and Gate level model of a design

Verification
(Testing of Actual

Design)

❑ Testbench code for verification using constraints, classes and other object oriented
programming constructs provided in SystemVerilog LRM. (Non-synthesizable)

❑ Functional coverage models (Non-synthesizable)

❑ Assertion checkers (Non-synthesizable)

System Verilog and Verilog Constructs

27

EC
E-1

1
1

 C
o

u
rse Em

p
h

asis
Credit : Stuart Sutherland

HDL

HVL

Non-
Synthesizable
Constructs

Synthesizable
Constructs

Honor Code

❑ The UCSD Student Conduct Code
https://students.ucsd.edu/sponsor/student-conduct/regulations/22.00.html

❑ Violations will be reported to the Student Conduct Office (as well as failing the class)

28

https://students.ucsd.edu/sponsor/student-conduct/regulations/22.00.html

