. 0100 :
o 0 QQ’Z

Lecture-1 : Introduction
ECE-111 Advanced Digital Design Project

Vishal Karna UC San Diego
Winter 2022 Fectical and Computer Engineeting

Teaching Staff

 Lecturer : Vishal Karna
= Online office hours: Wednesday’s 6:20-7:00pm (after lecture hours)
= Students can request for additional 1-1 or group meeting
= For project discussion, additional office hours will be published

O Lecture Schedule :
= Each week Monday and Wednesday 5:00pm to 6:20pm

J Weekly Discussion Session :
= Each week Monday from 4:00pm to 4:50pm, TA and/or Instructor to conduct the discussion sessions

" Note : Instructor will be conducting some of the discussion session on final project which will be announced
on piazza

d Teaching and Support Staff :
= Zixiang Zhou, Teaching Assistant, email : ziz358 @ucsd.edu
= Naman Sehgal, Teaching Assistant, email : nsehgal@ucsd.edu
= Brandon Saldanha, Teaching Assistant, email : bsaldanha@ucsd.edu
= Vijayalakshmi Swaminathan, Teaching Assistant, email : vswaminathan@ucsd.edu
= Shengfan Hu, Tutor, email : shh042 @ucsd.edu
= TA online support and office hours and zoom links are posted on piazza :
* https://piazza.com/ucsd/winter2022/ecel11/staff
» Students can request to TA for additional sessions to get support on homework and projects

mailto:ziz358@ucsd.edu
mailto:nsehgal@ucsd.edu
mailto:bsaldanha@ucsd.edu
mailto:vswaminathan@ucsd.edu
mailto:shh042@ucsd.edu
https://piazza.com/ucsd/winter2022/ece111/staff

Teaching Platforms And Resources

 Live streaming of lectures using Zoom Platform :
= Lectures will also be recorded, and links will be published to students on canvas
= Each week lecture online meetings are scheduled and published on class canvas :
* https://canvas.ucsd.edu/courses/33921/external_tools/628 (meeting password : galileo111)

(d Canvas will be used to publish course material and resources :

= Lecture slides, Zoom meetings, homework, project, quiz, tools instructions, learning resources
= Canvas course webpage : https://canvas.ucsd.edu/courses/33921

 Piazza for Q&A and Announcements :
= All announcements on piazza such as quiz date, polls, project discussion sessions and more
= Using piazza students can ask any questions on lectures, homework, projects, quiz and more
= Pjazza course webpage : https://piazza.com/ucsd/winter2022/ecell11/info
" Piazza Q&A : https://piazza.com/class/kxt74scerj075n
" Piazza access code : ECE111WI22

J Gradescope to publish and upload homework and final project assignments :
= Homework’s and final project will be published on gradescope which is linked inside canvas
= Students to upload their homework and final project report on gradescope through canvas

https://canvas.ucsd.edu/courses/33921
https://piazza.com/ucsd/winter2022/ece111/info
https://piazza.com/class/kxt74scerj075n

Course Objectives

J Design synthesizable hardware models using SystemVerilog Language
= Design combinational and sequential logic circuits using SystemVeriog
= Hardware modeling styles such as gate level, behavioral, RTL, switch level
Develop synchronous finite state machines, state diagrams and state tables
Synthesis coding guidelines through examples
Differences between Verilog and SystemVerilog language and its advantages
= Develop synthesizable SHA256 cryptographic and bitcoin hashing model as part of final project

[Learn how to use CAD Tools for hardware design and verification :
= Modelsim simulator to perform SystemVerilog design code simulation and debug waveform
= Altera Quartus Prime Lite to synthesis SystemVerilog design code and convert to gate level circuit
* Understand FPGA resource allocation, RTL and post mapping netlist and review timing reports

1 FPGA and ASIC Concepts
» Understand FPGA architecture, application and how digital logic function is implemented inside FPGA
= ASIC and FPGA frontend and backend design flow
= Verification concepts including testbench and event driven and cycle accurate simulation

J Digital Design Timing Concepts
* Understand the fundamentals of digital design timing and synchronization techniques

Course Grading Policy (Tentative)

O Final Quiz : 20% of final grade (Note : There will be no other mid-term or final exam apart from 1 final Quiz)
* Final quiz will be conducted using canvas and zoom platform during one of the lecture hours
* Students will take the quiz online and it will be proctored by Instructor and TA’s.
e Students will be allowed to refer to lecture slides and it will be a 25 to 30 multiple choice and textbox-

based questions
= Quiz date will be reconfirmed, and Quiz outline will be published to all students on a later date

 Tentative date of Final quiz for now is February 28, 2022. Around 2.30 hours will be provided to students
to finish the quiz. Students will be allowed to refer lecture slides during the quiz.

d Weekly Assignments : 45% of final grade
= Design hardware circuits using synthesizable RTL code using System-Verilog
Synthesize design using Altera Quartus prime software and view circuit generated
Simulate design using tesbench code and debug waveforms to ensure design code behavior
Testbench will be provided to students for most assignments. Students can modify.
For details on each assignment and deadline will be published canvas/gradescope each week

[Final project : 35% of final grade (It is a group project. Per group 1 or 2 or at max 3 students allowed)
= SHA-256 cryptographic and Bitcoin hashing RTL model development and optimization
= More information on the final project and separate project discussion sessions will be announced
= You can register yourself to a group on Canvas : https://canvas.ucsd.edu/courses/33921/groups#tab-10650

https://canvas.ucsd.edu/courses/33921/groups#tab-10650

ECE-111 Winter’22 Course Format and Schedule

Note : ECE-111 Course is Designed with Top Down Approach

Lecture and Discussion Agenda

Assignment Description

Assignment Due Date

January 3 (Mon) 5PMto 6.20 PM Lecture-1 Introduction to ECE-111
January 5(Wed) |5PMto620PM |Lecture-2 ASIC, FPGA, Logic Synthesis
Fundamentals
. . . Software Installation, Usage
January 5 (Wed) 4PMto 5 PM Weekly Discussion and Project Creation Overview
January 10 (Mon) 4 PMto 5 PM Weekly Discussion |Applications of FPGA
January 10 (Mon) 5 PM to 6.20 PM Lecture-3 SystemVerilog Modeling Homework-1 ;. Synthesize Uit 2z i F
v) i Abstraction MUX, FPGA Resource Usage
January 12 (Wed) |5 PMto 6.20 PM Lecture-4 Anatomy of SystemVerilog Analysis, 4-bit ALU
January 17 (Mon) Martin Luther King, Jr. Holiday (No Lecture)
g:.;tt?r:r:‘l\zr:;gs gat:r:;r:tes, Homework.-2 : Behavioral, 1/24/2022, 11.59 PM
January 19 (Wed) 5PMto 6.20 PM Lecture-5 g o DataFlow and Gatelevel
Statement and Conditional Model of a decoder
Operator, Case Statements
January 24 (Mon) |4 PMto 5 PM Weekly Discussion | CVerview of SystemVerilog

Operators

January 24 and 26

5PMto 6.20 PM

Lecture-6, 7

Blocking and Non-Blocking

Homework-3 : Johnson
Counter, Universal Shift

113112022, 11.59 PM

(Mon,Wed) Assignment statements R el H ol hitcn

January 31 and Homework-4 : LFSR, 2/712022, 11.59 PM
February 2 5PMto 6.20 PM Lecture-8, 9 Procedural Blocks SECDED Error Correction

(Mon,Wed) and Detection

January 31 (Mon)

4 PMto 5 PM

Weekly Discussion

Testbench Fundamentals

** January 5 and March 2 are the two exceptions for weekly discussions which will falls
on Wednesday instead of official weekly discussion day for ECE-111 which is Monday

ECE-111 Winter’22 Course Format and Schedule

Lecture and Discussion Agenda

Assignment Description

Assignment Due Date

February 7 and 9
(Mon,Wed)

5PMto 6.20 PM

Lecture-9, 10

RTL Programming Statements

Homework-5 : Carry Look
Ahead Adder, Clock Divider,
gray to binary converter

214/2022,11.59 PM

February 7 (Mon)

4PMto 5 PM

Final Project
Discussion

SHA256 Concepts

February 14 and 16
(Mon,Wed)

5 PMto 6.20 PM

Lecture-11, 12

Finite State Machines

Homework-6 : Vending State
Machine, Integer Multiplier
(or Booth Multiplier)

2/22/2022,11.59 PM

Homework-7 : UART
Transmitter-Receiver
System with Parity Checker

3/1/2022, 11.50 PM

Homework-8 : Handshake
Synchronizer with Memory
Model

3/6/2022, 11.59 PM

February 14 (Mon)

5PMto 6.20 PM

Final Project
Discussion

Part-1 SHA256 Algorithm

Final Project Part-1 :
SHA256

3/18/2022, 11.59 PM

February 21 (Mon)

President's Day, Holiday (No

Lecture)

February 23 (Wed)

5PMto 6.20 PM

Final Project
Discussion

Part-2 Bitcoin Model

Final Project Part-2 : Bitcoin

3/18/2022, 11.59 PM

February 28 (Mon)

5PMto 7.30 PM

Final Quiz

Final Quiz

Quiz Results will be
published by 3/7/2022

March 2 (Wed)**

4PMto 5 PM

Final Project
Discussion

SHA and Bitcoin Optimization

March 2 (Wed)

5PMto 6.20 PM

Lecture-13

Memory Modeling, Unpacked
and Packed Arrays

March 7 and 9 (Mon,
Wed)

5PMto 6.20 PM

Lecture-14, 15

Timing and Synchronization

Homework-9 :
Asynchronous FIFO
(optional)

** January 5 and March 2 are the two exceptions for weekly discussions which will falls
on Wednesday instead of official weekly discussion day for ECE-111 which is Monday

Not Applicable since itis
an optional assignment
for learning purpose

RTL Modeling with

SystemVerilog

for Simulation and Synthesis

sing SystemVerilog for ASIC and FPGA design

I P
oozl %

Stuart Sutherland

Digital Design and

Computer Architecture
ARM Edition

IEEE SystemVerilog, LRM

Accellera

References

RTL Modeling with SystemVerilog for Simulation and Synthesis: Using SystemVerilog for
ASIC and FPGA Design, 1st Edition
Author : Stuart Sutherland .
ISBN-13: 978-1546776345 Primary

ISBN-10: 1546776346 Textbook

Note : This book is not available in UCSD Library.
https://www.amazon.com/RTL-Modeling-SystemVerilog-Simulation-Synthesis-ebook/dp/B071GY6 MND

Digital Design and Computer Architecture: ARM Edition 1st Edition
Author : Sarah Harris and David Money Harris

ISBN-13: 978-0128000564

ISBN-10: 9780128000564

Note : Both these books are great learning resources however it is not mandatory to purchase
the book for passing ECE-111 class. Lecture slides will have enough material which is required to
complete homework assignments, final project and prepare for the final quiz !

https://standards.ieee.org/standard/1800-2012.html

https://www.accellera.org/downloads/standards .

https://standards.ieee.org/standard/1800-2012.html
https://www.accellera.org/downloads/standards

Software

 Intel Altera Quartus Prime Lite 18.1 Edition (19.1, 20.1 Editions can also be used)
® |ncludes both RTL code synthesis, implementation and simulator tools
= ModelSim-Altera FPGA edition simulator is part of the installation
= FPGA Target Device for Synthesis : Arria-Il

O Quartus Prime Lite download and installation instructions published on Canvas in
files>tool_docs: https://canvas.ucsd.edu/courses/33921/files/folder/tools docs

= For Windows OS machines refer to document name mentioned below :
e quartus_modelsim_instructions_windows.pdf

= For Mac OS machines refer to document mentioned below :
* guide_for_accessing_quartus_on_mac.pdf

= Alternatively, refer to Amazon Web Services (AWS) usage for Mac OS and Windows machines refer
to document mentioned below :

e access_quartus_using_ AWS.pdf

 Refer to these videos listed on Canvas under Media Library :
https://canvas.ucsd.edu/courses/33921/external tools/82

= How to create project and synthesize SystemVerilog code using use Quartus Prime Lite
e https://youtu.be/iLbmSTG7bpA

= How to invoke Modelsim-Altera from Quartus Primte-Lite and simulate SystemVerilog code
* https://youtu.be/BcvclrqZ2fc

https://canvas.ucsd.edu/courses/33921/files/folder/tools_docs
https://canvas.ucsd.edu/courses/33921/external_tools/82
https://youtu.be/iLbmSTG7bpA
https://youtu.be/BcvclrqZ2fc

Important Note : Only for MAC OS based Machine Users

 Intel Altera Quartus Prime Lite only supports Windows and Linux OS

MAC OS is not supported by Quartus Prime Lite!
EBU1-4309 Lab has windows machine with Quartus prime-lite installed
Due to COVID-19 situation and advisory all lab rooms will be closed

UCSD IT, is working on different solutions to make this software available remotely for MAC machine
users.

(d There are multiple options for MAC OS users to access Quartus Prime-Lite

Option 1 : Using remote desktop login to UCSD server and access linux version of Quartus

Option 2 : Windows10 dual boot setup on MAC machine using dual boot camp free software and
install Quartus windows version. Windows10 student edition is free for UCSD students !

Option 3 : Using VirtualBox free software on MAC machine and iWindow10
Option 4 : Using Amazon AWS and run Quartus Prime-Lite directly on cloud

(J Recommendations :

Option 1 : Second best in terms of performance, however linux version currently is available for 17.1
Quartus lite version. Not widely used and tested.

Option 2 : Preferred and suggested for best software performance. Requires at least 60GB of free
space on machine and backuping of current data onto an external drive.

Option 3 : Slowest in terms of performance and this should be the very last resort.

Option 4 : Login to Amazon AWS webservice and run Quartus prime on Cloud. UCSD IT is working on
this and steps are not available yet. And software performance not known yet.

Software Usage And Support

(J To demonstrate Quartus Altera software usage (both for Windows & MAC Users)

» Teaching staff will conduct software setup and usage session on January 5" from 4 PM to 5 PM
PST.

= Zoom links for these software setup have been announced on Piazza and scheduled in Canvas
= Both these discussion sessions will be recorded and uploaded to Canvas

(d MAC machine users should contact Teaching Assistant Zixiang Zhou and Brandon
Saldhana for questions and any support required during installation

O HDL
O HVL
O ASIC
O FPGA
0 SoC
a1Ip
0 AMS
O PRD
O DUT
O DUV
O FSM
O LRM
O EDA
O CAD

O VHSIC

O PCB

Hardware Description Language

Hardware Verification Language

Application Specific Integration Circuit

Field Programmable Gate Array
System-On-Chip

Intellectual Property

Analog Mixed Signal

Product Requirement Document
Design Under Test

Design Under Verification

Finite State Machine

Language Reference Manual
Electronic Design Automation
Compute Aided Design

Very High Speed Integrated Circuit
Printed Circuit Board

Acronyms

O DFT
O oop
d HW
d sw
(1 NBA
O LHS
O RHS
O GPU
O DPU
O CPU

Design For Testability

Object Oriented Programming
Hardware

Software

Non Blocking Assignment

Left Hand Side

Right Hand Side

Graphics Processing Unit

Data Processing Unit

Central Processing Unit

12

Lecture-1 Outline
1 Introduction to below mentioned terminology :
" SoC, FPGA, ASIC, HDL, HVL
O Full custom chip designing process and challenges, Problem Statement
(1 Role of hardware description language and why it is required ?
1 Why learn SystemVerilog over other hardware description languages,
1 Evolution of SystemVerilog and differences compared to VHDL

J SystemVerilog Language Capabilities and Syntax Summary

Note : Applications of FPGA will be covered during Weekly Discussion Session On :
= January 10" from 4 PM to 4.50 PM

What is an SoC ?

[SoC (System-On-Chip) is a collection of heterogenous components connected appropriately to perform
specific function for end user application

= Example : SoC inside Mobile Phones, usually holds many computer components such as the CPU, GPU, DSP,
WIFI, Memory, input/output (I/0) ports, SSD storage on a single die (silicon substrate) !

720p capture
and playback

] Benefits of SoC :
" Increase Performance
= Low Power Consumption
= Reduced Size
= Reduced Overall System Cost

aanaa anaan SOC

ARM Cortex AS with Up to 8.0MP

Quad CPUs up to 1.4GHz

for high performance

advanced gra .
-
o
Hexagon QDSPS for ultra %
low power applications '-,_
..
e

Integrated 802.11n, BT3.0,

GPU
? Y USB 2.0 Multi-SIM DSDS, DSDA
Single Platform for COMA & UMTS
o oo

HD 720p display

U SoC’s are Everywhere !
= Inside Smartphones:
¢ Qualcomm Snapdragon 845
¢ Apple A12 Bionic

Network = Inside Gaming Box
¢ Nvidia Tegra X1

= |nside Tablets
+* Samsung Exynos 9611
= Inside Mesh WIFI Routers
** Qualcomm IPQ4019 "

22¢%¢
00006

FPGA and ASIC

U FPGA stands for Field Programmable Gate Arrays — Re-configurable and programmable hardware

[ASIC stands for Application Specific Integrated Circuits — Fixed function hardware

FPGA based Hardware-Software Prototyping Board Samsung Exynos Mobile Processor (ASIC)

Headphone Jack MicroSD Slot USB3 0 Host

e - Circuit ‘ = i
. Nt e '|1 tH . I
generated : R 0 TR SN 7 Y ¥Rl

i

a ' |
from nal Console 2o bi D , ﬂ.MldO In Ko(n -LV BB E AN ' |

(Debug) | o - t" - | B8 : 5.‘ Power LED
. e alle & '» o e RGB LED
SySte mverl |0g e = » - Power protector

R o v
{ "z ODROQID-XU3;

{udio Codec

e Backup battery
conmector S
=
(9]

xynos 5422
L - 02
LAN + USB Hu

“ooling Fan

counector ol - :iuin

Mgt] ;

@ : ot ,' ulal it i 10 Expansion

REV0.2 & Port(30pm)

20140529 "M~ ll— A P
Jil L)

Power Switch

FPGA can be programmed multiple times to implement ASIC design which acts as a Mobile Processor SOC and it cannot

different hardware designs such as GPU, CPU, Mobile be re-programed to change its function to something
Processor, etc. Runs slower than ASIC based design ! other than mobile processor. Runs faster than FPGA !

Full Custom and Manual Chip Designhing Process

Step-1 : Draw Logic Circuit
Schematics for Multiplier

Gate level Schematics (Concept Design)
- Step -2 : Pre-Layout Circuit Simulation

SCR P AvwosSig Nt

T

-J["\
—1

e
TR
i

b
> N A

» T ol
> B cezo

Hardware Design
Requirement &
g g

Specification
(Design Multiplier) ~ Transistor level Schematics

g
: 3

| ’Z‘J 3§J= o= W%mw Feal

T Vi P

Circuit Simulation Results (Waveform)

Update Schematics No Does this
_ Chip Fabrication Process work
e N é Final Transistor Level Custom Layout asa]
- < Step-5 : Send Layout to (Actual Dsign) Multiplier ? @@ (

Foundry for Chip Fabrication

Does this work
as a Multiplier,

and Meet
requirements ?

No‘(

| Update Layout

Characterization Results (Waveforms)

Layout

Simulation

Step-3: Draw
Transistor
Level Layout

16

Problem Statement

J Modern digital systems and designs are highly complex and made of billions of transistors !

= Not feasible for human’s to manually design such multi-million gate level circuits and its is transistor
level layouts — Complexity and Size

»= There is a need for an efficient digital design methodology to *automatically* generate gate level
circuits and transistor level layouts for developing such large systems — Efficiency and Scalability

For example, Qualcomm Snapdragon 845 SoC has around 5.3 billion transistors !

: Qualcomm Mobile Processor Family wampremn
Adreno 630 8.5

Visual Processing
Subsystem

Snapdragon
X20 LTE modem

2.8x number of transistors
increased in <3 years

6.7

Wi-Fi

5.3

| 3 Qualcomm
:: 'agon 685 DSP Spectra280 ISP :: -

Qualcomm
Agstic Audio Kryo 385 CPU

Qualcomm Snapdragon 835 Snapdragon 845 Snapdragon 855 Snapdragon 865

System Memory Mobile Securit
Y Number of Transistors (in billions)

Full Custom and Manual Chip Designhing Process Limitations

 Can full custom and manual chip designing process address these requirements ?
= Shorter time to Market (Productivity and Efficiency) :

* Is it feasible to manually design Iarg)e size chips which have multi-billion transistors with very high complexity
within reasonable amount of time

* Is it feasible to verify large size designs using circuit simulation in reasonable amount of time ?
= Quality (Verification Completeness and Efficiency) :

* (Can verification using circuit simulation handle extremely large set of usecases and millions of input stimulus
combinations to identify bugs prior to chip fabrication ?

= Design Re-use (Scalability) :
e Can design blocks within a Chip easily be re-used with minor changes in next generation Chip ?

 Solutions
= Higher Level of Abstraction to describe complex logic circuit behavior
* Invent of Hardware Description Languages (Verilog, VHDL, SystemVerilog)
= Re-use Design Methodology
* |Invent of modern ASIC block-to-top design methodology
= Efficient and Effective Verification Methodology
* |nvent of Constraint Random, Coverage driven and Object oriented base modern verification methodology
= CAD Automation

* Invent of Logic Synthesis and Physical Synthesis tools :

o to convert hardware description language-based design to logic gates and then to transistor level design
* |nvent of Simulator for Verification :

o Verify designs that are developed using Hardware Description Languages prior to fabrication process

Why Hardware Description Language ?

(J Hardware description languages such as SystemVerilog, Verilog, VHDL allows digital design engineers :

= To concisely express complex *digital logic* circuit behavior and hardware algorithms using constructs which are
very close to natural programming languages such as ‘C’

= To design large scale digital systems without dealing with the complexity of gate and transistor level implementation

O Computer Aided Design (CAD) tools provides a software platform to virtualize and mimic real hardware before the
actual chip is fabricated
= Using logic simulator, engineers can perform simulation on SystemVerilog code to test circuit behavior on computer
before actual hardware (chip) is manufactured
= Using synthesis tool, a SystemVerilog program can be automatically converted to gate-level circuit and then to
transistor level layout
= Synthesis tools takes away the burden from the design engineer the complexity of hardware implementation

using logic gates and transistors ;
glogicg Gate Level Circuit Transistor Level Layout

SystemVerilog HDL Code to Model Digital Hardware Design o ~N_ o naimnm—nn
- — : , 5 Physical UL
—— .) s : . Synthesis |I LG

Waveform to Virtually
Confirm Hardware Design
behavior before
manufacturing

® | 19

Simltor

Modern Hardware Design Languages

[There are two major Hardware Design Languages :
= VHDL (Very High Speed Integrated Circuit Hardware Description Language)

= SystemVerilog (extension of Verilog)

VHDL

1 VHDL is more verbose language and itis alsohasa

non-C like syntax (More lines of code)

O Itis a strongly typed language

= Each data type (integer, character, or etc.) has

been predefined by the language itself.
= All values or variables defined in the code

must be described by one of the data types

(J Advance OOP based verification constructs are

not supported !

SystemVerilog
SystemVerilog is more compact language and it is
more like C language (lesser lines of code) with
lower level of implementation

It is not a strongly typed language
= Supports user defined data types

It is a unified language for design and verification
= Advance OOP based verification constructs
are supported ! — Enables scalability and re-
used of test code across designs

SystemVerilog covers best features of VHDL and

Verilog hardware description languages .

VHDL and SystemVerilog Example Code

VHDL code for a 4-bit unsigned down counter
with synchronous set

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity counter is
port(clock, S : in std_logic;
Q : out std_logic_vector(3 downto 0));
end counter;
architecture behavioral of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (clock)
begin
if (clock'event and clock="1') then
if (S='1') then
tmp <="1111";
else
tmp <=tmp - 1;
end if;
end if;
end process;
Q <=tmp;
end behavioral;

Verbose Representation
of Hardware Design

SystemVerilog code for a 4-bit unsigned down
counter with synchronous set

module counter (
input logic clock, S;
output logic [3:0] Q
);
logic [3:0] tmp;
always@(posedge clock)
begin
if (S)
tmp =4'b1111;
else (S)
tmp=tmp—1;
end
assign Q = tmp;
end Concise Representation
endmodule of Hardware Design

SystemVerilog Evolution

Cadence acquires Gateway,
puts Verilog to public domain (OVI)
OVI & VHDL international merges,

Verilog and SystemVerilog merged,
IEEE standard 1800-2009

Accellera is born and maintains Revised version published, T
Verilog language IEEE1364-2001 standard
201
1983-1985 2005 013

()

1989-1991 2001 2009

Gateway Design

Automation Verilog HDL became
developed a IEEE 1364-1995 standard
logic simulator,

Verilog-XL

** Note :

+¢ Verilog-AMS was developed to describe Analog logic of a System and verify it along
with digital logic prior to fabrication of a chip

+»* Circuit described in Verilog-AMS cannot be converted to transistor layout using
automation such as physical synthesis

SystemVerilog-2012
revised standard published
IEEE Standard 1800-2012

2
Clarifications published with
Verilog-AMS**, IEEE standard 1364-2005.
Accellera developed SystemVerilog
extending Verilog, published
IEEE standard (1800-2005)

22

Why learn SystemVerilog Hardware Description Language ?
(J Both FPGA and ASIC based Hardware Solutions are designed using SystemVerilog

L Most of the modern System-On-Chip and hardware designs are built using SystemVerilog

L Most hardware engineering jobs requires SystemVerilog based design knowledge
Mobile Phone SOC CPU GPU

CORE 19
8th Gen

- . L
Programmable
Interconnects

LS bi~ D L] 3 1 - , f"
i rlnl |ul Bl Bl
Design g, 5k e rararary gk

£D+)
1/0 Blocks

Why SystemVerilog over other Hardware Programming Languages ?

 SystemVerilog is a unified language for both design and verification !
= SystemVerilog is both HDL and HVL. Seamless data flow from testbench world to design world !
= Design described using synthesizable constructs. More concise representation of design compared to VHDL

= Re-usable, scalable, constraint and coverage driven verification environment using C++ like constructs (not
supported in VHDL)

= Advance methodologies such as UVM, VMM for verification and enables hardware acceleration
O Can interface with C and System-C languages.

J Provides extensions to create Analog Mixed Signal Models (Verilog AMS)

HVL (d HDL is used for developing

vt = HDL code is synthesizable
System Level Coverage Model and is part of final product

sequence sequence
Scyuciice P Scyuciite
SLYustice Scoreboard / Checker 2ELUELLE

*= Non-OOP based constructs
Master Agent

Top Testbench

(d HVL is used for developing
testbench to stimulate and
verify design

Slave Agent

\ 4

Monitor

g . . ; Monitor o

£ > Digital Deslgn | +—> S = HVL code is non-

= < (RTL Model) — = thesizabl di t
0 Driver D HD D f‘j,.; synthesizapble and IS no

Driver part of final product

= OOP based constructs

Traffic Generator

clk @© Transaction Level Communication 24

Traditional SystemVerilog Testbench

O Traditional SystemVerilog Testbench

= No usage of SystemVerilog advance OOP constructs. No UVM or VMM based environment

» No usage of coverage and constraints.

= One or more initial blocks running concurrently to apply stimulus to input signals
= Monitor input and output signals in initial block with self directed checking mechanism

SystemVerilog Top Testbench Module (no ports)

Monitor input and output signals.
Simple checker with pass/fail criteria

Observed - Observed
Initial block-M

Input data Output data
Generate stimulus e Visualize & debug
to drive Input signals Waveform using
T ulus waveform viewer
block-1 |

Digital Design Generate Waveform /

—
timulus > timing diagram
Initial SystemVerilog HD &

block-N

ECE-111 course assignments to
use this style of simple
Clock reset testbench to simulate RTL code

25

SystemVerilog Unified Language !

O Transaction and Register accurate models of design and SOC for architecture h
exploration and software validation. (Non-synthesizable code)
Models 1 Cycle accurate reference models which can be used during architecture
(Concept Design) exploration and during verification to speed up simulations and also as a checkerj
\
d Synthesizable RTL and Gate level model of a design
Design
(Actual Design) j

O Testbench code for verification using constraints, classes and other object oriented N
programming constructs provided in SystemVerilog LRM. (Non-synthesizable)

Verification O Functional coverage models (Non-synthesizable)

(Testing of Actual .) .
Design) O Assertion checkers (Non-synthesizable) y

26

HVL —

HDL —

System Verilog and Verilog Constructs

lrerififation

deign

[assertions

test program blocks

clocking domains
| process control

Sinterfaces packed arrays

nested hierarchy
unrestricted ports

automatic port connect

enhanced literals

time values and units

SystemVerilog-2005/2009/2012

| specialized procedures

uwire

Credit : Stuart Sutherland

mailboxes classes dynamic arrays 2-state types

semaphores inheritance associative arrays shortreal type

constrained random values strings queues globals

direct C function calls references checkers let macros

array assignments continue typedef >>= <<= >>>= <<<=S

unique/priority casel/if return structures &= |= A= %=

void functions do-while unions ==7 1=9

function input defaults case inside 2-state types inside

function array args aliasing packages streaming

parameterized types const Sunit casting
Verilog-2005 1

"begin_keywords ‘pragma $clog2

Verilog-2001

ANSI C style ports
generate
localparam
constant functions

modules
parameters
function/tasks

always @
assign

standard file I/O
$value$plusargs
‘ifndef “elsif ‘line

@?f

$finish $fopen $fclose
$display $write
$monitor

‘define “ifdef ‘else
‘include “timescale

Verilog-1995 (created in 1984)

(* attributes *)
configurations
memory part selects
variable part select

initial wire reg
disable integer real
events time

wait# @ packed arrays
fork—join 2D memory

multi dimensional arrays
signed types

automatic

** (power operator)

begin-end + = " |
while %

for forever >> <<
if-else

repeat

Non-
Synthesizable
Constructs

L
|
|
:Synthesizable

IConstructs

m
()
"
(BN
[N
[HN
R
o
c
=
wn
o
Mm
3
O
-
Q)
2,
wn

-

27

h--

Honor Code

(] The UCSD Student Conduct Code
https://students.ucsd.edu/sponsor/student-conduct/regulations/22.00.html

1 Violations will be reported to the Student Conduct Office (as well as failing the class)

28

https://students.ucsd.edu/sponsor/student-conduct/regulations/22.00.html

