
Lecture-2 : ASIC, FPGA, Logic Synthesis Fundamentals

ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Lecture-2 Objective and Outline

❑ Introduction to ASIC and FPGA design flow

❑ Introduction to FPGA Architecture and understand how digital logic is implemented
inside FPGA

❑ Overview of Logic Synthesis, Netlist, Simulation, Simulator, Waveform concepts

❑ Advantages and Dis-advantages of ASIC versus FPGA based hardware designs

2

3

What is an ASIC ?

ASIC stands for Application Specific Integrated
Circuit.

▪ As name suggests, ASIC’s are application specific
circuits

▪ Designed for one sole purpose and they function
the same their whole operating life.

▪ Example : “Mobile processor inside a mobile
phone is an ASIC. It is meant to function as a
mobile processor for its entire life”.

▪ Its logic function cannot be changed since its
digital circuitry is made up of permanently
connected gates and flip-flops in silicon.

▪ Logic function is specified using HDL such as
SystemVerilog, Verilog, VHDL

What is a netlist ?
❑ A netlist is a directed graph, where the vertices indicates

components, and the edges indicate interconnections.

❑ Netlist can be specified at various levels :

▪ If vertices are gates, then netlist is called a gate level
netlist

▪ If vertices are transistors, then netlist is called a
transistor level netlist

4

Logic Gate Level Netlist

A

B
E

DC

Netlist : Directed graph

Interconnections

SystemVerilog modules or logic gates or transistors
Transistor Level Netlist

edge

Vertice

What is a Netlist ?

5

SystemVerilog Level Netlist

▪ If vertices are modules, then netlist is called a SystemVerilog level netlist

What is Synthesis ?

6

❑ Synthesis is a process to convert design from one form to another form

❑ Design Netlist can be transformed from one level to another using a process known as “Synthesis”
▪ Logic Synthesis : Converts SystemVerilog netlist to gate-level netlist representation of design
▪ Physical Synthesis : Converts gate-level netlist to transistor level netlist

SystemVerilog Inverter Design Netlist

Gate-Level Inverter Design Netlist

Transistor-Level Inverter Design Netlist

Logic Synthesis Physical Synthesis

What is Logic Synthesis ?

❑ Logic synthesis is the process of converting HDL description of a design into an optimized
structured gate-level representation using technology specific primitives :
▪ Output of logic synthesis process is optimized and mapped gate-level netlist

▪ For FPGAs Synthesis uses : Look-Up-Tables (LUTs), flip-flops, and RAM blocks to implement design

▪ For ASICs it uses : Standard cell gates, flip-flop libraries, and memory blocks to implement design

▪ Constraints are provided to synthesis tool to meet goals such as :

o Timing, area, performance, max dynamic transition for power, fanout

7

Logic Synthesis
(3 steps : Translation + Optimization +

Mapping)

HDL Code

Constraints
Target Library /

Device

Optimized and Mapped Gate Level Netlist

(SystemVerilog Code)

Logic Synthesis Goals

❑ Logic Synthesis Goals :
▪ Minimize area:

o in terms of literal count, cell count, register count, etc

▪ Minimize power:

o in terms of switching activity in individual gates, deactivated circuit blocks, etc

▪ Maximize performance:

o in terms of maximal clock frequency of synchronous systems, throughput for
asynchronous systems)

▪ Combination of above:

o “minimize area for clock speed >500Mhz”

▪ Feedback from layout :

o actual physical sizes, delays, placement and routing

8

SystemVerilog .sv Source Code files

ASIC Logic Synthesis Flow Details

9

Step 1 : Translation
▪ Check if design provided can be synthesized
▪ Map RTL to unmapped gate-nelist
▪ Uses standard GTECH library which has “and, or, nand” type of gates and

designware library which has adders, comparators type primitives

Step 2 : Optimization
▪ Reduce logic
▪ Eliminate redundant logic
▪ Make design smaller and faster (best Fmax)

Step 3 : Technology Mapping
▪ Map gates to technology dependent standard cell and macros
▪ Technology library is also known by transistor size (14nm, 20nm, 5nm)

Step 4 : Optimization
▪ Path equalization and re-sizing
▪ Logic level power optimization and more

Step 5 : Test logic insertion
▪ Insertion of logic to support DFT (design for testability), such as scan

chains

No Timing Details

Timing Details

Front-End
Design &

Verification

Back-End
Design /

Physical Design /
Implementation

System
Architecture
Exploration

10

Architectural Design
(SystemC Models)

Marketing Requirement DocumentSystem Specification

Architecture Model and System
usecase Validation

Hardware Implementation Specification
(Micro-architecture Specification)

Digital Design
(SystemVerilog RTL Models)

Logic Synthesis &
DFT (ATPGA/Scan Chain Insertion)

Floorplanning, Partitioning,
Clock Tree Synthesis

Placement and Routing

Spice Circuit (RC) Extraction

Fabrication & Manufacturing

Pre-layout
Timing Analysis

Gatelevel
Simulation

RTL vs Gatelevel Netlist
Equivalency Checking

Post Layout Timing Analysis
Signal Integrity check & Cross

Talk Analysis

Power Consumption Analysis Power source network Analysis

DRC and ERC
(Design/Electrical rule checks)

LVS (Layout vs Schematic)

SDF Gatelevel Simulation
Gate-to-Gate netlist

equivalency checking
GDS-II

ATPG / DFT Testing
Software
Testing

Post-Silicon ValidationIC Fabrication

ASIC Digital Design Flow

ECE-111 Course to focus on front-end design using SystemVerilog

D
esign

 A
ccu

racy
Si

m
u

la
ti

o
n

 S
p

ee
d

Functional Verification
(RTL Simulation)

Pre-Silicon
Emulation

Assertion based Formal
Verification

FPGA

What is an FPGA ?

❑ Field programmable Gate Arrays (FPGAs) are
pre-fabricated silicon devices that can be
electrically programmed to function almost any
kind of a digital circuit or a digital system.

❑ FPGA Comprises of :

▪ Programmable Logic Block (CLB* or LAB**)
which implement logic functions

▪ Programmable routing connects these logic
blocks (CLB’s/LAB’s)

▪ I/O blocks are connected to these logic blocks
(CLB’s/LAB’s) through routing interconnect

❑ Each CLB contains one or more Logic Elements
(LE) connected over interconnect

▪ Each LE consists of k-input LUT’s (Look up
tables), Flipflop and a Multiplexer (MUX)

▪ Hard Blocks : DSP’s, Multipliers, Adders PCIe,
Serdes

❑ FPGA Vendors :

▪ Xilinx, Altera, Actel, Microsemi,

Lattice, QuickLogic 11

FPGA Generic Architecture

*CLB : Configurable Logic Block (Xilinx FPGA)
**LAB : Logic Array Block (Altera FPGA)

FPGA can be
re-programmed

Multiple times and
implement different

logic functions

Configurable Logic Block (CLB)

❑ CLB comprises of one or more Logic Element (LE) connected over an interconnect

❑ Each LE contains :
▪ Lookup Table (LUT)
▪ D-Flip Flop
▪ MUX which allows selection of either the LUT output or the D-Flip Flop output
▪ Note : In Altera FPGA, a CLB is called as LAB (Logic Array Block)

12

CLB with one Logic Element

Configurable Logic Block (CLB)
❑ CLB can contain multiple Logic Elements

▪ In Xilinx FPGA Logic Elements are known as Slices. There can be multiple slices within single CLB.

▪ Higher the count of Logic Elements means more digital logic functions can be implemented inside an FPGA

o In Altera Arria II GX FPGA devices there are 43,000 to 244,000 Logic Elements

o In Altera Stratix 10 FPGA device family supports up to 5.5 Million Logic Elements

13

CLB (or LAB) with 4 Logic Element (or Slices)

Typical LE (BLE) Example

❑ A typical LE comprises of a 4 input
LUT (LUT-4) and a D-type Flip-Flop.
▪ LUT consists of cascaded Multiplexors

▪ LUT inputs are select lines for internal
multiplexors (MUX)

▪ The LUT-4 uses 16 SRAM bits to
implement any 4 input Boolean
function.

▪ The output of LUT-4 is connected to
an optional Flip-Flop. A multiplexor
selects the BLE output to be either
the output of a Flip-Flop or the LUT-4

❑ Modern FPGAs contain typically 4 to
10 BLEs in a single cluster

Note : BLE is same as LE 14

4 input LUT based BLE (Basic Logic Element)

Programmed
Levels

(SRAM Bits)

LUT Inputs to Select
Internal Mux Lines

SRAM, programmed with value 0xC4
(1100_0100) to implement p = a.b + b.c

LUT (Look Up Table) Operation

❑ LUT can implement any Boolean expression

❑ LUT is made up of two main components :

▪ Series of cascaded multiplexer(s)

▪ SRAM cells to program input values

❑ LUT inputs are used as select lines to
multiplexer

❑ Input to multiplexer is programmed to logic
0 or 1 (these are programmed levels stored
in SRAM cells within FPGA)

❑ logic is called a look up table because output
is selected by looking at correct
programming levels and input select lines

❑ Example on this slide is 3-to-1 LUT
implementing a boolean expression :

15

a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

0

1

0

0

0

1

0

1

000

001

010

011

100

101

110

111

a b c

p

LU
T

p = a.b + b.c

p = a.b + b.c

Truth Table for p = a.b + b.c

Logic Circuit

p = a.b + b.c

If a=1,
b=1, c=0
=> p = 1

Adaptive LUT

❑ Altera introduced the 8-input fracturable
look-up table (LUT) with the Stratix® II
family.

❑ The ALM can also be efficiently partitioned
into independent smaller LUTs to implement
one or two logic functions

❑ It provides the performance advantage of
larger LUTs and the area efficiency of smaller
LUTs.

❑ Diagram shows, 4 input ALUT is broken into
two halves to implement 3 to 1 LUT

❑ ALM also consists of higher efficient adder
logic and two registers

❑ Note : the fast adder carry chain in ALM
(does not require going out to
programmable switch boxes)

16

8 input Adaptive Logic Module (ALM)

4 input Adaptive LUT divided into two 3 to 1 LUT

Credit : Intel

Credit : FPGA 101, G.R. Smith

Connectivity between ALMs

17

Logic Function 1 Logic Function 2
Part Logic
Function 3

Part Logic
Function 3

Part Logic
Function 4

Part Logic
Function 4

Inefficient
placement of

related logic inside
FPGA can cause
longer delays in

signal transmission
and result lower

Frequency of
operation

Close proximity if
related logic will

result in better
timing and overall

higher operating
frequency and

overall
performance

Altera Arria II Family Devices Capacity and Features

18

Modern FPGA’s

19

❑ Modern FPGAs have many built-in interfaces :

▪ DRAM

▪ PCI Express

▪ USB

▪ SATA (disk drives) and more

❑ Modern FGPA’s such as Altera Stratix IV family
them easy to integrate into compute environments
due to wide variety of built-in interface

❑ Modern FPGA’s contain built-in Hard IP blocks
▪ Such as : DDR memory controller, high performance

multipliers, adders, DSP blocks, Quad core ARM CPU’s, High
speed SERDES (Serializer/de-serializer), and more

▪ These Hard IP blocks are designed optimally to efficiently
perform specific functions such as multiplication, division,
3D Fourier transform function, low latency memory access,
high speed serialization/de-serialization

▪ If hard IP blocks are unused, then they end up wasting huge
amount of logic and routing resources.

Altera Stratix 10 Family FPGA Devices with Integrated Quad Core ARM CPU

20

Intel Stratix 10 GX 5500/SX 5500 Contains
❑ 1,867,680 ALMs, which can implement roughly

5,510,000 logic elements (logic gates).

❑ Contains 7,470,720 ALM registers

❑ Also contains Quad ARM Cortex-A53 CPU cores

Implementation

System
Architecture
Exploration

21

Architectural Design
(SystemC Models)

Marketing Requirement DocumentSystem Specification

Architecture Model and System
Usecase Validation

Hardware Implementation Specification
(Micro-architecture Specification)

Digital Design (SystemVerilog RTL Models or
Schematic captures)

Synthesis

Mapping

Place and Route
(Design Fitting)

Functional Verification
(RTL Simulation)

Post Synthesis
Simulation

Post Implementation
Timing Simulation

Generate Programming Bitstream File

Run Software

Download
Bitstream to FPGA

FPGA Digital Design Flow

D
esign

 A
ccu

racy
Si

m
u

la
ti

o
n

 S
p

ee
d

This step is only
required if final
product is FPGA
based platform

Design
Entry &

Synthesis

FPGA Synthesis
❑ FPGA Synthesis is a 3-step process

▪ Design check and resource association

▪ Optimization

▪ Technology mapping

22

Step 1 : Design check and resource association
▪ Check for syntax errors in design source files
▪ Check if design provided can be synthesized
▪ Associate design to logic cell and blocks

Step 2 : Optimization
▪ Reduce logic
▪ Eliminate redundant logic
▪ Make design smaller and faster (best Fmax)

Step 3 : Technology Mapping
▪ Connect design to logic
▪ Predict and add timing estimates
▪ Create output reports and netlists

Snythesized output netlist

FPGA Synthesis 3-Step Flow

SystemVerilog .sv source files

Credit : FPGA 101, G.R. Smith

FPGA Implementation
❑ Mapping :

▪ Compares the resources specified in input synthesized netlist and checks for available resources of the
target FPGA

o Insufficient resources will result in errors !!

▪ Divides the netlist circuit into sub-blocks to fit into FPGA logic blocks

❑ Place and Route
▪ Also known as design fitting. This is the most challenging and intensive part of FPGA design flow

▪ Physically places the sub-blocks in netlist generated from mapping stage to FPGA logic blocks

▪ Routes signals between logic blocks considering timing constraints

▪ FPGA tools provides choices to user to specify fitting criteria’s and based on that logic will be mapped to
FPGA resources. These fitting criteria are:

• High performance (speed), Smallest area, Low power, Balanced

❑ Generate programming file
▪ Generate bitstream file or IEEE-1532 configuration file (.isc).

▪ Download to FPGA either through JTAG or downloaded to non-volatile memory on FPGA board which
upon reset will automatically program FPGA

23

Post-Fitting Netlist Viewer

FPGA Netlist Viewer
❑ FPGA Tools provides netlist viewer post synthesis and implementation :

▪ RTL netlist viewer

▪ Post-fitting netlist viewer

▪ Post-mapping netlist viewer

24

SystemVerilog .sv source files

RTL Netlist Viewer

FPGA vs ASIC Comparison

25

ASIC

Versus

❑ Advantages :

▪ High Performance

▪ Low power consumption

▪ Low Area

▪ High volume production due to lower
cost per unit

▪ Can implement Analog blocks

❑ Dis-advantages :

▪ High Time-to-market

▪ Low flexibility

▪ Low reusability

▪ Low NRE

❑ Application : High Speed designs, high
packing density, used in larger numbers (CPU,
Modern mobile chipsets, Analog devices,
Gigabit Serdes, etc)

❑ Advantages :

▪ Low Time-to-market

▪ High flexibility

▪ High reusability

▪ High IO count and massive parallelism

▪ High NRE (Net Return of Engineering Cost)

❑ Dis-advantages :

▪ Low Performance

▪ High power consumption

▪ High Area

▪ Higher Cost (can cost 4K USD)

▪ Cannot implement Analog blocks

❑ Application : Whenever fast turnaround time required with
performance tradeoff. HW (SOC/IP) prototyping to prove concept,
validate design, early SW validation platform, FPGA based Clouds, ML

Simulator and Logic Synthesis For FPGA Designing

26

Launch compilation and
simulation commands

Waveform trace file

DUT
(SystemVerilog

RTL Code)

Testbench

(SystemVerilog
Code)

Simulator

Modelsim Simulator user
interface

Launch Synthesis
commands

Gate Netlist

DUT
(SystemVerilog

RTL Code)

Constraints
(frequency,

area, power)

Logic
Synthesis

Altera Quartus
Prime

SystemVerilog .sv RTL source code

Both Simulator and Logic Synthesis
uses same SystemVerilog (SV) Code

❑ Simulator is used to verify intended
behavior of SV code

❑ Synthesis is used to generate
hardware from SV code

What is Simulation ?
❑ Simulation is the process of verifying the functionality and timing of a design

against its original specifications
▪ Example : Does 32-bit ALU logic implemented using SystemVerilog perform operations such

as addition, subtraction, multiplication, comparison correctly as per the intended
specification ?

❑ Digital Designer engineer performs functional simulation using a simulator at
various stages of design development flow :
▪ Prior to logic synthesis, simulation is performed to verify functionality of HDL (SystemVerilog)

description of design

▪ After synthesis, gate level simulation is performed on the gate-netlist design generated by
synthesis.

o Gate level simulation is performed to verify design timing and re-check functionality of
design

27

What is the role of a simulator ?
❑ Simulator role is approximating reality. Design realized in virtual environment !

▪ Simulator creates an artificial universe that mimics the future real circuit design

▪ It lets the designer interact with the design before it is manufactured, and enables designer
to correct flaws and problem earlier

o Simulator takes SystemVerilog code or a gate level netlist and simulates design using
stimulus provided in testbench code

o It generates waveforms to provide approximate behavior of design prior to
manufacturing.

▪ Note :
o Simulator does not correct automatically incorrect description of the design written in

HDL

o It is the responsibility of verification engineer, not the simulator, to apply legal set of
stimulus to design under test based on real world usecase.

28

Waveform

❑ Waveform is a plot of a signal over period of
time

❑ Waveform is generated by the simulator at
the end of RTL or gate level simulation

❑ Designer and Verification engineers review
waveforms to analyze the behavior of a
design and also to perform debugging of
potential bug in the HDL code

29

SystemVerilog (SV) RTL Code & Testbench Code

Waveform generated by
Modelsim Simulator at

end of simulation

ModelSim
Simulator

Lets review
waveform to see

if SV design
working like a
4-bit counter

Learning Resources on FPGA Architecture

30

❑ Basics of programmable logic : FPGA Architecture (Intel Altera)
▪ https://www.youtube.com/watch?v=jbOjWp4C3V4

❑ Altera FPGA Architecture :
▪ https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp

/wp-01003.pdf
▪ https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-ii-

gx/aiigx_51001.pdf

https://www.youtube.com/watch?v=jbOjWp4C3V4
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-ii-gx/aiigx_51001.pdf

