A0 T
@00 1

—\1 r-\"\ f\,“,
—
—

Lecture-2 : ASIC, FPGA, Logic Synthesis Fundamentals
ECE-111 Advanced Digital Design Project

Vishal Karna UC San Diego
Winter 2022 e i

Lecture-2 Objective and Outline
1 Introduction to ASIC and FPGA design flow

M Introduction to FPGA Architecture and understand how digital logic is implemented
inside FPGA

1 Overview of Logic Synthesis, Netlist, Simulation, Simulator, Waveform concepts

1 Advantages and Dis-advantages of ASIC versus FPGA based hardware designs

What is an ASIC ?

ASIC stands for Application Specific Integrated
Circuit.

= As name suggests, ASIC’s are application specific
circuits

= Designed for one sole purpose and they function
the same their whole operating life.

= Example : “Mobile processor inside a mobile
phone is an ASIC. It is meant to function as a
mobile processor for its entire life”.

= |ts logic function cannot be changed since its
digital circuitry is made up of permanently
connected gates and flip-flops in silicon.

= Logic function is specified using HDL such as
SystemVerilog, Verilog, VHDL

What is a netlist ?

A netlist is a directed graph, where the vertices indicates

- .) Logic Gate Level Netlist
components, and the edges indicate interconnections.

b —] 1) Jo>— =
3)_“ ns

ai
b:

/ ai
bo
G :

Netlist : Directed graph < b

m

G1

G2 LE
G4 bﬁn.a e

edge _ ’

——— Interconnections /

/ Transistor Level Netlist

‘ SystemVerilog modules or logic gates or transistors ’

Verti / T
ertice // _l _l _l

’ e
/
J Netlist can be specified at various levels : / X1 —x71'"—x1

/
= |f vertices are gates, then netlist is called a gate level
netlist --7 | |

= |f vertices are transistors, then netlistis calleda_--"" | |
transistor level netlist ‘

= |f vertices are modules, then netlist is called a SystemVerilog level netlist

/32 bit ripple carry adder

/*****Q9t&&******0***&*****000********999
X 2R R AT R R L X AR R X S AR A T R R X
* these modules contain continuous assignments

* and will not create schematic views
LA A A A A A L At a a dd dt it a s a ittt sl sttt sl

-l--l--l-i'***-l--l-***-k*************************i-i-/

module nand2(out, a, b);
output out;
input a, b;
assign out = ~{a & b);
endmodule // nand2

module nand3({out, a, b, c);
output out;
input a, b, ¢;
assign out = ~(a & b & c);
endmodule // nand3

module nor2{out, a, b);
output out;
input a, b;
assign out = ~(a | b);
endmodule // nor2

module aoi1l2(out, a, b, c);
output out;
input a, b, ¢c;
assign out = ~(a | (b & c));
endmodule // aoill

What is Synthesis ?

(1 Synthesis is a process to convert design from one form to another form

(1 Design Netlist can be transformed from one level to another using a process known as “Synthesis”
= Logic Synthesis : Converts SystemVerilog netlist to gate-level netlist representation of design
= Physical Synthesis : Converts gate-level netlist to transistor level netlist

Transistor-Level Inverter Design Netlist

SystemVerilog Inverter Design Netlist f \
/ module NOT _Gatel \ Gate-Level Inverter Design Netlist
input IN,

output OUT);

assign OUT = ~IN; | |ogic Synthesis Physical Synthesis

endmodule]|
N /

What is Logic Synthesis ?

HDL Code (SystemVerilog Code)

l

4 . .)
Target Library / Logic Synthesis
8 Device y » (3 steps : Translation + Optimization + - Constraints
S Mapping) y

l

Optimized and Mapped Gate Level Netlist

1 Logic synthesis is the process of converting HDL description of a design into an optimized
structured gate-level representation using technology specific primitives :

= Qutput of logic synthesis process is optimized and mapped gate-level netlist
= For FPGAs Synthesis uses : Look-Up-Tables (LUTSs), flip-flops, and RAM blocks to implement design

= For ASICs it uses : Standard cell gates, flip-flop libraries, and memory blocks to implement design
= Constraints are provided to synthesis tool to meet goals such as :

o Timing, area, performance, max dynamic transition for power, fanout

Logic Synthesis Goals

 Logic Synthesis Goals :
* Minimize area:
o in terms of literal count, cell count, register count, etc
= Minimize power:
o in terms of switching activity in individual gates, deactivated circuit blocks, etc
= Maximize performance:

o in terms of maximal clock frequency of synchronous systems, throughput for
asynchronous systems)

= Combination of above:

o “minimize area for clock speed >500Mhz”
Feedback from layout :

o actual physical sizes, delays, placement and routing

ASIC Logic Synthesis Flow Details

SystemVerilog .sv Source Code files

B M7 EE mrfm 0w % EZ

Step 1 : Translation

: Emodﬁﬁ'yfﬁﬁjﬁ'iﬁdi‘r’??ﬁﬁﬁir‘%lg%‘;m?f’“l‘j* cin, = Check if design provided can be synthesized
. output logic s, cout); .
¢ logic p, g; // internal nodes = MapRTLto unmapped gate-nellst
Bl sl -2l b ‘ = Uses standard GTECH library which has “and, or, nand” type of gates and
1§ assion s = p A ciny designware library which has addiws, comparators type primitives
assign cou =4d p cing,
1%% endmoduTe
No Timing Details Step 2 : Optlmlzatlon
= Reduce logic
5 L_D_E = Eliminate redundant logic
- = Make design smaller and faster (best Fmax)
= L D—o [
=D - h
0 D__I—D—D Step 3 : Technology Mapping
Generic Boolean = Map gates to technology dependent standard cell and macros
(GTECT) &. Technology library is also known by transistor size (14nm, 20nm, 5nm)
~ |
B =g 4)
= 41— Step 4 : Optimization
? = Path equalization and re-sizing
D L/ = &- Logic level power optimization and more)
_ Dﬂ—ij_': Y. p l
Target Technology Step 5 : Test logic insertion

= |nsertion of logic to support DFT (design for testability), such as scan

Timing Details ;
chains

Adeindoy udisa(

ASIC Digital Design Flow

System
Architecture
Exploration

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

Front-End
Desigh &
= \erification

Back-End
Design /
B Physical Design /
Implementation

IC Fabrication [

_______________________i_______

© @ D
System Specification }4— Marketing Requirement Document
O ¥ J
] f x
(.
Architectural Design Architecture Modt'el an-d System
(SystemC Models) ” usecase Validation
C _ J
(N\
Hardware Implementation Specification . . .
(Micro-architecture Specification) _ ECE-111 Course to focus on front-end design using SystemVerilog
\U J
| | -7 FPGA
(s h [Functional Verification] [Assertion based Formal] [Pre-Silicon]
Digital Design ~ : : e - .
RTL Simulation
(SystemVerilog RTL Models) “ () Verification Emulation
A l J
4)
Logic Synthesis & Pre-layout RTL vs Gatelevel Netlist Gatelevel
DFT (ATPGA/Scan Chain Insertion) “ Timing Analysis Equivalency Checking Simulation
| J

Floorplanning, Partitioning,
Clock Tree Synthesis

N
/ Post Layout Timing Analysis Signal Integrity check & Cross \

|

Placement and Routing

1

Spice Circuit (RC) Extraction

J Talk Analysis
\
Power Consumption Analysis Power source network Analysis
)
DRC and ERC .
LVS (Layout vs Schematic
] (Design/Electrical rule checks) (tay)
Gate-to-Gate netlist
SDF Gatelevel Simulation . .
] equivalency checking

Fabrication & Manufacturing

Software] 10

]“ [ATPG / DFT Testing] [Post-Silicon Validation] [.
Testing

Simulation Speed

. FPGA can be
What is an FPGA ? FPGA Generic Architecture re-programmed
Multiple times and
Field programmable Gate Arrays (FPGAs) are = - — = implement different
pre-fabricated silicon devices that can be ' - ' / logic functions
electrically programmed to function almost any
kind of a digital circuit or a digital system. e = =— —

. 10 | CLB | CLB . CLB (CLB | 10
FPGA Compirises of : : | ' ' i
= Programmable Logic Block (CLB* or LAB**)
which implement logic functions — W - -
= Programmable routing connects these logic 10/ { CLB |=f=| CLB |=@is{ CLB |=i«{ CLB | 10
blocks (CLB’s/LAB’s) = = - 2
» |/O blocks are connected to these logic blocks 1 N i i
(CLB’s/LAB’s) through routing interconnect | | B | |
10 (CLB |miia| CLB' jufis{ CLB jufiu{ CLB | o

Each CLB contains one or more Logic Elements
(LE) connected over interconnect

= Each LE consists of k-input LUT’s (Look up
tables), Flipflop and a Multiplexer (MUX)

= Hard Blocks : DSP’s, Multipliers, Adders PCle,

. CLB | | CLB) | CLB) | CLB) o

Serdes Logic Element _
| 10 1’0 110 1’0
FPGA Vendors : i .
n > : Out;?ut
= Xilinx, Altera, Actel, Microsemi, e A *CLB : Configurable Logic Block (Xilinx FPGA)

. . . k% . H
Lattice, QuickLogic - LAB : Logic Array Block (Altera FPGA)

CLK i
L

Configurable Logic Block (CLB)

(J CLB comprises of one or more Logic Element (LE) connected over an interconnect

(J Each LE contains :
= Lookup Table (LUT)
= D-Flip Flop
= MUX which allows selection of either the LUT output or the D-Flip Flop output
= Note : In Altera FPGA, a CLB is called as LAB (Logic Array Block)

CLB with one Logic Element

B—4 MUX

| CLB = = CLB C —— LUT O/P

| CLB)

T e e e s oa MM =N ED =N W e

= Higher the count of Logic Elements means more digital logic functions can be implemented inside an FPGA

Configurable Logic Block (CLB)

(d CLB can contain multiple Logic Elements
= |n Xilinx FPGA Logic Elements are known as Slices. There can be multiple slices within single CLB.

o In Altera Arria Il GX FPGA devices there are 43,000 to 244,000 Logic Elements
o In Altera Stratix 10 FPGA device family supports up to 5.5 Million Logic Elements

| CLB |

. CLB

| CLB)

| CLB)

CLB (or LAB) with 4 Logic Element (or Slices)

O/P

O/P

O/P

O/P

Typical LE (BLE) Example

A typical LE comprises of a 4 input
LUT (LUT-4) and a D-type Flip-Flop.
= LUT consists of cascaded Multiplexors

= LUT inputs are select lines for internal
multiplexors (MUX)

" The LUT-4 uses 16 SRAM bits to
implement any 4 input Boolean
function.

" The output of LUT-4 is connected to
an optional Flip-Flop. A multiplexor
selects the BLE output to be either
the output of a Flip-Flop or the LUT-4

(J Modern FPGASs contain typically 4 to
10 BLEs in a single cluster

Note : BLE is same as LE

13

12

LUT Inputs to Select
Internal Mux Lines

l
Programmed J nput Look-
: Levels =_(_l_ }— - 4Tlat?lc (ll‘.U;‘llJ)p
(SRAM Bits) | {1 ~
—m F
S
s
Multiplexer ..:(:D
FL ﬁ
t(_-’— / clk
P, = |
SRAM .—(_L
B
|

4 input LUT based BLE (Basic Logic Element)

LUT (Look Up Table) Operation

O LUT can implement any Boolean expression

O LUT is made up of two main components :
= Series of cascaded multiplexer(s)
= SRAM cells to program input values

O LUT inputs are used as select lines to
multiplexer

O Input to multiplexer is programmed to logic
Oor1 (these are programmed levels stored
in SRAM cells within FPGA)

O logic is called a look up table because output
is selected by looking at correct
programming levels and input select lines

d Example on this slide is 3-to-1 LUT
implementing a boolean expression :

p=ab+b.c

Truth Table forp=a.b + b.c

R = = = O O O O

o

R B, O O KB L O

~0
Y SR < p~2
b); _D—D p
p~1
p=a.b+b.c

<[> - Logic Circuit

L p-abrbi

001

010 b=1, c=0

o
s
[y

101

110

sanesnny
\3

111

O »r O +» O +» O
- »r O O O » O O

SRAM, programmed with value 0xC4 _
(1100_0100) to implement P =a.b +b.c

8 input Adaptive Logic Module (ALM)

Adaptive LUT

O Altera introduced the 8-input fracturable 1— —-ﬂ regouti0)
look-up table (LUT) with the Stratix® I 3— + combout(0)
fam”y. ALM Inputs Cummzbnd

@ The ALM can also be efficiently partitioned i _,*- regout()
into independent smaller LUTs to implement] : + combout(1)
one or two logic functions

Credit : Intel
B &-input Fracturable LUT] Two Adders [l Two Registers

O It provides the performance advantage of]] o]
larger LUTs and the area efficiency of smaller 4 input Adaptive LUT divided into two 3 to 1 LUT

A B C D A B C D
LUTs.

O Diagram shows, 4 input ALUT is broken into
two halves to implement 3to 1 LUT

d ALM also consists of higher efficient adder
logic and two registers

(J Note : the fast adder carry chain in ALM
(does not require going out to
programmable switch boxes)

T I 5 T o o

Credit : FPGA 101, G.R. Smith
a'b'c’d’+ abed + abc’d’ = 1000 0000 0000 1001 = 0x8009

Connectivity between ALMs

Logic Fun

Inefficient
placement of
related logic inside
FPGA can cause
longer delays in
signal transmission
and result lower
Frequency of
operation

llliiii.l.l

&4&
5 4 F

Close proximity if
related logic will
result in better
timing and overall
higher operating

frequency and

overall

performance

17

Altera Arria Il Family Devices Capacity and Features

Table 1-1. Features in Arria Il Devices

Arria Il GX Devices

Arria Il GZ Devices

Feature EP2AGX45 | EP2AGX65 | EP2AGXS5 | EP2AGX125 | EP2AGX190 | EP2AGX260 | EP2AGZ225 | EP2AGZ300 | EP2AGZ350
Total Transceivers (7) 8 8 12 12 16 16 16 or 24 16 or 24 16 or 24
ALMs 18,050 | 25,300 37.470 49,640 76,120 102,600 89,600 119,200 139,400
LEs 42,959 | 60,214 80,178 118,143 | 181165 | 244188 | 224,000 298,000 348,500
PCle hard IP blocks 1 1 1 1 1 1 1 1 1
MK Blocks 319 495 612 730 840 950 1,235 1,248 1.248
M144K Blocks — — — — — — — 24 36
;?;i'kgf?é’;f:}ed Memory in MSK 2,871 4,455 5,508 6,570 7,560 8,550 11,115 14,688 16,416
Iﬁ;ﬂ"mﬁm’ﬂegﬂ"ﬂ% o) (Kbis) 3.435 5,246 6,679 8121 9,039 11,756 13915 18.413 20,772
Embedded Multipliers (18 x 18) (2)|| 232 312 448 576 656 736 800 920 1,040
General Purpose PLLs 4 4 6 6 6 6 6or8 4 6,0r8 4,6,0r8
Transceiver TX PLLs (3), (4) 20r4 20r4 4orb 4orb 6or8 6or8 8 or12 8or12 8 or12
User /0 Banks (5), (6) 6 6 8 8 12 12 160r20 | 8,16,0r20 | 8,16, or 20
High-Speed LVDS SERDES 8,24,0r28 18,24, 0r28 | 24,28, 0r32 | 24,2832 | 280r48 | 240rd48 | 420r8 |0(8),42, 0r86 |0 (8),42, or 86

(up to 1.25 Gbps) (7)

18

Modern FPGA’s

d Modern FPGAs have many built-in interfaces :

To FPGA
= DRAM «Transceiver link PRG. —:
_
= PCI Express
[| U S B USB 2.0 High

- Speed

48 S
DDR2 SODIMM 25T)
GPIO GPIO
\% X32 X64 X16 V
X82

I X82 Y
HSMC X8 : X4 I HSMC
+—> “—>

SATA (disk drives) and more

(J Modern FGPA’s such as Altera Stratix IV family

them easy to integrate into compute environments “ “ -
. . o o o SATA +—> A D A G SATA
due to wide variety of built-in interface =)
<A> @té()‘([l/ PRSEN o a7p
(] Modern FPGA's contain built-in Hard IP blocks B « . (R

+—> “—>

= Such as : DDR memory controller, high performance -
multipliers, adders, DSP blocks, Quad core ARM CPU’s, High e / IXS
speed SERDES (Serializer/de-serializer), and more Ethernet

- X1

. . . . - itch*
= These Hard IP blocks are designed optimally to efficiently . m— el Sk
perform specific functions such as multiplication, division, Interface IR SOIBIL Button*4,

. . LED*8
3D Fourier transform function, low latency memory access,
high speed serialization/de-serialization

= |f hard IP blocks are unused, then they end up wasting huge
amount of logic and routing resources.

Altera Stratix 10 Family FPGA Devices with Integrated Quad Core ARM CPU

2X

Core Performance

Up to 70%

Lower Power

5.5M

Logic Elements

L ¢ Stratix-70

Heterogeneous

3D SiP

Integration

intel 14NM
Tri-Gate

Quad-Core

Cortex-A53
ARM Processor

Intel Stratix 10 GX 5500/SX 5500 Contains
O 1,867,680 ALMs, which can implement roughly
5,510,000 logic elements (logic gates).

Comprehfansive
Security

O Contains 7,470,720 ALM registers

(1 Also contains Quad ARM Cortex-A53 CPU cores

Quad ARM Cortex-A53-Based Hard Processor System

ARM Cortex -A53 ARM Cortex -A53 SD/SDI0/
NEON FPU NEON FPU USBOTG MMC
x2)’
32 KB I-Cache || 32 KBD-Cache || 32KBI-Cache || 32 KB D-Cache
with Parity with ECC with Parity with ECC
DMA :
ARM Cortex -A53 ARM Cortex -A53 UART (x2) (8 Channel)
NEON FPU NEON FPU
32 KB |-Cache || 32 KBD-Cache || 32KBI-Cache || 32 KB D-Cache HPS 0
with Parity with ECC with Parity with ECC PC (x5)
1 MB L2 Cache with ECC
NAND
. " Flash'2
System MMU (ache Coherency Unit EMAC (x3)"
JTAG Debug 256 KE; Timers SPI (x4)
or Trace RAM (x8)
HPS-to-SDM
Lightweight HPS-to- HPS-to-FPGA FPGA-to-HPS SDM-:o-HPS SDRAM
FPGA BRIDGE BRIDGE BRIDGE Scheduler’
FPGA Fabric o Hard Memory
Controller

Adeindoy udisa(

FPGA Digital Design Flow

oo

LOGIC_CELL_COMB

e

B el m

FHEEHE

Hjji (RNl 1]

Download

1

Er T = System
| B - : o & | .
. ‘ Architecture
[2 i ::::) °
s : Exploration
———————————————
BHeur EEnfmls ¥R
1 Full Adder SystemVeriTog Modulg
2 Bmodule fulladder(input logic a, b, cin,
3 L output logic s, cout);
4 logic p, g; // internal nodes
5
6 assign p = a A b;
g assign g = a & b;
9 i = in; H
10 g::lgﬂ ioutp;gc]n(p & cin); De5|gn
11 endmodule
12
-— Entry &
a | s~output
10_IBUF ——{DATAB COMBOUT e s .
bt Synthesis
b ! LOGIC_CELL_COMB
10_IBUF cout~0
cin~input IDAT/ cout~output
danD— o} L—paTAB coMBOUT D cout
10_IBUF 10_0BUF

Implementation [

Bitstream to FPGA

[Mapping]

L 1

Place and Route
(Design Fitting)

|

[Generate Programming Bitstream File]

p
System Specification]4——
U

Marketing Requirement Document

-~
p
Architectural Design Architecture Model and System
(SystemC Models) ” Usecase Validation
k § -
4)
Hardware Implementation Specification
(Micro-architecture Specification)
\ J \
1 \
c > Functional Verification
Digital Design (SystemVerilog RTL Models or (RTL Simulation)
Schematic captures) -
S Y, J
1 w
~
. Post Synthesis
Synthesis <:> Simulation
J
J

| =

Post Implementation
Timing Simulation

This step is only
required if final
product is FPGA
based platform

_______ 1____.________________________________

21

4

Simulation Speed

FPGA Synthesis

(J FPGA Synthesis is a 3-step process
= Design check and resource association

= Optimization
= Technology mapping

SystemVerilog .sv source files
BT =€ nrhm 0w ¥E=

1 Full Adder SystemVerilog Modul¢q

2 mEmodule fulladder(input Tlogic a, b, cin,
. output logic s, cout);
4 logic p, g; // internal nodes

5

6 assign p = a A b;

7 assign g = a & b;

8

9 assign s = p A cin;
10 assign cout = g | (p & cin);

11 endmoduTe

FPGA Synthesis 3-Step Flow

Step 1 : Design check and resource association

= Check for syntax errors in design source files
= Check if design provided can be synthesized
= Associate design to logic cell and blocks

1

= Eliminate redundant logic

Step 2 : Optimization
= Reduce logic
= Make design smaller and faster (best Fmax)

!

Step 3 : Technology Mapping

= Connect design to logic

= Predict and add timing estimates
= Create output reports and netlists

Credit : FPGA 101, G.R. Smith

Snythesized output netlist

a~input s5~0
TAA s~output

[

b~input \TAC 10_OBUF
b ! o| LOGIC_CELL_COMB
10_IBUF cout~0
cin~input DATAA cout~output

10_IBUF TAC 10_OBUF
LOGIC_CELL_COMB

22

"
o

FPGA Implementation
O Mapping:

= Compares the resources specified in input synthesized netlist and checks for available resources of the
target FPGA

o Insufficient resources will result in errors !!
= Divides the netlist circuit into sub-blocks to fit into FPGA logic blocks

[Place and Route

= Also known as design fitting. This is the most challenging and intensive part of FPGA design flow
= Physically places the sub-blocks in netlist generated from mapping stage to FPGA logic blocks
= Routes signals between logic blocks considering timing constraints

= FPGA tools provides choices to user to specify fitting criteria’s and based on that logic will be mapped to
FPGA resources. These fitting criteria are:

* High performance (speed), Smallest area, Low power, Balanced

(J Generate programming file
* Generate bitstream file or IEEE-1532 configuration file (.isc).

= Download to FPGA either through JTAG or downloaded to non-volatile memory on FPGA board which
upon reset will automatically program FPGA

FPGA Netlist Viewer

J FPGA Tools provides netlist viewer post synthesis and implementation :
= RTL netlist viewer
= Post-fitting netlist viewer
= Post-mapping netlist viewer

SystemVerilog .sv source files
BB &85 EE mer 0w B 2

1 Full Adder System\er11og Modu Te]
2 Emodule fulladder(input logic a, b, cin,
3 - output logic s cout);
é logic p, g; // internal nodes
6 assign p = a A b;
7 assign g = a & b
8
9 ass1gn s =p A Cci
10 assign cout — a | (p & cind;
11 endmodule
12
132
RTL Netlist Viewer . Post-Fitting Netlist Viewer
g ~j t ~0
a D cout~1 a~inpu 5
a D—E DATAA s~output
o[> Dj>—D cout 10 IBUF DATAB COMBOUT s
P b~input DATAC IO _OBUF
y— cout~0 b[>— 9 LOGIC_CELL_COMB
: | S 10_IBUF cout~0
cin D J D_DJ s cin~input DATAA cout~output
cin D—E DATAB COMBOUT cout
I0_IBUF DATAC I0_OBUF

LOGIC CELL COMB
24

Versus

Advantages :

Low Time-to-market

High flexibility

High reusability

High 10 count and massive parallelism
High NRE (Net Return of Engineering Cost)

Dis-advantages :

Low Performance

High power consumption

High Area

Higher Cost (can cost 4K USD)
Cannot implement Analog blocks

Application : Whenever fast turnaround time required with
performance tradeoff. HW (SOC/IP) prototyping to prove concept,
validate design, early SW validation platform, FPGA based Clouds, ML

Advantages :
= High Performance
= Low power consumption
= |Low Area

= High volume production due to lower
cost per unit

= Canimplement Analog blocks

Dis-advantages :

= High Time-to-market

= Low flexibility

= Low reusability

= Low NRE
Application : High Speed designs, high
packing density, used in larger numbers (CPU,

Modern mobile chipsets, Analog devices,
Gigabit Serdes, etc) 25

Simulator and Logic Synthesis For FPGA Designing

Modelsim Simulator user
interface

Launch compilation and
simulation commands

//

Testbench

(SystemVerilog
Code)

DUT

(SystemVerilog

RTL Code)

N

Simulator

/

B 7T =

Both Simulator and Logic Synthesis
uses same SystemVerilog (SV) Code

O Simulator is used to verify intended
behavior of SV code

O Synthesis is used to generate
hardware from SV code

/

)

l Waveform trace file
Valus at | PP® 40.9 Hl].lll ns 1200 'IEI]I] |
Name uu;s :,JS
w Clock BO
E Fes B1 [T 1
| sal B0 IEERIRERERER IR
(I} AddSub B0 Ll e
| @ A 50 [G1L D Gik-1D Gl RS a1 GEEEEEEE BEEEEEED
| @ 6 50 U CIE0 YB3 0 X120 7ot a0
x| @ e s I i BB

Enrfh 0w Y ES
1 // Full Adder SystemVerilog Module
2 modu1e fulladder(input logic a, b, cin,
3 output Togic s cout);
4 logic p, g; // internal nodes
5
6 assign p = a A b;
7 assign g = a & b;
8
"’IQ,JV assign s = p A cin;
0 assign cout = g | (p & cin);
11 endmodule
12
13

SystemVerilog .sv RTL source code

a[>

Altera Quartus
Prime

l

Launch Synthesis
commands

Constraints
(frequency,
area, power)

DUT
(SystemVerilog

RTL Code)

N

Logic
Synthesis

/

)

l Gate Netlist

g

o[>

cin[_»

> - .—| N > cout
Py

S

What is Simulation ?

1 Simulation is the process of verifying the functionality and timing of a design
against its original specifications
= Example : Does 32-bit ALU logic implemented using SystemVerilog perform operations such

as addition, subtraction, multiplication, comparison correctly as per the intended
specification ?

 Digital Designer engineer performs functional simulation using a simulator at
various stages of design development flow :

= Prior to logic synthesis, simulation is performed to verify functionality of HDL (SystemVerilog)
description of design

= After synthesis, gate level simulation is performed on the gate-netlist design generated by
synthesis.

o Gate level simulation is performed to verify design timing and re-check functionality of
design

What is the role of a simulator ?

J Simulator role is approximating reality. Design realized in virtual environment !
= Simulator creates an artificial universe that mimics the future real circuit design

= |t lets the designer interact with the design before it is manufactured, and enables designer
to correct flaws and problem earlier

o Simulator takes SystemVerilog code or a gate level netlist and simulates design using
stimulus provided in testbench code

o It generates waveforms to provide approximate behavior of design prior to
manufacturing.

= Note :

o Simulator does not correct automatically incorrect description of the design written in
HDL

o Itis the responsibility of verification engineer, not the simulator, to apply legal set of
stimulus to design under test based on real world usecase.

Waveform

(Jd Waveform is a plot of a signal over period of
time

J Waveform is generated by the simulator at
the end of RTL or gate level simulation

 Designer and Verification engineers review
waveforms to analyze the behavior of a
design and also to perform debugging of
potential bug in the HDL code

Lets review
waveform to see
if SV design

Waveform generated by
Modelsim Simulator at \ . Debugging &
end of simulation

SystemVerilog (SV) RTL Code & Testbench Code

// SystemVerilog code for 4-bit counter
module counter (input clk, input clear, output [3:0] count);
always @ (posedge clk) begin
if (clear==1)
count <= 9;
else
count <= count + 1;
end
endmodule

ModelSim
Simulator

Broad
System-Level Standards

& RTL Design Support

g

VOI‘“OQ » ‘4\
Systemveriiog | ModelS/m || vHoLs

SystemC
\
\‘\ /
e

Advanced

working like a
4-bit counter

4 dk
£ dear
B—“. count
:

rsor 1 350 ns

LI P

(O J2 13 Y4 ¥s[¥ ¥7 I8 Yo 110 11 12 113 114 Y15)0 T!uj 1 12013 ¥4 Is

L] J3 0 Y T

Learning Resources on FPGA Architecture

1 Basics of programmable logic : FPGA Architecture (Intel Altera)
" https://www.youtube.com/watch?v=jbOjWp4C3V4

[Altera FPGA Architecture :

= https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp
/wp-01003.pdf

= https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-ii-
gx/aiigx 51001.pdf

30

https://www.youtube.com/watch?v=jbOjWp4C3V4
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-ii-gx/aiigx_51001.pdf

