
Lecture-3 : SystemVerilog Modeling Abstractions

ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Modeling Styles in SystemVerilog

❑ SystemVerilog modeling language supports
three kinds of modeling styles:
▪ Behavioral level (Algorithmic level)

▪ Dataflow level

▪ Gate level (Structural level)

▪ Switch level (Transistor level)

❑ RTL (Register Transfer Level) model utilizes
combination of behavioral and dataflow styles

2

Design View Point Through Y-Diagram

Gate Level

Switch Level

Dataflow Level

Behavioral Level

Increase in
Simulation
Speed

Increased
accuracy &

details

Increased
Complexity

Combinational vs Sequential Circuit

3

Combinational Circuit
❑ At any instance of time present value of outputs

depends solely on present value of inputs

❑ Does not store any intermediate values and hence
does not require any memory elements

❑ Does not require any clock signal

❑ Behavior is described by set of output functions

❑ Examples: Full Adder, half adder, comparator,
multiplexer, decoder, encoder, etc

Combinational Circuitinputs (x) outputs
y=f(x)

Combinational
Circuit

inputs (x) outputs y

Memory Elements

Clock

next state =
f(x, curr state)

Current
State

Internal Inputs

Sequential Circuit
❑ Present values of outputs are determined from

present values of inputs and past state (i.e.
sequence of past inputs or known as past outputs)

❑ Behavior is described by set of output functions
and set of next states functions stored in memory

❑ It contains memory elements to store past outputs
and requires clock signals

❑ Examples: Flipflop, Latch, Shift Register, etc

❑ Hardware circuit is specified in terms of its expected behavior or an algorithm
without concern of internal hardware or gate level implementation
▪ Full functionality of a complex circuit specified in C type natural language description

▪ It is not a cycle timing accurate representation of hardware circuit

▪ It may contain algorithms, Boolean equations, truth tables (Tables of input and
output values)

▪ Models at this abstraction level are also called as bus-functional or algorithmic
models

▪ This is the highest level of abstraction provided by SystemVerilog HDL

▪ It is primarily used to model sequential circuits, but can also be used to model pure
combinatorial circuits

❑ Advantage :

▪ Behavioral models are faster to simulate compared to gate level models since it has
less timing details

4

Behavioral Level Modeling

❑ Behavioral level description of a 2-to-1 Multiplexer using if/else conditional statement

5

Behavioral level Modeling

module mux_2x1_behavioral(// Start of module

input logic in0, in1
input logic sel,
output logic out

);
always@(sel or in0 or in1)
begin

if(sel == 1)
out = in1;

else
out = in0;

end
endmodule:mux_2x1_behavioral // End of module

Post Synthesis

Primary port declarations with
directions and data type of
each port specified

Functionality of 2-to-1
Multiplexer using
if/else statement
within “always”
procedural block

2-to-1 Multiplexer

▪ always block waits until either of the signal “sel” or “in0” or “in1” specified in its
sensitivity list, its value changes and only then if/else statements within always
block will get executed

▪ “always” block continuously runs and only terminates when simulation ends

Sensitivity list

❑ Behavioral level description of a 2-to-1 Multiplexer using case statement

6

Behavioral level Modeling

module mux_2x1_behavioral (
input logic in0, in1,
input logic sel,
output logic out

);
always @(sel or in0 or in1)
begin

case(sel)
1'b0 : out = in0;
1'b1 : out = in1;
default : out = 1’bx;

endcase
end

endmodule

2-to-1 Multiplexer
implementation

using case
statement

Post Synthesis

2-to-1 Multiplexer ▪ Case statement tries to match “sel” value with each case expression statements in
the order it is specified. First matching case expression statement will execute.

❑ Most behavioral modeling is done using two important constructs: initial and always
▪ Behavioral statements appear only inside initial and always blocks

▪ A module may contain an arbitrary number of initial or always blocks and may contain one or more
procedural statements within them.

▪ All of the initial and always blocks execute concurrently (i.e. to model parallelism)

❑ Behavioral model can utilize full set of constructs in SystemVerilog including both
synthesizable and non-synthesizable constructs
▪ If behavioral model of a design is developed with intent to generate hardware from it then it should

only use synthesizable constructs such as :
• Synthesizable : always, assign, generate, for, if/else, case, fixed size arrays, interfaces and more

▪ If behavioral model of a design is developed for architectural exploration or for verification purpose
only with *no intent* to generate hardware from it, then it can use both non-synthesizable and
synthesizable constructs such as :
• Non-Synthesizable : initial, class, dynamic arrays, wait, delays, fork/join, continue, break, and more
• Synthesizable : always, assign, generate, for, if/else, case, fixed size arrays, interfaces and more

7

Behavioral Level Modeling

❑ In dataflow modeling, module is designed by describing how data flows through a circuit
▪ This is a higher level of abstraction then the gate level hence no hardware implementation

details required
▪ Data processing within design is specified using logical equations or boolean expressions.
▪ Dataflow modeling style is mainly used to describe combinational circuits.
▪ Dataflow models can be translated into a gate level design through process of logic synthesis

❑ In dataflow modeling most of the design is implemented using continuous assignments (assign),
which are used to drive a value onto a net.
▪ Continuous assignments are made using the keyword assign.
▪ Syntax Format : assign net_name = expression

Example :
wire A, B, C;
assign C = A & B; // Any change in A or B will result in change in C.

❑ About continuous “assign” statement :
▪ Continuous statements are always active statements.
▪ It is called continuous assignment because in example above, wire “C” is continuously

updated whenever A or B changes.
▪ The RHS expression (A & B) is evaluated only when one of its operands changes. Then the

result is assigned to the LHS net (C).
8

Dataflow Modeling

❑ Dataflow description of a 2-to-1 Multiplexer (MUX)

9

Dataflow Modeling

module mux_2x1_dataflow (
input logic in0,in1,sel,
output logic out);
assign out = (!sel && in0) || (sel && in1);

endmodule

Multiplexer representation using logical expression.
No gates or hardware implementation details specified.

Post Synthesis

❑ Design module is specified in terms of logic gates and interconnections between
these gates.
▪ Resembles a schematic drawing with components connected with signals

▪ Low level of modeling abstraction with focus on hardware implementation details and
accuracy which includes :
o Actual logic gates used to design the circuit

o Timing such as gate propagation delays, rise delays, fall delays, turn-off delays, etc

▪ This is closer to the physical implementation of design than the behavior and data flow
model

10

Gate Level Modeling

11

Gate level Modeling
❑ SystemVerilog supports modeling digital logic using built-in gate-level primitives

▪ Gate level primitives can closely approximate silicon implementation

• Specify delays associated with transistors that would be in an actual silicon with a high degree
of accuracy

▪ Gate-level models are provided by the silicon manufacturing vendor in case of ASIC or by the target
FPGA vendor in case of FPGA implementation

❑ Gatelevel description of a 2-to-1 Multiplexer

12

Gate level Modeling

module mux_2x1_gatelevel(
input logic in0, input logic in1, input logic sel,
output logic out);
wire a0, a1, inv_sel;
not G1(inv_sel, sel);
and G2(a0, in0, inv_sel);
and G3(a1, in1, sel);
or #(1, 1) G4(out, a0, a1); // 1 time unit of rise and fall delay

endmodule

Mux representation using
built-in gate level primitives

Post Synthesis

13

Gate level Modeling
❑ Types of delays which can be specified in each primitive

▪ Rise delay is associated with a gate output transition to 1 from another value (0 or X)

▪ Fall delay is associated with a gate output transition to 0 from another value (1 or 0)

▪ Turn-off delay is associated with a gate output transition to the high impedance value
(Z) from another value (1 or X)

t_rise

0, X

1

t_fall

1, X

0

t_turn_off

1, X
Z

❑Example :
▪ bufif0 #(2, 3, 4) b1(out, in, control) ; // t_rise=2, t_fall=3, t_turn_off=4 time units

▪ and #(2, 3) g2 (out, in1, in2) ; // t_rise=2, t_fall=3 time units

▪ nand #(3) g1 (out, in1, in2) ; // all delay values are 3 time units

▪ buf b1(a, b) ; // t_rise=0, t_fall=0, t_turn_off=0 time units

14

Gate level Modeling
❑ Example : AND Gate

▪ The output follows, after the specified delay, the inputs according to the AND function

▪ Delay (#10 here) is the input to output delay – known as “transport delay”

❑ The delay is given in a unit-less “time-base” (Example : #10, #20, #1)
▪ Using `timescale directive, designer of SystemVerilog code can assign it to any desired time during

simulation, e.g. `timescale 1ns/1ns or `timescale 10ps/10ps

❑ If no delay is specified, then a change on an input to the gate will be immediately reflected
on the output of the gate. Also know as zero delay gate level model

❑ In Switch level modeling, design module is implemented in terms of transistors,
switches, storage nodes, and the interconnections between them
▪ This is the lowest modeling level of abstraction provided by SystemVerilog

▪ This level of modeling can closely represent actual silicon implementation hence it is the
most accurate representation of design

▪ At this level designer requires knowledge of transistor-level implementation details.

▪ Slowest to simulate compared to behavioral, RTL, dataflow and gate level models

▪ Only digital systems can be modeled at switch level using Standard SystemVerilog

▪ Digital simulators does not accurately reflect transistor behavior

▪ Switch-level modeling is not used in FPGA design flows
15

Switch Level Modeling

16

Switch Level Modeling

Switch Type SystemVerilog Switch Primitives

Ideal MOS switches pmos, nmos, cmos

Resistive MOS switches rpmos, rnmos, rcmos

Ideal Bidirectional switches tran, tranifo0, tranif1

Resistive Bidirectional switches rtran, rtanif0, rtranif1

Power and Ground nets supply1 and supply0

Pullup and Pulldown pullup and pulldown

❑ SystemVerilog supports two types of switch primitives for switch level modeling :

▪ Ideal switch :

• when switch is closed(ON), there is zero resistance, hence no signal degradation

▪ Resistive switch :

• when switch is closed(ON), there is low resistance, hence signal degradation

• when signal passes resistive switch signal strength decreases

• Resistive switch primitives in SystemVerilog starts with “r” such as rnmos, rpmos

❑ Some of the Switch primitives supported in SystemVerilog are mentioned in table below:

17

Switch Level Modeling
❑ nmos, pmos and cmos switches

Switch Instance Synax :

nmos <instance name> (out, in, ncontrol);

pmos <instance name> (out, in, ncontrol);

cmos <instance name> (out, in, ncontrol);

❑ Switch level description of a 2-to-1 Multiplexer

18

Switch Level Modeling

in0

in1

out

sel

module mux_2x1_switchlevel (
input in0, input in1, input sel, output out

);
wire w;
inv G1(w, sel); // invertor switch model instantiated

cmos C1(out, in0, w, sel);
cmos C2(out, in1, sel, w);

endmodule

SV Built-in switch
primitives instantiated

Invertor
modeled
using
switch
primitives

module inv(out, in);
output out;
input in;
supply1 pwr;
supply0 gnd;
pmos (out, pwr, in);
nmos (out, gnd, in);

endmodule

pwr

gnd

in out

▪ When sel=0 then w = 1 and cmos C1 is ON and cmos C2 is OFF hence in0 will propagate to out
▪ When sel=1 then w = 0 and cmos C1 is OFF and cmos C2 is ON hence in1 will propagate to out

2-to-1 Multiplexer Functional Simulation Result

19

❑ Simulation Waveform of behavioral and dataflow model

❑ Simulation output log

Vsim > run 500ns
time=000, in=00 sel=0 out=0
time=150, in=01 sel=0 out=1
time=200, in=10 sel=0 out=0
time=250, in=00 sel=1 out=0
time=300, in=01 sel=1 out=0
time=350, in=10 sel=1 out=1

When sel == 0, “in0” propagates to “out” When sel == 1, “in1” propagates to “out”

❑ RTL modeling utilizes combination of behavioral and dataflow modeling
▪ Register: Storage element like Flipflop, Latches

▪ Transfer: Transfer data between input, output and register using combinational logic.

▪ Level: Level of Abstraction modeled using HDL

❑ RTL modeling is used to describe both sequential and combinational logic circuits

❑ Two primary constructs for RTL modeling :

▪ continuous assignments (assign) and always procedural blocks (always)

❑ RTL is a cycle accurate model of a design unlike behavioral model

❑ RTL (Register-Transfer-Level) model is always synthesizable unlike behavioral model

❑ Similar to behavioral model, RTL models :
▪ Does not contain low level hardware implementation details

▪ Simulate faster than gate-level and switch-level models, making it possible to verify larger and
more complex designs in simulation

▪ Complex designs can be quickly and concisely modeled using RTL modeling technique
compared to gate level modeling

20

RTL (Register Transfer Level) Modeling

❑ Behavioral model describes what intended design does. An RTL model
describes how it does it.
▪ For example, an RTL half adder must describe the registers for the operands, the carry

method, and a clock. It may be done in various ways to balance speed and accuracy
▪ For a behavioral adder, A + B = C is sufficient. A + B = C also simulates a lot faster than

all those gates and registers in the RTL model.

❑ Behavioral model looks similar to RTL model since both uses always procedural
always blocks, however they differ :
▪ RTL model executes its programming statements in a single clock cycle, or in zero

cycles if combinational logic.
▪ Behavioral block can take arbitrary number of clock cycles to execute is statements.

❑ RTL (Register-Transfer-Level) modeling is used with intent to generate hardware
hence it is always synthesizable unlike behavioral model
▪ Behavioral model though mimics the desired functionality of the hardware but not

necessarily synthesizable since it can be used for verification or architecture
exploration purpose

21

Behavioral vs RTL Level Modeling

❑ Behavioral level description of Full Adder

22

Behavioral Model of Full Adder

module fulladder_behavioral(
input logic a, b, cin,
output logic sum, cout

);
assign {cout, sum} = a + b + cin;

endmodule

Full
Adder

a

b
sum
cout

cin

Post Synthesis

❑ Dataflow level description of Full Adder

23

Dataflow level Model of Full Adder

module fulladder_dataflow(
input logic a, b, cin,
output logic sum, cout

);
logic p, q;
assign p = a ^ b;
assign q = a && b;
assign sum = p ^ cin;
assign cout = q || (p && cin);

endmodule

Full
Adder

a

b
sum
cout

cin

Full Adder Truth Table

Boolean Expression for Full Adder
based on Truth Table

sum = ((a xor b) xor cin);
cout = (a and b) or ((a xor b) and cin)

Post Synthesis

w0

w1

w2

❑ Gate level description of Full Adder

24

Gatelevel Model of Full Adder

module fulladder_gatelevel(
input logic a, b, cin,
output logic sum, cout

);
wire w0, w1, w2;
xor x0(w0, b, a);
and a0(w1, b, a);
and a1(w2, w0, cin);
or r0(cout, w2, w1);
xor x1(sum, w0, cin);

endmodule

Full
Adder

a

b
sum
cout

cin

Full Adder Truth Table

Boolean Expression for Full Adder
based on Truth Table

sum = ((a xor b) xor cin);
cout = (a and b) or ((a xor b) and cin)

Post Synthesis

FullAdder Simulation Result

25

❑ Waveform (Same results for behavioral, dataflow and gatelevel model simulation)

❑ Simulation output log
Vsim > run 500ns
time=000 a=0 b=0 c=0 sum=0 cout=0
time=150 a=1 b=0 c=0 sum=1 cout=0
time=200 a=0 b=1 c=0 sum=1 cout=0
time=250 a=1 b=1 c=0 sum=0 cout=1
time=300 a=0 b=0 c=1 sum=1 cout=0
time=350 a=1 b=0 c=1 sum=0 cout=1
time=400 a=0 b=1 c=1 sum=0 cout=1
time=450 a=1 b=1 c=1 sum=1 cout=1

❑ Using Quartus Alter Prime Software:
▪ Develop 2-to-4 decoder behavioral model and dataflow model

▪ Synthesize 2-to-1 mux, 2-to-4 decoder and full adder behavioral, dataflow and gate-level
models

▪ At the end of synthesis :

o Review RTL and post mapping netlist schematics

o Make observations between RTL and post mapping schematics

o Review FPGA resource allocation logs generated from Altera Quartus

❑ Using Modelsim Software:
▪ Run simulation using testbench and design for mux, decoder and full adder

▪ Review waveform for each design in Modelsim waveform viewer.

o Observe if any difference in behavior of behavioral vs dataflow vs gate-level modes

o Provide only 1 simulation waveform per design if the simulation results are same

❑ Note:
▪ Intent of this first assignment is to get familiar using Altera and Modelsim tools, review

synthesis and simulation results.

▪ SystemVerilog design and testbench code will be provided to students on Piazza.
26

Homework Assignment-1

