
SystemVerilog Operators and Number System

ECE-111 Advanced Digital Design Project

SystemVerilog Data Value Set

❑ For hardware modeling, SystemVerilog uses a four-value set to represent actual value that
can occur in silicon

❑ These 4-Value Sets are described in the table below :

❑ Note :
▪ Values of ‘0’, ‘1’, and ‘Z’ are an abstraction of values that can exist in actual silicon

▪ The value of ‘X’ is not an actual silicon value. It is only has meaning in Simulation.

▪ Simulators use ‘X’ value to indicate uncertainty in how actual hardware would behave under specific
conditions if there are registers/wires not initialized or there exists unintentional multiple driver on a wire or
a register 2

Value Abstract State

0 ▪ Represents an abstract digital low state

1 ▪ Represents an abstract digital high state

Z ▪ Represents abstract digital high-impedance state (tri-stated signal)
▪ In multi-driver circuit, a value of 0 or 1 will override a Z

X ▪ Represents unknown value or indicates uncertainity (Simulation Only)
▪ Indicates a wire or a register is uninitialized, or it indicates unintentionally

same wire is driven simultaneously to different logic 0 or 1 by different
drivers (also known as multi-driver circuit)

= 1

= 1

= 0

= 0

= 1

= 1

1

0

1

1

X
= X

0

1

Multiple Driver on Bus
with ‘1’ and ‘0’ driven
at same time, causing ‘X’

Tri-State Signal

SystemVerilog vs Verilog Data Types

3

Type Mode State Size Sign SV/Verilog Representation

reg integer 4-state user-defined unsigned Verilog Equivalent to var logic

logic integer 4-state user-defined unsigned SystemVerilog Infers a var logic except for
input/inout ports wire logic
is inferred

shortint integer 2-state 16-bit signed SystemVerilog Equivalent to var bit[15:0]

int integer 2-state 32-bit signed SystemVerilog Equivalent to var bit[31:0].
Synthesis compilers treats as
4-state integer type

longint integer 2-state 64-bit signed SystemVerilog Equivalent to var logic[63:0]

byte integer 2-state 8-bit signed SystemVerilog Equivalent to var logic[7:0]

bit integer 2-state user-defined unsigned SystemVerilog default 1-bit size

integer integer 4-state 32-bit signed Verilog Equivalent to var logic[31:0]

real floatingpoint 2-state - - Verilog Cannot be synthesized

shortreal integer 2-state - - SystemVerilog Cannot be synthesized

realtime floatingpoint 2-state - - Verilog Cannot be synthesized

time Integer 4-state 64-bit unsigned Verilog Cannot be synthesized

SystemVerilog Operators

4

How to represent numbers in SystemVerilog

5

x and z are not case-sensitive.

SystemVerilog Number System

6

Arithmetic Operators

7

Binary Operators Description Expressions

+ , - Add , Subtract c = a + b ; d = a – b;

* , / Multiply , Divide c = a * b; c = a/b;

% Modulus c = a % b;

** Power operator c = a ** b;

Unary Operator Description Expressions

+ Unary (sign) plus c = +a; d = b/+a;

- Unary (sign) minus c = -a; d = b * -a;

If a = 0 and b < 0 then for c = a**b, value of c is x.

Unary signed operators are used to assign a positive or negative sign to the operand.
By default, an operand is assumed to have ‘+’ sign.

Arithmetic Operators : Binary Operator Examples

8

// Initial Values:

a = 4’b001;
b = 4’b0100;
d = 6; e = 4; f = 2;

// Assuming data type: logic [3:0] x, y, z, u, v ;

▪ assign x = a + b; // Adds a and b , evaluates to 4’b0101
▪ assign y = b – 3; // Subtracts 3 from b, evaluates to 4’b001
▪ assign z = d/e; // Divides d by e, evaluates to 4’b001, fractional part is truncated
▪ assign v = f**f; // Calculates f to the power of f, v evaluates to 4’b0100
▪ assign u = e**f; /* Calculates e to the power of f, u evaluates to 4’b0000. Since u is 4 bits wide,

4 least significant bits of the result of e**f (i.e. 16) get assigned to u. */

NOTE: If any operand has a value of x, then the result of any of these expressions is x, as if an
operand’s value is not fully known, the result cannot be known either.

Arithmetic Operators : Unary Operator Examples

9

➢ Unary arithmetic operators are used to assign a sign to an operand.
➢ For example,

a = 4; b = 2;
x = -a; // x will hold value of -4
y = -a + -b; // y will hold value of -6

➢ Negative numbers are represented in 2’s complement
➢ For example,

logic [3:0] nibble, out0;
logic [7:0] out1;
initial begin

nibble = -1; // i.e. 4’b1111
end
assign out0 = -nibble; // i.e. 4’b0001
assign out1 = nibble; //i.e. 8’b0000_1111 GOTCHA!

➢ A sized negative number is not sign extended when assigned to a variable, unless signed
variables are used

Arithmetic Operators

10

Arithmetic Operators : Signed Arithmetic

11

➢ Use negative numbers only as type integer or real
➢ Avoid the use of <#bits>’<base><number> in expressions. These are converted to unsigned 2’s

complement numbers, which leads to unexpected results in simulation and synthesis.

➢ For example,
byte in; // signed 8-bit variables
int out1, out2; // signed 32-bit variables
initial begin

in = -5;
out1 = in + 1; // OK!: -5 + 1 = -4 (literal 1 is signed)
out2 = in + 1'b1; // GOTCHA! : -5 + 1'b1 = 252 (literal 1’b1 is unsigned)

end

➢ An expression that has ANY unsigned operands will always result in an unsigned value

Arithmetic Operators

12

Logical Operators

13

Logical Operator Description Expressions

&& Logical AND operation c = a && b;

|| Logical OR operation c = a || b;

! Logical NOT – Unary c = !b; d = !(a && b);

➢ Logical operators evaluate variables or expressions to a 1 bit result:
▪ 0, if the relation is false
▪ 1, if the relation is true
▪ x, if the comparison is ambiguous

➢ Logical operators consider their operands to be Boolean values
➢ Operands not equal to zero are equivalent to 1 or True. Operands with value zero are false or 0
➢ An ambiguous value may evaluate to unknown (1’bx)

If a = 4’bxx00, then !a is x
If a = 4’b1x00, then !a is 0 GOTCHA!

➢ Expressions with &&, || are evaluated from left to right

If at least a single bit’s value is 1, then irrespective of other
bit values, a is anything but 0. Hence, logical negation of a

non-zero is ZERO.

Logical Operators : Examples

14

➢ Logical operation on variables : if a = 3 and b = 0, then,
▪ (a && b) // evaluates to 0, since b is zero
▪ (b || a) // evaluates to 1, since a is a non-zero value
▪ !a // evaluates to 0, since NOT of a non-zero value is zero
▪ !b // evaluates to 1, since NOT of a zero is one

➢ Logical operation on unknown values : if a = 2’b0x and b = 2’b10, then,
▪ (a && b) // evaluates to x

➢ Logical operation on expressions : if a = 2 and b = 3, then,
▪ (a == 2) && (b == 3) // evaluates to 1, since both the comparison expressions are true
▪ (a == 2) && !b // evaluates to 0, since !b is 0 or false

Relational Operators

15

Relational Operator Description Expressions

> Greater than c = a > b;

< Less than c = a < b;

>= Greater than or equal to c = a>= b;

<= Less than or equal to c = a<=b;

➢ Relational or comparison are binary operators that:
▪ return a logical 1 if expression is true
▪ return a logical 0 if expression is false
▪ x, if any operand has an unknown (x) bit value

➢ For example, if a = 4, b = 3, x = 4’b1010, y = 4’b1101, z = 4’b1xxx, then:
▪ (a <= b) // evaluates to logical 0, since the expression is false
▪ (a > b) // evaluates to logical 1, since the expression holds true
▪ y >=x // evaluates to logical 1
▪ y < z // evaluates to x

Relational Operators

16

These operators are
expensive and slow at
gate-level!
Let’s look at an example.

Bitwise Operators

17

Relational Operator Description Expressions

& Bitwise AND c = a & 3;

| Bitwise OR c = a | b;

~ Bitwise NOT c = ~ a;

^ Bitwise XOR c = a ^ b;

&~ Bitwise NAND c = a &~ 5;

|~ Bitwise NOR c = 2 |~ 4;

^~ Bitwise XNOR c = a ^~ b;

➢ Bitwise operators operate bit by bit
➢ Results in x, 1 or 0 bit values
➢ Mismatched length operands are zero extended
➢ x and z are treated the same

Bitwise Operators : Examples

18

➢ Examples:
if a = 3’b101, b= 3’b011, c = 3’b1x0, then:
▪ y = a & b; // 3’b001
▪ y = a | c ; // 3’b1x1, since 0 | x = x
▪ y = a & c; // 3’b100, since 0 & x = 0
▪ y = a ^ c; // 3’b0x1, since 0 ^ x = x; also, 1 ^ x = x
▪ y = ~b; // 3’b100
▪ y = ~c; // 3’b0x1, since ~x = x (unknown/ambiguous)

➢ Difference between logical AND, OR, NOT and bitwise AND, OR NOT :
if a = 3’b100, b= 3’b010, c = 3’b1x0
▪ a & b // evaluates to 0
▪ a && b // evaluates to 1
▪ ~a // evaluates to 3’b011 or 3
▪ !a // evaluates to 0
▪ ~c // evaluates to 3’b0x1
▪ !c // evaluates to 0

WHY?
a and b are both non-zero values. If we do a logical AND

of to non-zero (TRUE) values, then result is 1(True).

Reduction Operators

19

➢ Reduction operators are unary operators, in the sense that they work on 1 vector operand
➢ Performs bit-wise operation on all bits of the operand
➢ Works from right to left, bit by bit
➢ Returns a 1-bit result

➢ For example, if x = 4’b1010
&x // equivalent to 1 & 0 & 1 & 0; results in 1’b0
|x // equivalent to 1 | 0 | 1 | 0; results in 1’b1
^x // equivalent to 1 ^ 0 ^ 1 ^ 0; results in 1’b0

Relational Operator Description Expressions

& AND c = &a;

| OR c = |b;

^ XOR c = ^b;

&~ NAND c = &~ a;

|~ NOR c = |~ b;

^~ XNOR c = ^~ b;

Reduction Operators

20

A good example of usage of XOR reduction operator is parity generation.

Equality Operators

21

Equality Operator Description Expressions

== Logical equality, result may be unknown (a == b) ; c = (a==b)

!= Logical inequality, result may be unknown (a != b) ; c = (a != b)

=== Case equality, including x and z a === b

!== Case inequality, including x and z a ==! b;

➢ Equality operators return a logical 1 if expression is true or 0 if expression is false
➢ Operands are compared bit by bit
➢ If operands are of unequal length, zero filling is done.
➢ For logical equality/inequality operators, if any operand has an x or z bit, result is x (unknown)
➢ Case equality/inequality operators match x and z bits of the operands as well.

➢ For example, a = 4’b1x01, b = 4’b1x01, m = 4’b1010, n = 4’b1101, o = 4’b1xxx, then:
▪ (a == b) // evaluates to x, since both operands have x
▪ (a === b) // evaluates to logical 1, since x bits match as well
▪ n != m // evaluates to logical 1, since n and m aren’t equal
▪ n !== o // evaluates to logical 1

➢ NOTE: === and !== synthesize to == and != in design

Shift Operators

22

Relational Operator Description Expressions

>> Logical shift right c = a >> 3;

<< Logical shift left c = b << 3;

>>> Arithmetic shift right c = a >>> 1;

<<< Arithmetic shift left c = a <<< 1;

➢ Shifts the vector to a side by the given number of positions

➢ Logical shift operators fill the vacant bit positions with zeros

➢ Arithmetic shift left operator fills the vacant bit positions that pop up on the left with zeros

➢ Arithmetic shift right operator fills the vacant bit positions on the right with 0, if result variable is
unsigned. If result variable is signed, then vacant bits are filled with the MSBit (i.e. the sign bit)

Shift Operators : Examples

23

➢ Logical shift operators: if a = 4’b1100, b=4’b01xx, then,
▪ c = a << 2; // c = 4’b0000
▪ c = a >> 3; // c = 4’b0001
▪ c = b >> 1; // c = 4’b001x

➢ Arithmetic shift operators:
logic signed [3:0] x, y, z;
logic [3:0] u;
initial begin

x = 4’b1010;
end
y = (x >>> 2); // y will have value 4’b1110
u = (x >>> 2); // u will have value 4’b0010 GOTCHA!
z = (z <<< 2); // z will have value 4’b1000

Concatenation and Replication Operators

24

Concatenation Operator : Example

25

Conditional Operator
❑ Widely used operator in RTL modeling. Also known as Ternary operator !!

❑ Similar to if-else statement

❑ Conditional operator often behaves like a hardware multiplexer

❑ Can be used in continuous assign statement and also within always procedural blocks

If “p” is true then assign value of “a” to “out” otherwise assign value of “b” to “out”

❑ Conditional expression listed before “?” is evaluated first as true or false
▪ If evaluation result is true, then true expression is evaluated

▪ If evaluation result is false, then false expression is evaluated

▪ If evaluation result is unknown “x”, then conditional operator performs bit by bit comparison
of the two possible return values
• If corresponding bits are both 0, a 0 is returned for that bit position

• If corresponding bits are both 1, a 1 is returned for that bit position

• If corresponding bits differ or if either has “x” or “z” value, an “x” is return for that bit position 26

conditional operator Syntax Example Usage

? : conditional expression ? true expression : false expression assign out= p ? a : b

Conditional Operator
❑ Example :

logic sel, mode;

logic [3:0] a, b, mux_out;

assign mux_out = (sel & mode) ? a : b;

Note : bitwise and (“&”) will return value “x” if one of the operand is “x” and another operand is “1”

27

Scenario Value of
“sel”

Value of
“mode”

Value of
“a”

Value of
“b”

Result of
conditional expr

(sel & mode)

Final value assigned to
“mux_out”

1 1’b1 1’b1 4’b0101 4’b1110 True (1) 4’b0101

2 1’b0 1’b1 4’b0101 4’b1110 False (0) 4’b1110

3 1’b1 1’bx 4’b0101 4’b1110 Unknown (x) 4’bx1xx

4 1’b1 1’bx 4’b011x 4’b0z10 Unknown (x) 4’b0x1x

Precedence of Operators in SystemVerilog

28

Highest Precedence

Lowest Precedence

