SystemVerilog Operators and Number System

ECE-111 Advanced Digital Design Project
UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

SystemVerilog Data Value Set

 For hardware modeling, SystemVerilog uses a four-value set to represent actual value that
can occur in silicon

Tri-ft;te Signal

. . open closed
(d These 4-Value Sets are described in the table below : |@\ A a-a
Abstract State .
0 = Represents an abstract digital low state
. . Multiple Driver on Bus
1 = Represents an abstract digital high state Enable0 = 1 bamte With ‘1’ and ‘0’ driven
. A at same time, causing ‘X’
Z = Represents abstract digital high-impedance state (tri-stated signal) 1 —1 1 et 1
= |n multi-driver circuit, a value of 0 or 1 will override a Z o
Enable1,=1 Data-Out = X
X = Represents unknown value or indicates uncertainity (Simulation Only) 0
= Indicates a wire or a register is uninitialized, or it indicates unintentionally 0 —! T‘}Me
same wire is driven simultaneously to different logic 0 or 1 by different \ Enable2,=0 | ~ Buffers
drivers (also known as multi-driver circuit) 1 _y /EnahleE -1
Enable 3 ,=0 Data-Out
[Note: . >y ‘\/L
= Values of ‘0’, ‘1’, and ‘2" are an abstraction of values that can exist in actual silicon

\/

= The value of ‘X’ is not an actual silicon value. It is only has meaning in Simulation.

= Simulators use ‘X’ value to indicate uncertainty in how actual hardware would behave under specific
conditions if there are registers/wires not initialized or there exists unintentional multiple driver on a wire or
a register 2

SystemVerilog vs Verilog Data Types

SV/Verilog

Representation

reg integer 4-state user-defined | unsigned Verilog Equivalent to var logic

logic integer 4-state user-defined | unsigned SystemVerilog | Infers a var logic except for
input/inout ports wire logic
is inferred

shortint integer 2-state 16-bit signed SystemVerilog | Equivalent to var bit[15:0]

int integer 2-state 32-bit signed SystemVerilog | Equivalent to var bit[31:0].
Synthesis compilers treats as
4-state integer type

longint integer 2-state 64-bit signed SystemVerilog | Equivalent to var logic[63:0]

byte integer 2-state 8-bit signed SystemVerilog | Equivalent to var logic[7:0]

bit integer 2-state user-defined | unsigned SystemVerilog | default 1-bit size

integer integer 4-state 32-bit signed Verilog Equivalent to var logic[31:0]

real floatingpoint | 2-state - - Verilog Cannot be synthesized

shortreal | integer 2-state - - SystemVerilog | Cannot be synthesized

realtime | floatingpoint | 2-state |- - Verilog Cannot be synthesized

time Integer 4-state 64-bit unsigned Verilog Cannot be synthesized

SystemVerilog Operators

[] bit-select or part-select
() parenthesis
! logical negation logical
-~ negation bit-wise
& reduction AND reduction
| reduction OR reduction
~& reduction NAND reduction
~| reduction NOR reduction
- reduction XOR reduction
~A or A~ reduction XNOR reduction
¥ unary (sign) plus arithmetic
- unary (sign) minus arithmetic
{} concatenation concatenation
{n replication replication
- multiply arithmetic
/ divide arithmetic
% modulus arithmetic
+ binary plus arithmetic
- binary minus arithmetic
<< shift left shift
>> shift right shift
> greater than relational
>= greater than or equal to relational
< less than relational
<= less than or equal to relational
== case equality equality
e case inequality equality
& bit-wise AND bit-wise
A bit-wise XOR bit-wise
| bit-wise OR bit-wise
&& logical AND logical
I logical OR logical
' & conditional conditional

How to represent numbers in SystemVerilog

N’ BXxX
8’ b0000_0001

m (N) Number of bits

" Expresses how many bits will be used to store the value

m (B) Base
" Can be b (binary), h (hexadecimal), d (decimal), o (octal)

m (xx) Number

® The value expressed in base, apart from numbers it can also have X and Z
as values.

= Underscore can be used to improve readability

X and z are not case-sensitive.

SystemVerilog Number System

Verilog Stored Number Verilog Stored Number
4°b1001 1001 4°d5 0101

8’ blool 0000 1001 12°hFA3 1111 1001 0011
8’ boooo_1001 0000 1001 8’012 00 001 010

8’ bxXeX1zZ1 XX0X 1771 4’ h7 0111

‘bo1 0o .. 0001 12°ho (51557151515 % [%]%]%)

Arithmetic Operators

+, - Add, Subtract c=a+b;d=a-b;
* Multiply , Divide c=a*b;c=a/b;
% Modulus c=a%b;

** Power operator c=a**b;

If a=0and b <0 then for c = a**b, value of cis x.

+ Unary (sign) plus c=+a; d=Db/+a;

- Unary (sign) minus c=-3,d=b*-3;

Unary signed operators are used to assign a positive or negative sign to the operand.
By default, an operand is assumed to have ‘+ sign.

Arithmetic Operators : Binary Operator Examples

// Initial Values:

a =4’b001;
b =4'b0100;
d=6;e=4;f=2;

// Assuming data type: logic [3:0] x, Y, z, u, v;

= assignx=a+b; //Addsaandb, evaluatesto 4’'b0101

= assigny=b-—3; //Subtracts 3 from b, evaluates to 4’b001

= assignz=d/e; //Dividesd by e, evaluates to 4’b001, fractional part is truncated

= assignv="f**f; //Calculates fto the power of f, v evaluates to 4’b0100

= assign u=e**f; /* Calculates e to the power of f, u evaluates to 4’b0000. Since u is 4 bits wide,
4 least significant bits of the result of e**f (i.e. 16) get assigned to u. */

NOTE: If any operand has a value of x, then the result of any of these expressions is x, as if an
operand’s value is not fully known, the result cannot be known either.

Arithmetic Operators : Unary Operator Examples

Unary arithmetic operators are used to assign a sign to an operand.
For example,

a=4;,b=2;

X = -a; // x will hold value of -4

y=-a+-b; //ywill hold value of -6

Negative numbers are represented in 2’s complement
For example,
logic [3:0] nibble, outO;
logic [7:0] outl;
initial begin
nibble = -1; //ie. 4’b1111
end
assign out0O = -nibble; //i.e. 4°b0001
assign outl = nibble; //i.e. 8b0000 1111 GOTCHA!

A sized negative number is not sign extended when assigned to a variable, unless signed
variables are used

Arithmetic Operators

Modulus operator yields the remainder from division of two numbers
It works like the modulus operator in C
Modulus is synthesible

3 % 2; J/evaluates to 1

16 %4 4; //evaluates to O

-7 % 2; //evaluates to -1, takes sign of first operand
7 % -2; //evaluates to 1, takes sign of first operand

>

Arithmetic Operators : Signed Arithmetic

Use negative numbers only as type integer or real

» Avoid the use of <#bits>’<base><number> in expressions. These are converted to unsigned 2’s

>

complement numbers, which leads to unexpected results in simulation and synthesis.

For example,

byte in; // signed 8-bit variables
int outl, out2; // signed 32-bit variables
initial begin
in =-5;
outl =in+1; // OK!: -5+ 1 =-4 (literal 1 is signed)

out2 =in+1'b1; // GOTCHA! : -5 + 1'b1 = 252 (literal 1°b1 is unsigned)
end

» An expression that has ANY unsigned operands will always result in an unsigned value

Arithmetic Operators

» The logic gate realization depends on several variables
» coding style
» synthesis tool used
» synthesis constraints (more later on this)

» So, when we say "+, Is it a...

» ripple-carry adder
» look-ahead-carry adder (how many bits of lookahead to be used?)
» carry-save adder

When writing RTL code, keep in mind what will eventually be needed
Continually thinking about structure, timing, size, power

12

Logical Operators

&& Logical AND operation c=a&&b;
| | Logical OR operation c=all|b;
! Logical NOT — Unary c=!b; d=1(a && b);

» Logical operators evaluate variables or expressions to a 1 bit result:
= (, if the relation is false
= 1, if the relation is true
= ¥, if the comparison is ambiguous

» Logical operators consider their operands to be Boolean values
» Operands not equal to zero are equivalent to 1 or True. Operands with value zero are false or 0
» An ambiguous value may evaluate to unknown (1’bx)

If a = 4’bxx00, then !a is x If at least a single bit’s value is 1, then irrespective of other

If a = 4’b1x00, then la is 0 € GOTCHA! — bit values, a is anything but 0. Hence, logical negation of a
non-zero is ZERQO.

» Expressions with &&, | | are evaluated from left to right
13

Logical Operators : Examples

» Logical operation on variables : if a=3 and b =0, then,
= (a&&b) //evaluatesto O, since b is zero
= (b||a) //evaluatesto 1, since aisa non-zero value
= I3 // evaluates to 0, since NOT of a non-zero value is zero
= Ib // evaluates to 1, since NOT of a zero is one

» Logical operation on unknown values : if a = 2’b0Ox and b = 2’b10, then,
= (a&&b) //evaluates to x

> Logical operation on expressions : if a=2 and b = 3, then,
= (a==2)&&(b==3) //evaluatesto 1, since both the comparison expressions are true
= (a==2)&&!b // evaluates to O, since !b is O or false

Relational Operators

> Greater than c=a>b;
< Less than c= a<b;
>= Greater than or equalto c=a>=b;
<= Less than or equal to c = a<=b;

» Relational or comparison are binary operators that:
= return alogical 1 if expression is true
= return alogical O if expression is false
= ¥, if any operand has an unknown (x) bit value

» For example,ifa=4,b=3,x=4'b1010,y =4'b1101, z = 4’b1xxx, then:
= (a<=b) //evaluates to logical O, since the expression is false
= (a>b) //evaluates to logical 1, since the expression holds true
"y >=x // evaluates to logical 1
" y<7 // evaluates to x

15

Relational Operators

al0.71>

These operators are 1071 Dy
expensive and slow at
gate-level!

Let’s look at an example.

module less_than (
input [7:0] a,b,
output Z
);
assign z = (a <b) ? 1'b1l : 1'b0;

endmodule: less_than

LessThanO~4

DATAA
DATAB
DATAC
DATAD
DATAE

COMBOUT

a[1]~input
1 o
L
10_IBUF LessThano~1
b[1]~input DATAA
1 o DATAB COMBOUT
10_IBUF DATAC
a[0]~input DATAD
L]
LOGIC_CELL_COMB
10_IBUF a[3]~input
b0}t
- ! o 10_IBUF LessThan0~2
10_IBUF b[3]~input DATAA
x o] DATAB
10_IBUF DATAC COMBOUT
a[2]~input DATAD
2 I ol
1 o DATAE
10_IBUF LOGIC_CELL_COMB
b[2]~input a[4]~input
o 9
I0_IBUF 10_IBUF
[b[4]~input
[> I 0
, a[7]~input 10_IBUF
[0 LessThanO~0
10_IBUF DATAA
a[6]~input DATAB
d 1 o DATAC COMBOUT|—
I0_IBUF DATAD
a[5]~input DATAE
; I o — DATAF
10_IBUF LOGIC_CELL COMB
b[7]~input LessThan0~3
L o DATAA
I0_IBUF DATAB
b[6]~input DATAC COMBOUT
I 0 DATAD
10_IBUF DATAE
b[5]~input DATAF
> 0 LOGIC_CELL_COMB
10_IBUF

LOGIC_CELL_COMB

z~output

I0_OBUF

—L %

[>z

16

Bitwise Operators

& Bitwise AND c=a&3;

| Bitwise OR c=a]lb;
~ Bitwise NOT c="a;

. Bitwise XOR c=a’b;
&~ Bitwise NAND c=a&"5;
|~ Bitwise NOR c=2|~4
fu Bitwise XNOR c=a”’b;

» Bitwise operators operate bit by bit

» Results in x, 1 or 0 bit values

» Mismatched length operands are zero extended
» x and z are treated the same

Bitwise Operators : Examples

» Examples:
if a=3"b101, b=3'b011, c = 3’b1x0, then:
= y=a&b; // 3’b001
" v=alc; // 3’b1x1, since 0 | x =X
"= y=a &c; // 3’b100, since0 & x=0
= y=ahlg // 3’b0x1, since0 A x=x; also, 1 *x =x
= y=~b; // 3'b100
= y="(; // 3’b0x1, since ~x = x (unknown/ambiguous)

» Difference between logical AND, OR, NOT and bitwise AND, OR NOT :
if a=3"b100, b=3'b010, c = 3’'b1x0

WHY?
" a&b // evaluates to 0 a and b are both non-zero values. If we do a logical AND
" a&&b //evaluatestol of to non-zero (TRUE) values, then result is 1(True).
= ™3 // evaluates to 3’'b011 or 3
= I3 // evaluates to O
= ~C // evaluates to 3’bOx1

= Ic // evaluates to O

Reduction Operators

& AND c = &a;

| OR c=|b;
A XOR c = b;
&~ NAND c=&"™a;
|~ NOR c=|~b;
A~ XNOR c=""Db;

» Reduction operators are unary operators, in the sense that they work on 1 vector operand
» Performs bit-wise operation on all bits of the operand

» Works from right to left, bit by bit

» Returns a 1-bit result

» For example, if x =4’b1010
&x //equivalentto1 & 0 & 1 & 0; results in 1’b0
|x //equivalenttol | 0| 1| O; resultsin 1’bl
Ax [/ equivalentto 120" 170;resultsin 1'b0

19

Reduction Operators

A good example of usage of XOR reduction operator is parity generation.

module parity8 (
input [7:0] d_1n,
output parity_out
)i

assign parity_out = Ad_in;
endmodule: parity8

d_in[7..0]

WideXorO

D—Z} parity out

Equality Operators
Cquality Operator | Description | bxpressions____

== Logical equality, result may be unknown (a ==Db); c = (a==b)
I= Logical inequality, result may be unknown (al=b);c=(a!=b)
=== Case equality, including x and z a===b

|== Case inequality, including x and z a==Ib;

» Equality operators return a logical 1 if expression is true or O if expression is false

» Operands are compared bit by bit

» If operands are of unequal length, zero filling is done.

» For logical equality/inequality operators, if any operand has an x or z bit, result is x (unknown)
» Case equality/inequality operators match x and z bits of the operands as well.

» For example, a =4’b1x01, b =4’b1x01, m =4'b1010, n =4’b1101, o = 4’b1xxx, then:
= (a==b) //evaluatesto x, since both operands have x
» (a===b) //evaluates to logical 1, since x bits match as well
= pnl=m // evaluates to logical 1, since n and m aren’t equal
» nl==0 //evaluates to logical 1

» NOTE: === and !== synthesize to == and != in design »

Shift Operators

>> Logical shift right c=a>>3;

<< Logical shift left c= b<<3;
>>> Arithmetic shift right c=a>>>1;
<<< Arithmetic shift left c=a<<<l1;

» Shifts the vector to a side by the given number of positions
» Logical shift operators fill the vacant bit positions with zeros
» Arithmetic shift left operator fills the vacant bit positions that pop up on the left with zeros

» Arithmetic shift right operator fills the vacant bit positions on the right with 0O, if result variable is
unsigned. If result variable is signed, then vacant bits are filled with the MSBit (i.e. the sign bit)

22

Shift Operators : Examples

» Logical shift operators: if a = 4’b1100, b=4'b01xx, then,

" c=a<<2; // c = 4’b0000
= c=a>>3; // c =4’b0001
= c=b>>1; // c =4’b001x

» Arithmetic shift operators:
logic signed [3:0] x,y, z;
logic [3:0] u;
initial begin
x=4’b1010;
end
y=(x>>>2); // vy will have value 4’b1110
us=(x>>>2); // u will have value 4’b0010 € GOTCHA!
Z=(z<<<2); // z will have value 4’b1000

Concatenation and Replication Operators

Concatenation Operator {,}
» Provides a way to append busses or wires to make busses
» [he operands must be sized

» Expressed as operands in braces separated by commas

//let a = 1’bl, b = 2°b00, ¢ = 2’b10, d = 3’b110

y = {b, ¢} // y is then 4’°b0010

y = {a, b, ¢, d, 3’b001} // y is then 11°b10010110001
y = {a, b[0], c[1]} // y is then 3’b101

Replication Operator { { } }
» Repetitive concatenation of the same number

» Operands are number of repetitions, and the bus or wire

//let a = 1’bl, b = 2°b00, c = 2°b10, d = 3’b110
y = { 4{a} } // y = 4’bl111

y = { 4{a}, 2{b} } // y = 8’b11110000

y = { 4{a}, 2{b}, ¢ } // y = 8’b1111000010

24

Concatenation Operator : Example

module concat (

input [3:0] a,

input [3:0] b,

output [5:0] out

assign out = {af[z2:1], b};
endmodule : concat

al[3..0]
b[3..0]

2:1
3:0

out[5..0]

25

Conditional Operator

J Widely used operator in RTL modeling. Also known as Ternary operator !!
 Similar to if-else statement
1 Conditional operator often behaves like a hardware multiplexer

1 Can be used in continuous assign statement and also within always procedural blocks

?: conditional expression ? true expression : false expression assignout=p?a:b

If “p” is true then assign value of “a” to “out” otherwise assign value of “b” to “out”

ll‘?”
o

1 Conditional expression listed before is evaluated first as true or false
= |f evaluation result is true, then true expression is evaluated
= |f evaluation result is false, then false expression is evaluated

= |f evaluation result is unknown “x”, then conditional operator performs bit by bit comparison
of the two possible return values

* If corresponding bits are both 0, a 0 is returned for that bit position

* If corresponding bits are both 1, a 1 is returned for that bit position
26

owu.”n uyn
Z

 If corresponding bits differ or if either has “x” or

a.,n

value, an “x” is return for that bit position

Conditional Operator

J Example :
logic sel, mode;

logic [3:0] a, b, mux_out;

assign mux_out = (sel & mode) ? a : b;

Value of Value of | Value of Value of Result of Final value assigned to
“sel” “mode” “a” “b” conditional expr “mux_out”
(sel & mode)
1 1'bl 1'bl 4’b0101 4'b1110 True (1) 4'b0101
2 1’b0 1’b1 4'b0101 4’b1110 False (0) 4'b1110
3 1’bl 1"bx 4’b0101 4’b1110 Unknown (x) 4’bx1xx
4 1’'b1 1’bx 4’'b011x 4’b0z10 Unknown (x) 4'b0x1x

Note : bitwise and (“&”) will return value “x” if one of the operand is “x” and another operand is “1”

27

Highest Precedence
A

Lowest Precedence

+-1~&~& |~ A~ A~ ++ —-unary

~A A~ (binary)

&&

? . (conditional operator)
= += = *= [= U= &= A= I: CC= BH= L=
>>>= =/ <=

28

