
Lecture-5 : SystemVerilog Data Types, Continuous Assignment
Statement and Conditional Operator

ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

SystemVerilog Data Types

2

❑ SystemVerilog data can be specified using two
properties :
▪ Data kind and data type.

▪ Data kind refers to usage as net type or variable type.

▪ Data type refers to possible values a data kind can take.

❑ Any data can be declared using the syntax:

<data_kind> <data_type> <literal_name>

example, var logic carry_out;

wire logic [2:0] sum;

Note :

▪ carry_out is declared as a variable which can store 4-
state values

▪ var specification before data type is optional (logic carry_out;)

▪ sum is declared as a net which can store 4-state values

▪ logic specification after wire is optional (wire [2:0] sum;)

Synthesizable

SystemVerilog Data Types
❑ SystemVerilog data types are divided into two main groups:

▪ Nets and Variables

▪ Distinction comes from how they are intended to represent different hardware elements

❑ Nets and Variables both have a data type
▪ Data Type indicates value system of the net or the variable,

• A net or variable is either 2-state (0,1) or 4-state (0,1,X,Z)

• Example : wire is a 4-state net, reg and logic are 4-state variables, bit is a 2-state variable

❑ Data types are used by simulators and synthesis compilers to determine how to store and
process changes on that data

▪ Store as 4-state or 2-state value

❑ Data types are used in RTL modeling to indicate desired silicon behavior, such as

▪ Example, ALU should be integer based or floating-point based

3

Net
❑ Net represents a physical connection between structural entities, such as between

gates or between modules.
▪ Think like a plain wire connecting two elements in a circuit.

❑ Net does not store value

❑ Net is continuously driven.
▪ Its value is derived from what is being driven from its driver(s)

❑ wire is probably the most common type of a Net
▪ some other net data kinds are tri, wand, wor, supply0, supply1, triand, trior.

4

Module Tx Module Rx

Primary Ports

net /wire

dindout

Module Tx dout port is connected to din port of
Module Rx through a net (wire)

w0

w1

w2

netPrimary Input ports

Primary Output ports

Rules for Wire Data Kind

❑ wire elements are used as inputs and outputs within an actual module declaration.

❑ wire elements must be driven by something, and cannot store a value without being driven.

❑ wire elements cannot be used as the left-hand side of an “=“ or “<=“ statement within an
always block.

❑ wire and logic elements are the only legal type on the left-hand side of an assign statement.

❑ wire elements can only be used to model combinational logic !
5

module example_wire_reg
(input wire A, B, C, // 1-bit input wire

output reg d, // 1-bit reg variable
output wire result);

always@(B or C) begin
d = B | C; // LHS has to be either reg or logic. “d” cannot be a wire data kind !

end

assign result = A & B; // LHS of assign should be either wire or logic. “result” can be either a wire or logic data kind !
endmodule: example_wire_reg

Variable
❑ Represents data storage elements in a circuit

▪ Provides temporary storage for simulation, does not mean actual storage in silicon

▪ It holds last value assigned to it until the next assignment

❑ reg is probably the most common variable data type

▪ reg is generally used to model hardware registers

o Although reg can also represent combinatorial logic, like inside an always@(*) block).

▪ reg default value is ‘X’

▪ Must be used when modeling sequential elements such as shift registers, etc !

❑ Synthesizable variables in SystemVerilog are :
▪ logic, reg, bit, byte, integer, shortint, int, longint -- Can be used in design code and in

testbench code !

❑ Non-synthesizable variables in SystemVerilog are :

▪ real, shortreal, time, realtime -- Can only be used in testbench code not in design code !
6

Rules for Reg Data Type

❑ reg elements can be used as outputs within an actual module declaration.

❑ reg elements cannot be used as inputs within an actual module declaration.

❑ reg and logic is the only legal type on the left-hand side of “=“ or “<=“ statement with an
always block

❑ reg cannot be used on the left-hand side of an continuous assign statement.

❑ reg can be used to create registers when used in conjunction with always@(posedge clock)
blocks. Therefore, reg be used to create both combinational and sequential logic ! 7

module example_wire_reg
(input wire A, B, clock, d, // 1-bit input wire

output reg q, // 1 bit reg variable
output wire result);

always@(posedge clock) begin
q = d; // LHS has to be either reg or logic. “q” can be either reg or logic and it cannot be a wire data kind !

end

assign result = A & B; // LHS of assign should be either wire or logic. “result” cannot be a reg data kind in Verilog !
endmodule: example_wire_reg

Replace wire and reg data types with logic in SystemVerilog !

❑ In SystemVerilog design modeling use logic everywhere in place of a wire and a reg

▪ Pass the burden to language compiler/simulator to infer correct data type internally !

❑ logic elements can be used as inputs, outputs, inouts within an actual module declaration.

❑ logic can be used on left-hand side of “=“ or “<=“ statement with an always block

❑ logic can be used on the left-hand side of a continuous assign statement.

❑ logic can be used to model both combinational and sequential hardware logic elements
8

module example_logic
(input logic A, B, clock, d, // language will automatically infer these inputs as a wire !

output logic q, // language will automatically infer output “q” as a reg !
output logic result // language will automatically infer output “result” as a wire !

);
always@(posedge clock) begin

q = d; // language will automatically infer logic “q” as a reg !
end

assign result = A & B; // language will automatically infer output logic “q” as a wire !
endmodule: example_logic

Summary on Wire, Reg and Logic Data Types

9

wire

• wire is used for
connecting different
modules and other logic
elements within module

• It can not store values.

• It can be driven and read.

• wire data type is used on
left hand side (LHS) in
the continuous
assignments and can be
used for all types of ports.

reg

• reg is a data storage
element. Just declaring
variable as a reg, does not
create an actual register
but it can store values

• reg variables retains value
until next assignment
statement.

• reg data type variable is
used on left hand side
(LHS) of blocking/non-
blocking assignment
statement inside in am
always blocks and in
output port types

logic

• logic is an extension of
reg data type. It can be
driven by both continuous
assignment or
blocking/non blocking
assignment (= and <=).

• logic can also be used in
all type of port
declarations (input,
output and inout)

• logic was introduced in
SystemVerilog and not
support in older Verilog!

SystemVerilog and Verilog Data Types

10

Type Mode State Size Sign SV/Verilog Representation

reg integer 4-state user-defined unsigned Verilog Equivalent to var logic

logic integer 4-state user-defined unsigned SystemVerilog Infers a var logic except for
input/inout ports wire logic
is inferred

bit integer 2-state user-defined unsigned SystemVerilog default 1-bit size

byte integer 2-state 8-bit signed SystemVerilog Equivalent to var logic[7:0]

integer integer 4-state 32-bit signed Verilog Equivalent to var logic[31:0]

shortint integer 2-state 16-bit signed SystemVerilog Equivalent to var bit[15:0]

int integer 2-state 32-bit signed SystemVerilog Equivalent to var bit[31:0].
Synthesis compilers treats as
4-state integer type

longint integer 2-state 64-bit signed SystemVerilog Equivalent to var logic[63:0]

real floatingpoint 2-state - - Verilog Cannot be synthesized

shortreal integer 2-state - - SystemVerilog Cannot be synthesized

realtime floatingpoint 2-state - - Verilog Cannot be synthesized

time Integer 4-state 64-bit unsigned Verilog Cannot be synthesized

Continuous Assignment
❑ Continuous assignment statement drives a right-hand side (RHS) expression onto a net or a variable

in left-hand side (LHS)

▪ Continuous assignment statements RHS expression evaluation starts from simulation time 0 and
continues until end of the simulation !

❑ It is called continuous assignment because in example above, wire “c” is continuously updated
whenever a or b changes. Any change in a or b will result in change in c.

❑ This can be used for modeling combinational logic

❑ The assignment may be delayed by the specified amount
▪ Synthesis compiler ignores the delay if specified, since it expects zero-delay RTL models

▪ If no delay is specified, the assignment happens at the current simulation time

❑ Verilog required LHS of an assign to be a net and not a variable. SystemVerilog allows both in LHS ! 11

Syntax :
assign #(delay) net or a variable = expression;

Example :
wire a, b, c, d;
assign c = a + b; // assignment to ‘d’ happens immediately at current simulation time
assign #2 d = a - b; // assignment to ‘d’ is delayed by two-time units

Continuous Assignment
❑ Module can contain any number of continuous assign statements and each assign

statement runs concurrently.
▪ These multiple assign statements are not executed in any specific order with respect to each

other

▪ Changing order of multiple continuous statement within module has not implication in
synthesis results

▪ Example : Half adder with multiple continuous assignment statements

12

module half_adder(
input logic a, b,
output logic sum, cout

);
// multiple continuous assign statements
assign sum = a ^ b;
assign cout = a & b;

endmodule: half_adder

Both assign statements
will run in parallel

and

xor

Half Adder

Continuous Assignment
❑ There are two types of continuous assignment statement :

▪ Explicit continuous assignments
• Example : assign sum = a + b; // assign keyword is explicitly specified

• Supports both net and variable on LHS

▪ Implicit net declaration continuous assignments
• Example : wire[2:0] sum = a + b; // continuous nature is inferred even though assign is not explicitly specified

• Implicit continuous assignments can only have nets on LHS

❑ Continuous assignment statement cannot be used in initial block and always procedural block
▪ initial block runs only once during simulation, it exits once “end” statement is hit whereas always block can runs

continuously (or multiple times)

❑ Continuous assignment however it can be inferred if used in always procedural block.

13

Initial begin
assign sum = 0;

end

assign statements within initial
procedural block is not allowed

always@(a,b) begin
assign sum = a + b;

end

assign statements within always
procedural block is not allowed

// if a or b value changes then result of a + b
is assigned to sum
assign sum = a + b;

always@(a or b) begin
sum = a + b;

end

Behaves like continuous
assignment statement

Continuous Assignment
❑ Synthesis compiler will give error when same variable is driven in both always@ procedural

block and driven by continuous assignment statement.

❑ Synthesis compiler will give error when same variable is driven from multiple continuous
assignment statements

14

module illegal_usage(
input logic a, b,
output logic c

);
assign c = a ^ b;
always@(a,b) begin

c = a + b;
end

endmodule: mux

logic ‘c’ cannot be assigned from both always
block and through assign statement since this
will result in multiple driver on net ‘c’

module illegal_usage(
input logic a, b, q,
output logic c

);
assign c = a ^ b;
assign c = b | q;

endmodule: mux

logic ‘c’ cannot be assigned from multiple
continuous assignment statements this will
result in multiple driver on net ‘c’

Continuous Assignment
❑ LHS of continuous assignment statement can be :

▪ Scalar, 1-bit, net or a variable or a user defined data type

▪ Vector net or a variable
• If LHS is a smaller vector size than RHS, then MSB’s of the vector on RHS will be truncated to the

size of vector on LHS.

• If LHS is a larger vector size than RHS, then RHS vector will be extend with zero’s in its MSB’s.

❑ LHS of continuous assignment statement cannot be an unpacked structure or unpacked array

❑ RHS of continuous assignment statement can be an expression comprising of :

▪ Nets, Variables (registers), Function call, Concatenation operations, Bit or Part selects
15

Example :
wire[4:0] A, B; // packed array
wire[5:0] C, D; // packed array
wire E [4:0]; // unpacked array
// LHS is smaller width than RHS
assign A = C; // MSB of wire C[4] will be truncated

// LHS is larger width to larger width
assign D = B; // ‘0’ will get assigned to MSB of wire D[4]

assign E[0] = A[0]; // LHS cannot have unpacked array

Continuous Assignment Statement

❑ RHS of continuous assignment statement can have function call

16

module ex_add(
input logic[1:0] a, b, c,
output logic[1:0] q

);

// Function add3
function logic[1:0] add3(input logic [1:0] x, y, z)
begin

add3 = x + y + z;
end
endfunction

// Function add3 called on RHS of assign statement
assign q = add3(a, b, c);
endmodule: ex_add

Continuous Assignment
❑ If RHS expression has an array reference with

variable index then synthesis compiler will
generate a mux.

17

module mux(
input logic[7:0] address,
input logic[2:0] select,
output logic out

);
// non-constant index in address will result in a mux
assign out = address[select];

endmodule: mux

module simple_wire(
input logic[7:0] address,
input logic[2:0] select,
output logic out

);
// constant index in address will result in a wire
assign out = address[1];

endmodule: simple_wire

❑ If RHS expression has an array reference with a
constant index then synthesis compiler will
generate just a wire and not a mux.

Conditional Operator
❑ Widely used operator in RTL modeling. Also known as Ternary operator !!

❑ Similar to if-else statement

❑ Conditional operator often behaves like a hardware multiplexer

❑ Can be used in continuous assign statement and also within always procedural blocks

If “p” is true then assign value of “a” to “out” otherwise assign value of “b” to “out”

❑ Conditional expression listed before “?” is evaluated first as true or false
▪ If evaluation result is true, then true expression is evaluated

▪ If evaluation result is false, then false expression is evaluated

▪ If evaluation result is unknown “x”, then conditional operator performs bit by bit comparison of
the two possible return values
• If corresponding bits are both 0, a 0 is returned for that bit position

• If corresponding bits are both 1, a 1 is returned for that bit position

• If corresponding bits differ or if either has “x” or “z” value, an “x” is return for that bit position 18

conditional operator Syntax Example Usage

? : conditional expression ? true expression : false expression assign out= p ? a : b

Conditional Operator
❑ Example :

logic sel, mode;

logic [3:0] a, b, mux_out;

assign mux_out = (sel & mode) ? a : b;

Note : bitwise and (“&”) will return value “x” if one of the operand is “x” and another operand is “1”

19

Scenario Value of
“sel”

Value of
“mode”

Value of
“a”

Value of
“b”

Result of
conditional expr

(sel & mode)

Final value assigned to
“mux_out”

1 1’b1 1’b1 4’b0101 4’b1110 True (1) 4’b0101

2 1’b0 1’b1 4’b0101 4’b1110 False (0) 4’b1110

3 1’b1 1’bx 4’b0101 4’b1110 Unknown (x) 4’bx1xx

4 1’b1 1’bx 4’b011x 4’b0z10 Unknown (x) 4’b0x1x

mux

Conditional Operator

❑ Example : Conditional operator mapped to a multiplexor and a registered output
▪ Conditional operator to choose between two inputs for input to a register

▪ Conditional operator inside always block

▪ Synthesis compiler will map conditional operator to four multiplexers, one for each bit of
din1 and din2 input and there will be 1 flipflop for each bit

20

module muxed_register
#(parameter WIDTH=4)
(input logic clk,
input logic select,
input logic [WIDTH-1:0] din1, din2,
output logic [WIDTH-1:0] dout

);

// store din1 or din2 based on select value
always@(posedge clk) begin
dout <= select ? din1 : din2;

end

endmodule: muxed_register

Hardware
generated after

synthesis

After synthesis of conditional operator,
a multiplexer logic will be inferred

Due to use of “<=“ assignment
within always block and having

posedge event on a signal “clk” in
sensitivity list, synthesis tool

inferred a FlipFlop

Conditional Operator

❑ Example : Conditional operator mapped to tri-state buffer
▪ Synthesis compiler will not always map conditional operator to a multiplexor

▪ Conditional operator can also be mapped to tri-state buffer based on how conditional
operator is used and its operand data type and its values.

assign target = condition ? expression : 1'bz;

21

module adder_with_tri_state_buffer
#(parameter WIDTH=4)
(input logic enable,
input logic[WIDTH-1:0] op1, op2,
output logic[WIDTH-1:0] result

);

// tri state buffer
assign result = enable ? (op1 + op2) : 4’bz;

endmodule: adder_with_tri_state_buffer

Hardware
generated

after
synthesis

condition

expression

Tri-state buffer inferred based on 1’bz assignment

mux

Conditional Operator

❑ Example : Conditional operator mapped to a mux
▪ Changing false expression value from 4’bz to 4’b0 synthesis compiler infers

multiplexor instead of tri-state buffer

22

module adder_with_mux
#(parameter WIDTH=4)
(input logic enable,
input logic[WIDTH-1:0] op1, op2,
output logic[WIDTH-1:0] result

);

// multiplexor with adder output
assign result = enable ? (op1 + op2) : 4’b0; // changing 4’bz to 4’b0 will infer a mux

endmodule: adder_with_mux

Hardware generated
after Synthesis

Self-Reading
Nets, Variables, Integer, Time, Real Data Types and Wand Data Kind

23

Verilog vs SystemVerilog Data Types

24

❑ Strict about usage of wire and reg data
type. (example : wire has to be used on
LHS of continuous assignment statement
and reg cannot be used for input and
inout port declarations)

❑ Simplified usage by introducing logic data
type which can be used for port and
signal declaration. Replacing reg and wire
usage.

❑ For synthesizable variables supports only
4-state (0,1,X,Z) variables

❑ Synthesizable 2-state (0,1) data type
added

❑ 2-state variable can be used in testbench
code where X,Z are not required

❑ 2-state variable in RTL Model improves
simulation performance and 50% reduced
memory usage as compared to 4-state
variables

Verilog System Verilog

Use of 2-State Variables with Caution !

❑ Avoid all 2-state data types in RTL modeling
▪ 2-state data types can hide design bugs !

▪ It can lead to simulation vs synthesis mismatches

o Synthesis treats bit, byte, shortint, int and longint 2-state data types as a 4-state
reg variable. Simulation treats as 2-State variable.

o Simulation might start with a value 0 in each bit whereas synthesized
implementation might power-up with each bit a 0 or 1.

o Any x or z driven values on 2-state variables, are converted to 0. These data types
are initialized to 0 at the start of simulation and may not trigger an event for active
low signals.

▪ Exception : use 2-state int data type variable for the iterator variable in for-loops
where X and Z is not required.

25

Nets and Variables Inference

26

❑ General Inference rules in SystemVerilog for nets and variables :
▪ bit is 2-state variable

▪ wire is a 4-state net

▪ reg is a 4-state variable

▪ logic is a 4-state net and/or variable

▪ logic infers a net if used in input or inout port declaration

▪ logic infers a variable if used in output port declaration

▪ logic infers a variable if used to declare internal signals within module and does not have wire
specified before logic

▪ reg cannot be used in input and inout port declaration. It can be used in output port
declaration.

▪ default port datatype is wire if not declared explicitly when declaring ports

▪ default datatype of signals declared within module is a logic type variable if not explicitly
defined

▪ var keyword before logic, bit and reg data type for internal signal declaration is optional since
by default these three are variables.

▪ For nets declared as wire for internal signals within module, it is treated as a logic type net
even though it is not explicitly specified.

net

net inout

outputinput

reg or net

net

reg or net

Module

net

Nets and Variables Inference

27

module top(

// module ports with inferred types
input in1, // infers a 4-state net. Infers wire type net since net type is not explicitly declared
input logic in2, // infers a 4-state net. The logic infers a net if used in input or inout type port declaration
input bit in3, // infers a 2-state variable. The bit always infers a variable
output out1, // infers a 4-state net. Infers wire type net since net type is not explicitly declared
output logic out2, // infers a 4-state variable. The logic infers a variable if used in output type port declaration
output bit out3 // infers a 2-state variable. The bit always infers a variable
output reg out4 // infers a 4-state variable. The reg always infers a variable and it can only be used for output port types

);

// internal signals with inferred and explicit types
bit fault; // infers a 2-state variable. The bit always infers a variable.
logic d1; // infers a 4-state variable. The logic infers a variable if used in signal declaration if not qualified with wire
logic [3:0] d2; // infers a 4-state variable.
reg [7:0] d2; // explicitly declares a 4-state variable.
wire [2:0] w1; // explicitly declares a net, infers 4-state logic
wire logic [2:0] w2; // explicitly declares a 4-state net
var [3:0] d3; // explicitly declares a variable, infers logic.
var logic [3:0] d4; // explicitly declares a 4-state variable. var specification is optional.

endmodule: top

Integer
❑ Integer is a general purpose 4-state variable of register data type

▪ For synthesis it is used mainly for loops-indices, parameters, and constants.
▪ They are of implicitly of type reg.

❑ Declared with keyword integer

❑ Integer store data as signed numbers whereas explicitly declared reg types store them as unsigned
▪ Negative numbers are stored as 2’s complement

❑ Size of integer is implementation specific (at least 32 bits)
▪ If they hold numbers which are not defined at compile time, their size will default to 32-bits

❑ If they hold constants, the synthesizer adjusts them to the minimum width needed at compilation.

❑ Example :
integer data; //32-bit integer
assign b = 31; //synthesizer will treat b as a 5-bit integer

28

Time

❑ time is a special 64-bit data type that can be used in conjunction with the $time system
task to hold simulation time.

❑ Declared with keyword time

❑ time is not supported for synthesis and hence is used only for simulation purposes

❑ Syntax :
time variable_name;

❑ Example :
time start_t;
initial

start_t = $time();

29

Real

❑ SystemVerilog supports real data type constants and variables

▪ Declared with keyword real

▪ Real numbers are rounded off to the nearest integer when assigning to an integer.

▪ Real Numbers can not contain 'Z' and ‘X’

▪ Not supported for synthesis.

❑ Real numbers may be specified in either decimal or scientific notation

▪ < value >.< value > : e.g 125.6 which is equivalent to decimal 125.6

▪ < mantissa >E< exponent > : 2.5e4 which is equivalent to decimal 25000

❑ Syntax :
real variable_name;

❑ Example :

real height;

height = 50.6;

height = 2.4e6;
30

Wand Data Type Example

31

Synthesis tool will give design Error
where wire ‘f’ is assigned from two

continuous assign statements !

If wire ‘f’ is replaced below in code
with wand ‘f’ now there will be no

error from Synthesis tool.

Synthesis tool will connect output of
OR and AND gate and explicitly add

AND gate at the output.

