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Combinational vs Sequential Circuit
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Combinational Circuit
❑ At any instance of time present value of outputs 

depends solely on present value of inputs

❑ Does not store any intermediate values and hence 
does not require any memory elements

❑ Behavior is described by set of output functions

❑ Examples: Full Adder, half adder, comparator, 
multiplexer, decoder, encoder, etc

Combinational Circuitinputs (x) outputs 
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Sequential Circuit
❑ Present values of outputs are determined from 

present values of inputs and past state (i.e. 
sequence of past inputs or known as past outputs)

❑ Behavior is described by set of output functions 
and set of next states functions stored in memory

❑ It contains memory elements to store past outputs

❑ Examples: Flipflop, Latch, Shift Register, etc



posedge and negedge event
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❑ Positive edge (posedge) defines a rising edge of a signal
❑ Posedge event triggers when a signal transitions from: 

▪ 0 to 1
▪ 0 to X
▪ X to 1 
▪ 0 to Z 
▪ Z to 1

❑ Negative edge (negedge) defines a falling edge of a signal
❑ Negedge event triggers when a signal transitions from: 

▪ 1 to 0
▪ 1 to X
▪ X to 0 
▪ 1 to Z 
▪ Z to 0
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Overview of Always Block 

❑ always procedural blocks are used to describe events that should happen under certain 
conditions

▪ whenever any event in the sensitivity list occurs, the procedural statements are 
executed

▪ sensitivity list can have one or more signals specified

▪ always block runs continuously throughout the simulation !

❑ Event in sensitivity list can be specified in multiple different ways :
▪ Edge (posedge, negedge)

▪ Level (any change in value of signal)
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always@(<sensitivity list>) begin
<procedural statements>

end

// always block is sensitive to both 
posedge and negedge event of interrupt
always@(interrupt) begin
abort = 1;

end

// always block sensitive to 
// posedge event of clock
always@(posedge clock) begin
dout = din;

end

// always block sensitive to
// negedge event of clock
always@(negedge clock) begin
dout = din;

end

always@(a or b) begin
c = a ^ b; // executes if value of ‘a’ or ‘b’ changes

end



Overview of Always Block 
❑ Always procedure can be used to model :

▪ Combinational logic

▪ Clocked sequential logic (such as flipflops)

▪ Level sensitive logic (such as latches)

❑ Sequential Logic is triggered by a ‘CLOCK’ event
▪ Latches are sensitive to level of the signal

▪ Flip-flops are sensitive to the transitioning of clock

• Synthesis compiler will infer a flip-flop if sensitivity list has posedge or negedge event

5Sequential Logic using Posedge CLOCK Event Combinational Logic 

module flop (
input logic clk, d,
output logic q);

always@(posedge clk) 
begin

q <= d; 
end 
endmodule

module comb (
input logic inv, input logic [3:0] data,
output logic [3:0] result);

always@(inv, data)  begin
if(inv) result = ~data; 
else    result = data;

end 
endmodule

Always block triggers 
upon rising edge of clk.
posedge CLOCK event 
and “<=“  will infer 
storage  and sequential 
logic

Always block triggers if 
either inv or data value 
changes. No storage 
created. Purely 
combinational logic 
inferred



SystemVerilog Procedural Assignments
❑ SystemVerilog has two types of procedural assignments to model 

combinational and sequential circuits/logic
▪ Blocking Assignments represented with equal sign (=) to model combinational logic

▪ Non-Blocking Assignments represented with less-than-equal (<=) to model 
sequential logic, such as flip flops, latches, shift registers, etc

6



Blocking Assignment
❑ Blocking Assignment :

▪ Syntax :  LHS Variable_Name = [delay or event control] RHS_Expression;

▪ Example : 

▪ Evaluation and assignment in a single step

• Expression on RHS of (=) assignment is evaluated and the variable on LHS is updated 
immediately before the next sequential statement in the procedural block is evaluated and 
executed. 

▪ Execution flow within the procedure is blocked until the current assignment is completed

• Hence blocking assignment statement is used to model combinational logic.

▪ Each blocking assignment statement executes sequentially in the order it is specified in a 
procedural block
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integer a, b, c, sum, prod;
initial begin

a=5; b=10; c=4; sum=2; prod=8;
sum = a + b;
prod = sum * c;

end

Simulation Result
• Initial values of a=5, b=10, c=4, sum=2, prod=8
• sum becomes (5 + 10) = 15
• prod becomes (15 * 4) = 60Statements with Blocking assignment will execute 

one at a time in the order it is specified.  Hence 
sum = a + b line will block execution of line prod 
= sum *c until a + b addition is computed and 
new value of addition is assigned to variable sum



Non-Blocking Assignment
❑ Non-Blocking assignment :

▪ Syntax :  LHS Variable_Name <= [delay or event control] RHS_Expression;

▪ Example : 

▪ Evaluation and assignment is a two-step process

• Expression on RHS of (<=) assignment is evaluated immediately 

• Assignment to LHS variable is postponed until other evaluations in current time step is 
completed

• Latest RHS value is assigned to target LHS variable at the end of the simulation cycle

▪ Each non-blocking assignment statement within the procedural block executes in parallel 
(concurrently) without blocking each other

• Hence the order of specifying non-blocking assignment statement does not matter !

▪ Clock-to-Q propagation delay of flip-flop behavior is represented by non-blocking 
assignments in RTL model even though RTL code is modeled with zero-delays. 

• Hence non-blocking is used to model sequential logic
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integer a, b, c, sum, prod;
initial begin

sum <= a + b;
prod <= sum * c;

end

Simulation Result
• At time 0 ns, Initial values a=5, b=10, c=4, 
• At time 1 ns, 

❖ sum becomes (5 + 10) = 15
❖ prod becomes (2 * 4) = 8

Both statements with non-
blocking assignment will 
execute concurrently without 
blocking each other



Blocking vs Non-Blocking Assignment

❑ Values are assigned at the end of the 
block.

❑ All assignments are made in parallel, 
process flow is not-blocked.
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❑ Value is assigned immediately. 

❑ Process waits until the first assignment 
is complete, it blocks progress

module blocking_assignment (
input logic clock, a,
output logic b

);
always@(posedge clock) 
begin

a = 1;
// a is ‘1’ 
b = a;
// b is now ‘1’ as well

end 
endmodule

module non_blocking_assignment (
input logic clock, a,
output logic b

);
always@(posedge clock) 
begin

a <= 1;
b <= a;
// all assignments are made
// b is not yet ‘1’ 

end 
endmodule



SystemVerilog RTL Modeling and Verification Events Scheduling Flow
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Verification Testbench 
Events Scheduling 

Queues

RTL Modeling Events 
Scheduling Queues

Evaluate and print output from 
$monitor, $strobe and collect 
functional coverage for items 

using strobe sampling Credit : Sunburst design, Clifford E. Cummings and Synopsys Artulo Salz

Current Simulation Time Slot



Current Simulation Time Slot

SystemVerilog RTL Modeling Events Scheduling Flow
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Active Events Region
Intermixed and executes below mentioned in any order
❑ Execute programming statements and operators

▪ All continuous assignments
o Evaluate right-hand side and update left-hand side

▪ All Blocking assignments
o Evaluate right-hand side and update left-hand side

▪ All non-blocking assignments
o Step1 : Evaluate right-hand side

❑ Evaluate and print output from $display, $write and $finish
❑ Evaluate inputs and update outputs of primitives

NBA Update Events Region
Intermixed and executes below mentioned in any order
❑ All Non-Blocking Assignments

▪ Step2 : Update left-hand side

Inactive Events Region
❑ All #0 Blocking Assignments

Credit : Stuart Sutherland, Source : RTL Modeling with SystemVerilog for Simulation and Synthesis Book

Previous 
Simulation
Time Slot

Next 
Simulation
Time Slot

Delta

Delta

Delta 
Cycle

assign a = b;
assign y = p ? q : r;

always_comb
begin
sum = m + n;
prod = m * n;

end

always_ff@(posedge clk)
begin

r1 <= d;
q <= r1;

end

initial begin
$display(“a : %b\n”, a);
#100;
$finish(1);

end

Initial begin
$monitor(“b : %b\n”, b);

end

$monitor is not executed 
until “postponed” event 
region



Swapping of variables using blocking and non-blocking assignment
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always@ (posedge clock)
p = q;

always@ (posedge clock)
q = p;

Simulation Result
❑ Both always blocks will execute concurrently 

and there is a race condition between two 
always  procedural assignments

❑ Assume Initial Value of p=5 and q=8
▪ If simulator executes always block with p = 

q first, before q = p, then both p and q will 
get value of q (Final values : p=8 and q=8)

▪ If simulator executes always block with q = 
p first, before p = q, then both p and q will 
get value of p (Final values : p=5 and q=5)

▪ No Swapping of values of p and q !!

always@ (posedge clock)
p <= q;

always@ (posedge clock)
q <= p;

Simulation Result
❑ Both always blocks will execute concurrently, 

however there is no race condition and 
actual swapping of values of p and q 
happens !!

❑ RHS variables are read first and assigned to 
LHS at the end of the simulation cycle and 
new RHS variable is available at the next 
posedge of the clock

❑ Assume Initial Value of p=5 and q=8
▪ p gets previous value of q, hence p=8
▪ q get previous value of p, hence q=5



Swapping of variables using blocking assignment
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always@(posedge clock) begin
p = q;
q = p;

end

Simulation Result
❑ Simulator executes p = q statement 

first and then executes q = p.

❑ Assume Initial Value of p=5 and q=8
▪ Both p and q will get value of q. 

There is no swapping of values of 
p and q !!

▪ Final value of p=8 and q=8

always@(posedge clock) begin
tmp1 = p;
tmp2 = q;
p = tmp2;
q = tmp1;   

end

Simulation Result
❑ Swapping of values of p and q happens !!

❑ To swap values of p and q using blocking 
assignment requires temporary variables as 
shown above

❑ Assume Initial value of p=5 and q=8
▪ tmp1 will get assigned 5
▪ Tmp2 will get assigned 8
▪ p will get assigned value of tmp2, which 

is 8, same as value of q
▪ q will get assigned value of tmp1, which 

is 5, same as previous value of p



Sequential Procedural Assignments with Inter-Delay
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Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge of clk a=1      
At 1st posedge of clk+4ns b=3

always@(posedge clk) begin
a = 1;      
#4 b = a + 2;

end

Evaluate RHS and assign to ‘a’ immediately  

After execution of previous statement, advance 4 time units due to inter 
assignment delay, then evaluate RHS (a+2) and assign it to ‘b’ immediately

❑ A sequential blocking assignment evaluates and assigns before continuing within procedure block
▪ Timing control before an assignment statement (inter assignment delay) will postpone when the next 

statement is evaluated and updated
▪ Order of evaluation is deterministic

@14ns a=1, 
b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=1, b=0

@34ns a=1, b=3

@30ns a=1, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=1, b=3

4ns

@50ns a=1, b=3

4ns4ns

Note : Event driven simulator will not re-evaluate value of ‘a’ and ‘b’ at 34ns and 54ns since there was no change in ‘a’ or ‘b’ value

0ns

@0ns a=0, b=0

always@(posedge clk) begin
a = 1;      
#4 ns;
b = a + 2;

end

equivalent



Sequential Procedural Assignments with Inter-Delay

15Note : Event driven simulator will not re-evaluate value of ‘a’ and ‘b’ at 34ns and 54ns since there was no change in ‘a’ or ‘b’ value

Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge clk, a=1     
At 1st posedge clk+4ns, b=3

always@(posedge clk) begin
a <= 1;      
#4 b <= a + 2;

end

Evaluate RHS immediately; then assign to ‘a’ at the end of the time step

Delay 4 time units due to inter assignment delay, then evaluate RHS; then 
assign to ‘b’ at the end of time step (1 clock period + 4ns)

❑ A sequential non-blocking assignment evaluates, then continues on to the next timing control 
before next non-blocking assignment evaluates. And then finally updates all LHS variable
▪ Timing control before an assignment statement (inter assignment delay) will postpone when the next 

assignment is evaluated and updated
▪ Order of evaluation is deterministic

@14ns a=1, 
b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=1, b=0

@34ns a=1, b=3

@30ns a=1, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=1, b=3

4ns

@50ns a=1, b=3

4ns4ns

0ns

@0ns a=0, b=0

always@(posedge clk) begin
a <= 1;      
#4 ns;
b <= a + 2;

end

equivalent



Concurrent Procedural Assignments with Inter-Delay
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Simulation Output
Assume At 0ns a=0, b=0

Unpredictable Result !!
new value of ‘b’ could be 

evaluated before or after ‘a’ 
changes

always@(posedge clk) begin
#4 a = a + 2;

end

always@(posedge clk) begin
#4 b = a + 3;

end

Delay 4 time units due to inter assignment delay, then evaluate RHS 
and assign to ‘a’, immediately

❑ A concurrent blocking assignments have unpredictable results due to race condition
▪ Order of concurrent evaluation is indeterministic and unpredictable simulation result !

Delay 4 time units due to inter assignment delay, then evaluate RHS 
and assign to ‘b’, immediately

@14ns a=2, 
b=5

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=0, b=0

@34ns a=4, b=7

@30ns a=2, b=5

3rd posedge
of clk

50ns 60ns

@54ns a=6, b=9

4ns

@50ns a=4, b=7

4ns4ns

0ns

@0ns a=0, b=0

Note : Result shown above is in case when simulator evaluates ‘b’ after ‘a’ is evaluated



Concurrent Procedural Assignments with Inter-Delay

17

❑ A concurrent non-blocking assignments have predictable results
▪ Order of concurrent evaluation is indeterministic, but predictable simulation result !

always@(posedge clk) begin
#4 a <= a + 2;

end

always@(posedge clk) begin
#4 b <= a + 3;

end

Delay 4 time units due to inter assignment delay, then evaluate RHS; 
then assign to ‘a’ at the end of time step (1 clock period + 4ns)

Delay 4 time units due to inter assignment delay, then evaluate RHS; 
then assign to ‘b’ at the end of time step (1 clock period + 4ns)

Simulation Output
Assume At 0ns a=0, b=0

Predictable Result !!

After 1st posedge clk + 4ns 
a=2 and b=3

@14ns a=2, b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=0, b=0

@34ns a=4, b=5

@30ns a=2, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=6, b=7

4ns

@50ns a=4, b=5

4ns4ns

0ns

@0ns a=0, b=0



Procedural Assignments with Intra-Delays
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Simulation Output
Assume At 0ns a=0, b=0, c=0
At 1st posedge clk, a=1      
At 1st posedge clk+4ns, b=3
At 1st posedge clk+6ns, c=5

always@(posedge clk) begin
a = 1;      
b = #4 a + 2;

c = #2 b + 2;
end

Evaluate RHS and assign to ‘a’ immediately  

After execution of previous statement, evaluate RHS expression 
immediately, then after intra delay of 4 time units assign to ‘b’

❑ An intra-assignment delay places the timing control after the assignment token
▪ Right-hand side is evaluated before the delay 
▪ Left-hand side is assigned after the delay

❑ A sequential blocking assignment with intra-delay

After execution of previosus statement, evaluate RHS expression 
immediately, then after intra delay of 2 time units assign to ‘c’

clk (clock) period of 20ns

@14ns a=1, b=3, c=0

@10ns a=1, b=0, c=0

@16ns a=1, b=3, c=5

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

3rd posedge
of clk

50ns 60ns

4ns

0ns

@0ns a=0, b=0, c=0 2ns

@34ns a=1, b=3, c=5

@30ns a=1, b=3, c=5

@36ns a=1, b=3, c=5

2ns4ns

@54ns a=1, b=3, c=5

2ns4ns

@56ns a=1, b=3, c=5

@50ns a=1, b=3, c=5



Procedural Assignments with Intra-Delays
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clk (clock) period of 20ns

@12ns a=1, b=0, c=2

@10ns a=1, b=0, c=0

@14ns a=1, b=2 c=2

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

3rd posedge
of clk

50ns 60ns

2ns

0ns

@0ns a=0, b=0, c=0

@32ns a=1, b=2, c=4

@30ns a=1, b=2, c=2

@34ns a=1, b=3, c=4

2ns 2ns

Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge clk, a=1
At 1st posedge clk+2ns, c=2
At 1st posedge clk+4ns, b=2

always@(posedge clk) begin
a <= 1;      
b <= #4 a + 2;

c <= #2 b + 2;
end

Evaluate RHS immediately; then assign to ‘a’ at the end of the time step

❑ A sequential non-blocking assignment with intra-delay

Evaluate RHS expression immediately, then after intra delay of 4 time units 
assign to ‘b’

Evaluate RHS expression immediately, then after intra delay of 2 time units 
assign to ‘c’

@52ns a=1, b=3, c=5

@54ns a=1, b=3, c=5

2ns 2ns2ns

@50ns a=1, b=3, c=4



Rules
❑ It is not recommended to have both blocking and non-blocking assignment statements in 

same always block. 

❑ Synthesis compiler will ignore inter and intra delays in both blocking and non-blocking 
procedural assignment statement
▪ If delays are used, then expect mis-match between RTL and synthesized netlist simulation result

❑ Same variable cannot have both blocking and non-blocking assignments to it. Below 
mentioned is not allowed !!
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always@(a,b) begin
sum = a + b;
prod <= a * b;

end

always@(a,b) begin
c <= a + b;
c <= a * b;

end

always@(a,b) begin
c = #2 (a + b); //#2 delay ignored by synthesizer, however in RTL simulation effect of #2 will be observed

end



D-FlipFlop Model Using Non-blocking assignment
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module dff( 
input logic clk, d,    
output logic q

);

always@(posedge clk) begin
q <= d;  // when clk rises copy ‘d’ to ‘q’

end
endmodule: dff

▪ SystemVerilog calls “<=“ a “non-blocking” 
assignment.

▪ It means “wait until end of current simulation cycle 
before updating “q”. 

▪ When clk is not rising, value of q is preserved 
(memorized)

▪ Synthesis will produce a positive edge-trigged  D-FF

D-FlipFlop without any reset

Input ‘d’ = 1 captured 
at CLK edge ‘2’ will 
appear at output ‘q’ 
and value of ‘q’= 1 will 
then be preserved 
until CLK edge ‘3’

Value of ‘q’ is retained until next edge of clk



Example of blocking vs non-blocking assignment
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module parallel_registers (
input logic clk, d,    // clk is a clock
output logic q1, q2

);
always @(posedge clk) 
begin

q1 = d;
q2 = q1;

end 
endmodule

Synthesis compiler will create two registers in parallel

module shift_register (
input logic clk, d, // clk is a clock
output logic q1, q2

);
always @(posedge clk) 
begin

q1 <= d;
q2 <= q1;

end 

endmodule

Synthesis compiler will create two serially chained registers 
and circuit will behave as a two bit shift register

q1 is not connected to q2 
and both q1 and q2 will get 
same value of d in same 
clock cycle

q1 is serially connected to 
q2. New value of d is first 
propagated to q1 and one 
clock cycle later it will 
propagate to q2

Note : Serially chained register is known as shift register



Splitting Blocking Assignments in Separate Always Block

23

module shift_register (
input logic clk, d,
output logic q1, q2

);

always@(posedge clk) 
begin

q1 = d;
end 

always@(posedge clk) 
begin

q2 = q1;
end 

endmodule

Synthesis compiler will connect q1 to q2 and 
circuit will behave as a two-bit shift register

Note : However in simulation due to race condition between two always procedural block based on which always 
block executes first it might behave as a 2-bit shift register or 1-bit parallel registers.
▪ If always block with q2=q1 assignment executes first over other always block having q1=d then circuit will behave 

as a 2-bit shift register
▪ If always block with q1=d assignment executes first over other always block having q2=q1 then circuit will behave 

as 1-bit parallel register

Splitting blocking 
assignment 
statements in two 
separate always block 
will result in a two-bit 
shift register upon 
sysnthesis since both 
assignments will 
execute in parallel



Shift Register using Non-Blocking Assignments
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module shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk) 
begin

t[0] <= d;
t[1] <= t[0];
t[2] <= t[1];

q  <= t[2]; 
end 

endmodule

Simulation Result

Since all RHS 
expression will be 
evaluated in 
parallel, non-
blocking 
assignments can be 
specified in any 
order

t[0] <= d
t[1] <= t[0]

t[2] <= t[1]
q <= t[2]

Input ‘d’ value appears 
at output ‘q’ after 4 
cycles



Shift Register using Blocking Assignments (Incorrect Usage)
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module incorrect_shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk) 
begin

t[0] = d;
t[1] = t[0];
t[2] = t[1];

q  = t[2]; 
end 

endmodule

Simulation Result

q = d

Due to blocking 
assignment, this 
code can be seen 
as d=q and this 
will behave as a 
1- bit register.

Instead of behaving as a 4-bit shift register, synthesizer 
will generate as a 1-bit register/flipflop

Input ‘d’ value appears at output ‘q’ after 1 cycle instead of ‘4’ cycles



Shift Register using Re-ordered Blocking Assignments
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module shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk) 
begin

q  = t[2];
t[2] = t[1];
t[1] = t[0];
t[0] = d;

end 
endmodule

Simulation Result

Ordering of blocking 
assignment is 
important. 
Re-ordering blocking 
assignment statements 
can result in a different 
circuit, in this case it 
became a shift register

t[0] = d
t[1] = t[0]

t[2] = t[1]
q = t[2]

Input ‘d’ value appears 
at output ‘q’ after 4 
cycles
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