
Lecture-6 & 7: Blocking and Non-blocking Assignments

ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Combinational vs Sequential Circuit

2

Combinational Circuit
❑ At any instance of time present value of outputs

depends solely on present value of inputs

❑ Does not store any intermediate values and hence
does not require any memory elements

❑ Behavior is described by set of output functions

❑ Examples: Full Adder, half adder, comparator,
multiplexer, decoder, encoder, etc

Combinational Circuitinputs (x) outputs
y=f(x)

Combinational
Circuit

inputs (x) outputs y

Memory Elements

Clock

next state =
f(x, curr state)

Current
State

Internal Inputs

Sequential Circuit
❑ Present values of outputs are determined from

present values of inputs and past state (i.e.
sequence of past inputs or known as past outputs)

❑ Behavior is described by set of output functions
and set of next states functions stored in memory

❑ It contains memory elements to store past outputs

❑ Examples: Flipflop, Latch, Shift Register, etc

posedge and negedge event

3

❑ Positive edge (posedge) defines a rising edge of a signal
❑ Posedge event triggers when a signal transitions from:

▪ 0 to 1
▪ 0 to X
▪ X to 1
▪ 0 to Z
▪ Z to 1

❑ Negative edge (negedge) defines a falling edge of a signal
❑ Negedge event triggers when a signal transitions from:

▪ 1 to 0
▪ 1 to X
▪ X to 0
▪ 1 to Z
▪ Z to 0

1

1st posedge
event

2nd posedge
of a clock

3rd posedge
of clock

0

1st negedge
event

2nd negedge
event

3rd negedge
event

2nd posedge
event

2nd negedge
event

clock

interrupt 1st posedge
event 1st negedge

event

1

0 0

0 0

1

1 1

Overview of Always Block

❑ always procedural blocks are used to describe events that should happen under certain
conditions

▪ whenever any event in the sensitivity list occurs, the procedural statements are
executed

▪ sensitivity list can have one or more signals specified

▪ always block runs continuously throughout the simulation !

❑ Event in sensitivity list can be specified in multiple different ways :
▪ Edge (posedge, negedge)

▪ Level (any change in value of signal)

4

always@(<sensitivity list>) begin
<procedural statements>

end

// always block is sensitive to both
posedge and negedge event of interrupt
always@(interrupt) begin
abort = 1;

end

// always block sensitive to
// posedge event of clock
always@(posedge clock) begin
dout = din;

end

// always block sensitive to
// negedge event of clock
always@(negedge clock) begin
dout = din;

end

always@(a or b) begin
c = a ^ b; // executes if value of ‘a’ or ‘b’ changes

end

Overview of Always Block
❑ Always procedure can be used to model :

▪ Combinational logic

▪ Clocked sequential logic (such as flipflops)

▪ Level sensitive logic (such as latches)

❑ Sequential Logic is triggered by a ‘CLOCK’ event
▪ Latches are sensitive to level of the signal

▪ Flip-flops are sensitive to the transitioning of clock

• Synthesis compiler will infer a flip-flop if sensitivity list has posedge or negedge event

5Sequential Logic using Posedge CLOCK Event Combinational Logic

module flop (
input logic clk, d,
output logic q);

always@(posedge clk)
begin

q <= d;
end
endmodule

module comb (
input logic inv, input logic [3:0] data,
output logic [3:0] result);

always@(inv, data) begin
if(inv) result = ~data;
else result = data;

end
endmodule

Always block triggers
upon rising edge of clk.
posedge CLOCK event
and “<=“ will infer
storage and sequential
logic

Always block triggers if
either inv or data value
changes. No storage
created. Purely
combinational logic
inferred

SystemVerilog Procedural Assignments
❑ SystemVerilog has two types of procedural assignments to model

combinational and sequential circuits/logic
▪ Blocking Assignments represented with equal sign (=) to model combinational logic

▪ Non-Blocking Assignments represented with less-than-equal (<=) to model
sequential logic, such as flip flops, latches, shift registers, etc

6

Blocking Assignment
❑ Blocking Assignment :

▪ Syntax : LHS Variable_Name = [delay or event control] RHS_Expression;

▪ Example :

▪ Evaluation and assignment in a single step

• Expression on RHS of (=) assignment is evaluated and the variable on LHS is updated
immediately before the next sequential statement in the procedural block is evaluated and
executed.

▪ Execution flow within the procedure is blocked until the current assignment is completed

• Hence blocking assignment statement is used to model combinational logic.

▪ Each blocking assignment statement executes sequentially in the order it is specified in a
procedural block

7

integer a, b, c, sum, prod;
initial begin

a=5; b=10; c=4; sum=2; prod=8;
sum = a + b;
prod = sum * c;

end

Simulation Result
• Initial values of a=5, b=10, c=4, sum=2, prod=8
• sum becomes (5 + 10) = 15
• prod becomes (15 * 4) = 60Statements with Blocking assignment will execute

one at a time in the order it is specified. Hence
sum = a + b line will block execution of line prod
= sum *c until a + b addition is computed and
new value of addition is assigned to variable sum

Non-Blocking Assignment
❑ Non-Blocking assignment :

▪ Syntax : LHS Variable_Name <= [delay or event control] RHS_Expression;

▪ Example :

▪ Evaluation and assignment is a two-step process

• Expression on RHS of (<=) assignment is evaluated immediately

• Assignment to LHS variable is postponed until other evaluations in current time step is
completed

• Latest RHS value is assigned to target LHS variable at the end of the simulation cycle

▪ Each non-blocking assignment statement within the procedural block executes in parallel
(concurrently) without blocking each other

• Hence the order of specifying non-blocking assignment statement does not matter !

▪ Clock-to-Q propagation delay of flip-flop behavior is represented by non-blocking
assignments in RTL model even though RTL code is modeled with zero-delays.

• Hence non-blocking is used to model sequential logic
8

integer a, b, c, sum, prod;
initial begin

sum <= a + b;
prod <= sum * c;

end

Simulation Result
• At time 0 ns, Initial values a=5, b=10, c=4,
• At time 1 ns,

❖ sum becomes (5 + 10) = 15
❖ prod becomes (2 * 4) = 8

Both statements with non-
blocking assignment will
execute concurrently without
blocking each other

Blocking vs Non-Blocking Assignment

❑ Values are assigned at the end of the
block.

❑ All assignments are made in parallel,
process flow is not-blocked.

9

❑ Value is assigned immediately.

❑ Process waits until the first assignment
is complete, it blocks progress

module blocking_assignment (
input logic clock, a,
output logic b

);
always@(posedge clock)
begin

a = 1;
// a is ‘1’
b = a;
// b is now ‘1’ as well

end
endmodule

module non_blocking_assignment (
input logic clock, a,
output logic b

);
always@(posedge clock)
begin

a <= 1;
b <= a;
// all assignments are made
// b is not yet ‘1’

end
endmodule

SystemVerilog RTL Modeling and Verification Events Scheduling Flow

10

Verification Testbench
Events Scheduling

Queues

RTL Modeling Events
Scheduling Queues

Evaluate and print output from
$monitor, $strobe and collect
functional coverage for items

using strobe sampling Credit : Sunburst design, Clifford E. Cummings and Synopsys Artulo Salz

Current Simulation Time Slot

Current Simulation Time Slot

SystemVerilog RTL Modeling Events Scheduling Flow

11

Active Events Region
Intermixed and executes below mentioned in any order
❑ Execute programming statements and operators

▪ All continuous assignments
o Evaluate right-hand side and update left-hand side

▪ All Blocking assignments
o Evaluate right-hand side and update left-hand side

▪ All non-blocking assignments
o Step1 : Evaluate right-hand side

❑ Evaluate and print output from $display, $write and $finish
❑ Evaluate inputs and update outputs of primitives

NBA Update Events Region
Intermixed and executes below mentioned in any order
❑ All Non-Blocking Assignments

▪ Step2 : Update left-hand side

Inactive Events Region
❑ All #0 Blocking Assignments

Credit : Stuart Sutherland, Source : RTL Modeling with SystemVerilog for Simulation and Synthesis Book

Previous
Simulation
Time Slot

Next
Simulation
Time Slot

Delta

Delta

Delta
Cycle

assign a = b;
assign y = p ? q : r;

always_comb
begin
sum = m + n;
prod = m * n;

end

always_ff@(posedge clk)
begin

r1 <= d;
q <= r1;

end

initial begin
$display(“a : %b\n”, a);
#100;
$finish(1);

end

Initial begin
$monitor(“b : %b\n”, b);

end

$monitor is not executed
until “postponed” event
region

Swapping of variables using blocking and non-blocking assignment

12

always@ (posedge clock)
p = q;

always@ (posedge clock)
q = p;

Simulation Result
❑ Both always blocks will execute concurrently

and there is a race condition between two
always procedural assignments

❑ Assume Initial Value of p=5 and q=8
▪ If simulator executes always block with p =

q first, before q = p, then both p and q will
get value of q (Final values : p=8 and q=8)

▪ If simulator executes always block with q =
p first, before p = q, then both p and q will
get value of p (Final values : p=5 and q=5)

▪ No Swapping of values of p and q !!

always@ (posedge clock)
p <= q;

always@ (posedge clock)
q <= p;

Simulation Result
❑ Both always blocks will execute concurrently,

however there is no race condition and
actual swapping of values of p and q
happens !!

❑ RHS variables are read first and assigned to
LHS at the end of the simulation cycle and
new RHS variable is available at the next
posedge of the clock

❑ Assume Initial Value of p=5 and q=8
▪ p gets previous value of q, hence p=8
▪ q get previous value of p, hence q=5

Swapping of variables using blocking assignment

13

always@(posedge clock) begin
p = q;
q = p;

end

Simulation Result
❑ Simulator executes p = q statement

first and then executes q = p.

❑ Assume Initial Value of p=5 and q=8
▪ Both p and q will get value of q.

There is no swapping of values of
p and q !!

▪ Final value of p=8 and q=8

always@(posedge clock) begin
tmp1 = p;
tmp2 = q;
p = tmp2;
q = tmp1;

end

Simulation Result
❑ Swapping of values of p and q happens !!

❑ To swap values of p and q using blocking
assignment requires temporary variables as
shown above

❑ Assume Initial value of p=5 and q=8
▪ tmp1 will get assigned 5
▪ Tmp2 will get assigned 8
▪ p will get assigned value of tmp2, which

is 8, same as value of q
▪ q will get assigned value of tmp1, which

is 5, same as previous value of p

Sequential Procedural Assignments with Inter-Delay

14

Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge of clk a=1
At 1st posedge of clk+4ns b=3

always@(posedge clk) begin
a = 1;
#4 b = a + 2;

end

Evaluate RHS and assign to ‘a’ immediately

After execution of previous statement, advance 4 time units due to inter
assignment delay, then evaluate RHS (a+2) and assign it to ‘b’ immediately

❑ A sequential blocking assignment evaluates and assigns before continuing within procedure block
▪ Timing control before an assignment statement (inter assignment delay) will postpone when the next

statement is evaluated and updated
▪ Order of evaluation is deterministic

@14ns a=1,
b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=1, b=0

@34ns a=1, b=3

@30ns a=1, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=1, b=3

4ns

@50ns a=1, b=3

4ns4ns

Note : Event driven simulator will not re-evaluate value of ‘a’ and ‘b’ at 34ns and 54ns since there was no change in ‘a’ or ‘b’ value

0ns

@0ns a=0, b=0

always@(posedge clk) begin
a = 1;
#4 ns;
b = a + 2;

end

equivalent

Sequential Procedural Assignments with Inter-Delay

15Note : Event driven simulator will not re-evaluate value of ‘a’ and ‘b’ at 34ns and 54ns since there was no change in ‘a’ or ‘b’ value

Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge clk, a=1
At 1st posedge clk+4ns, b=3

always@(posedge clk) begin
a <= 1;
#4 b <= a + 2;

end

Evaluate RHS immediately; then assign to ‘a’ at the end of the time step

Delay 4 time units due to inter assignment delay, then evaluate RHS; then
assign to ‘b’ at the end of time step (1 clock period + 4ns)

❑ A sequential non-blocking assignment evaluates, then continues on to the next timing control
before next non-blocking assignment evaluates. And then finally updates all LHS variable
▪ Timing control before an assignment statement (inter assignment delay) will postpone when the next

assignment is evaluated and updated
▪ Order of evaluation is deterministic

@14ns a=1,
b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=1, b=0

@34ns a=1, b=3

@30ns a=1, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=1, b=3

4ns

@50ns a=1, b=3

4ns4ns

0ns

@0ns a=0, b=0

always@(posedge clk) begin
a <= 1;
#4 ns;
b <= a + 2;

end

equivalent

Concurrent Procedural Assignments with Inter-Delay

16

Simulation Output
Assume At 0ns a=0, b=0

Unpredictable Result !!
new value of ‘b’ could be

evaluated before or after ‘a’
changes

always@(posedge clk) begin
#4 a = a + 2;

end

always@(posedge clk) begin
#4 b = a + 3;

end

Delay 4 time units due to inter assignment delay, then evaluate RHS
and assign to ‘a’, immediately

❑ A concurrent blocking assignments have unpredictable results due to race condition
▪ Order of concurrent evaluation is indeterministic and unpredictable simulation result !

Delay 4 time units due to inter assignment delay, then evaluate RHS
and assign to ‘b’, immediately

@14ns a=2,
b=5

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=0, b=0

@34ns a=4, b=7

@30ns a=2, b=5

3rd posedge
of clk

50ns 60ns

@54ns a=6, b=9

4ns

@50ns a=4, b=7

4ns4ns

0ns

@0ns a=0, b=0

Note : Result shown above is in case when simulator evaluates ‘b’ after ‘a’ is evaluated

Concurrent Procedural Assignments with Inter-Delay

17

❑ A concurrent non-blocking assignments have predictable results
▪ Order of concurrent evaluation is indeterministic, but predictable simulation result !

always@(posedge clk) begin
#4 a <= a + 2;

end

always@(posedge clk) begin
#4 b <= a + 3;

end

Delay 4 time units due to inter assignment delay, then evaluate RHS;
then assign to ‘a’ at the end of time step (1 clock period + 4ns)

Delay 4 time units due to inter assignment delay, then evaluate RHS;
then assign to ‘b’ at the end of time step (1 clock period + 4ns)

Simulation Output
Assume At 0ns a=0, b=0

Predictable Result !!

After 1st posedge clk + 4ns
a=2 and b=3

@14ns a=2, b=3

clk (clock) period of 20ns

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

@10ns a=0, b=0

@34ns a=4, b=5

@30ns a=2, b=3

3rd posedge
of clk

50ns 60ns

@54ns a=6, b=7

4ns

@50ns a=4, b=5

4ns4ns

0ns

@0ns a=0, b=0

Procedural Assignments with Intra-Delays

18

Simulation Output
Assume At 0ns a=0, b=0, c=0
At 1st posedge clk, a=1
At 1st posedge clk+4ns, b=3
At 1st posedge clk+6ns, c=5

always@(posedge clk) begin
a = 1;
b = #4 a + 2;

c = #2 b + 2;
end

Evaluate RHS and assign to ‘a’ immediately

After execution of previous statement, evaluate RHS expression
immediately, then after intra delay of 4 time units assign to ‘b’

❑ An intra-assignment delay places the timing control after the assignment token
▪ Right-hand side is evaluated before the delay
▪ Left-hand side is assigned after the delay

❑ A sequential blocking assignment with intra-delay

After execution of previosus statement, evaluate RHS expression
immediately, then after intra delay of 2 time units assign to ‘c’

clk (clock) period of 20ns

@14ns a=1, b=3, c=0

@10ns a=1, b=0, c=0

@16ns a=1, b=3, c=5

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

3rd posedge
of clk

50ns 60ns

4ns

0ns

@0ns a=0, b=0, c=0 2ns

@34ns a=1, b=3, c=5

@30ns a=1, b=3, c=5

@36ns a=1, b=3, c=5

2ns4ns

@54ns a=1, b=3, c=5

2ns4ns

@56ns a=1, b=3, c=5

@50ns a=1, b=3, c=5

Procedural Assignments with Intra-Delays

19

clk (clock) period of 20ns

@12ns a=1, b=0, c=2

@10ns a=1, b=0, c=0

@14ns a=1, b=2 c=2

10ns 20ns 30ns 40ns

1ST posedge
of clk

2nd posedge
of clk

3rd posedge
of clk

50ns 60ns

2ns

0ns

@0ns a=0, b=0, c=0

@32ns a=1, b=2, c=4

@30ns a=1, b=2, c=2

@34ns a=1, b=3, c=4

2ns 2ns

Simulation Output
Assume At 0ns a=0, b=0
At 1st posedge clk, a=1
At 1st posedge clk+2ns, c=2
At 1st posedge clk+4ns, b=2

always@(posedge clk) begin
a <= 1;
b <= #4 a + 2;

c <= #2 b + 2;
end

Evaluate RHS immediately; then assign to ‘a’ at the end of the time step

❑ A sequential non-blocking assignment with intra-delay

Evaluate RHS expression immediately, then after intra delay of 4 time units
assign to ‘b’

Evaluate RHS expression immediately, then after intra delay of 2 time units
assign to ‘c’

@52ns a=1, b=3, c=5

@54ns a=1, b=3, c=5

2ns 2ns2ns

@50ns a=1, b=3, c=4

Rules
❑ It is not recommended to have both blocking and non-blocking assignment statements in

same always block.

❑ Synthesis compiler will ignore inter and intra delays in both blocking and non-blocking
procedural assignment statement
▪ If delays are used, then expect mis-match between RTL and synthesized netlist simulation result

❑ Same variable cannot have both blocking and non-blocking assignments to it. Below
mentioned is not allowed !!

20

always@(a,b) begin
sum = a + b;
prod <= a * b;

end

always@(a,b) begin
c <= a + b;
c <= a * b;

end

always@(a,b) begin
c = #2 (a + b); //#2 delay ignored by synthesizer, however in RTL simulation effect of #2 will be observed

end

D-FlipFlop Model Using Non-blocking assignment

21

module dff(
input logic clk, d,
output logic q

);

always@(posedge clk) begin
q <= d; // when clk rises copy ‘d’ to ‘q’

end
endmodule: dff

▪ SystemVerilog calls “<=“ a “non-blocking”
assignment.

▪ It means “wait until end of current simulation cycle
before updating “q”.

▪ When clk is not rising, value of q is preserved
(memorized)

▪ Synthesis will produce a positive edge-trigged D-FF

D-FlipFlop without any reset

Input ‘d’ = 1 captured
at CLK edge ‘2’ will
appear at output ‘q’
and value of ‘q’= 1 will
then be preserved
until CLK edge ‘3’

Value of ‘q’ is retained until next edge of clk

Example of blocking vs non-blocking assignment

22

module parallel_registers (
input logic clk, d, // clk is a clock
output logic q1, q2

);
always @(posedge clk)
begin

q1 = d;
q2 = q1;

end
endmodule

Synthesis compiler will create two registers in parallel

module shift_register (
input logic clk, d, // clk is a clock
output logic q1, q2

);
always @(posedge clk)
begin

q1 <= d;
q2 <= q1;

end

endmodule

Synthesis compiler will create two serially chained registers
and circuit will behave as a two bit shift register

q1 is not connected to q2
and both q1 and q2 will get
same value of d in same
clock cycle

q1 is serially connected to
q2. New value of d is first
propagated to q1 and one
clock cycle later it will
propagate to q2

Note : Serially chained register is known as shift register

Splitting Blocking Assignments in Separate Always Block

23

module shift_register (
input logic clk, d,
output logic q1, q2

);

always@(posedge clk)
begin

q1 = d;
end

always@(posedge clk)
begin

q2 = q1;
end

endmodule

Synthesis compiler will connect q1 to q2 and
circuit will behave as a two-bit shift register

Note : However in simulation due to race condition between two always procedural block based on which always
block executes first it might behave as a 2-bit shift register or 1-bit parallel registers.
▪ If always block with q2=q1 assignment executes first over other always block having q1=d then circuit will behave

as a 2-bit shift register
▪ If always block with q1=d assignment executes first over other always block having q2=q1 then circuit will behave

as 1-bit parallel register

Splitting blocking
assignment
statements in two
separate always block
will result in a two-bit
shift register upon
sysnthesis since both
assignments will
execute in parallel

Shift Register using Non-Blocking Assignments

24

module shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk)
begin

t[0] <= d;
t[1] <= t[0];
t[2] <= t[1];

q <= t[2];
end

endmodule

Simulation Result

Since all RHS
expression will be
evaluated in
parallel, non-
blocking
assignments can be
specified in any
order

t[0] <= d
t[1] <= t[0]

t[2] <= t[1]
q <= t[2]

Input ‘d’ value appears
at output ‘q’ after 4
cycles

Shift Register using Blocking Assignments (Incorrect Usage)

25

module incorrect_shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk)
begin

t[0] = d;
t[1] = t[0];
t[2] = t[1];

q = t[2];
end

endmodule

Simulation Result

q = d

Due to blocking
assignment, this
code can be seen
as d=q and this
will behave as a
1- bit register.

Instead of behaving as a 4-bit shift register, synthesizer
will generate as a 1-bit register/flipflop

Input ‘d’ value appears at output ‘q’ after 1 cycle instead of ‘4’ cycles

Shift Register using Re-ordered Blocking Assignments

26

module shift_register (
input logic clk, d,
output logic q

);
logic[2:0] t;
always@(posedge clk)
begin

q = t[2];
t[2] = t[1];
t[1] = t[0];
t[0] = d;

end
endmodule

Simulation Result

Ordering of blocking
assignment is
important.
Re-ordering blocking
assignment statements
can result in a different
circuit, in this case it
became a shift register

t[0] = d
t[1] = t[0]

t[2] = t[1]
q = t[2]

Input ‘d’ value appears
at output ‘q’ after 4
cycles

References

27

❑ SystemVerilog Event Regions, Race Avoidance & Guidelines : SNUG Conference 2006

▪ Paper Authors : Clifford E. Cummings (Sunburst Design), Arturo Salz (Synopsys)
▪ http://www.sunburst-design.com/papers/CummingsSNUG2006Boston_SystemVerilog_Events.pdf

http://www.sunburst-design.com/papers/CummingsSNUG2006Boston_SystemVerilog_Events.pdf

