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SystemVerilog RTL Programming Statements Summary
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Category RTL Programming Statement Synthesizable Usage 

Decision Statements if/else Synthesizable RTL Design and Testbench code

case (case, case/inside, casex, 
casez, unique/priority case)

Synthesizable RTL Design and Testbench code

generate if/else, generate case Synthesizable RTL Design and Testbench code

Looping Statements for Synthesizable RTL Design and Testbench code

repeat Synthesizable RTL Design and Testbench code

while Non-Synthesizable Testbench code

do/while Non-Synthesizable Testbench code

foreach Non-Synthesizable Testbench code

forever Non-Synthesizable Testbench code

generate for Synthesizable RTL Design and Testbench code

Jump Statements continue Synthesizable Mostly used in Testbench code

break Synthesizable Mostly used in Testbench code

disable Non-Synthesizable Testbench code



if/else Conditional Statement
❑ if/else statement evaluates an expression and executes one of the two possible branches 

▪ If expression is True (‘1’), then all statements within if branch will be executed

▪ If expression is False(‘0’, ‘X’ or ‘Z’), then all statements within else branch will be executed

▪ If there is no else branch, then a latch will be inferred to retain previous value

▪ Multiple statements can be specified within true and false branch
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module ex1(
input logic a, b, sel,
output logic y);

always@(a,b, sel) begin
if(sel == 1)
y = a & b; // statement executed if sel is ‘1’

else
y = a | b;  // statement executed if sel is either ‘0’, ‘X’ or ‘Z’

end
endmodule: ex1

Synthesizer infers Mux for if/else conditional 
statement in combinational logic



if/else Conditional Statement
❑ else branch of if/else statement is optional

▪ If there is no else branch and if expression evaluates false (‘0’) or unknown (‘X’), then a latch 
will be inferred to retain previous value
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module ex2(
input logic a, b, sel,
output logic y);

always@(a,b,sel) begin
if(sel == 1)
y = a & b;

end
endmodule: ex2

Synthesizer infers Latch due to missing else branch 
to retain previous value of ‘y’ when sel is ‘0’ or ‘x’

If sel is ‘0’, there is no false branch to execute, 
hence ‘y’ retains its previous value, 
modeling the storage behavior of a latch



if/else Conditional Statement
❑ Using logical operators versus bitwise operators in if condition expression can result in a different 

circuit
▪ Only use 1 bit vectors or use logical operators in if condition expression to return true/false

▪ Do not perform true/false on vectors, since evaluating vectors as true or false could lead to design errors
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module ex3(
input logic a, b, 
input logic[1:0] s1, s2, 
output logic y);

always@(a,b) begin
if(s1 && s2)  
y = a & b;

else
y = a | b;

end
endmodule: ex3

module ex4(
input logic a, b, 
input logic[1:0] s1, s2, 
output logic y);

always@(a,b) begin
if(s1 & s2)
y = a & b;

else
y = a | b;

end
endmodule: ex4

// Use logical operators in if condition
expression

// using bitwise operator can lead
into design bugs if any bit is either
‘X’ or ‘Z’ and it will cause else branch to 
execute. Results in mis-match in simulation 
vs post synthensis gate level model 
behavior 



if/else Conditional Statements
❑ Chained if-else-if decisions can be specified

▪ if-else-if decisions are evaluated in the order it is specified

▪ Gives priority to if condition decisions listed first
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module priority_encoder_4to2(
input logic [3:0] enc_in,
output logic [1:0] enc_out

);
always@(enc_in[0] or enc_in[1] or enc_in[2] or enc_in[3]) 
begin

if(enc_in[0]) enc_out = 2'h0; 
else if(enc_in[1]) enc_out = 2'h1; 
else if(enc_in[2]) enc_out = 2'h2; 
else if(enc_in[3]) enc_out = 2'h3;
else enc_out = 2'h0;

end
endmodule: priority_encoder_4to2

Priority encoder is implemented as series of mux, where 
output of mux is input to the next stage mux. 

If enc_in[0] and enc_in[1] both becomes ‘1’ same 
time, enc_in[0] branch gets executed first due to its 
order in which it is specified.

Chained if-else-if results in a series of 
mux connected back to back

If default else branch is not specified then synthesizer will infer 
a mux to retain previous value when enc_in value is either 
4’b000 or 4’bZZZZ or 4’bXXXX



if/else Conditional Statement
❑ if/else evaluated on a clock edge behaves as a flip-flop
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module dff(
input logic clk, reset, d,
output logic q

);
always_ff@(posedge clk or negedge reset) 
begin

if(!reset)
q <= 0;

else
q<=d;

end
endmodule: dff

Synthesizer infers flipflop whenever if/else 
is evaluated on a clock edge

At same time if there is 
posedge of clk and negedge of 
reset, then if(!reset) branch will 
execute first since this 
condition is described first  



For loop
❑ For loop in synthesizable code is used to replicate hardware logic 

▪ Does not work like For loop in traditional software programming languages such as C/C++

▪ In SystemVerilog For loop only expands hardware logic

▪ For synthesis compiler to unroll the loop, number of iterations a loop will execute must be a fixed 
number

▪ Syntax :
for(<index statement>;  <condition expression>;  <increment statement>) begin

<one or more statements>

end

o index statement : only executed once when the loop starts. May be assignment statement hence LHS is 
register type (reg, logic, int)

o condition expression : evaluated before first pass of the loop. If true, statements within for loop is 
executed else loop exits

o increment statement : executed at the end of the each pass of the loop. Condition expression is 
evaluated again. If true, loop is repeated otherwise exits. May be assignment statement hence LHS is 
register type (reg, logic, int)

▪ Examples :
o for (int i=0; i<8; i=i+1) 

o logic[31:0] address;

for (address=0; address<32’h4000; address = address+16) 8

int ‘i’ locally declared as part of initial statement, is local to for 
loop and hence ‘i’ cannot be accessed outside for loop



module shift_register (
input logic clk, din,
output logic[7:0] dout);

logic [7:0] q;
always_ff@(posedge clk) 
begin

q[0] <= d;
q[1] <= q[0];
q[2] <= q[1];
q[3] <= q[2];
q[4] <= q[3];
q[5] <= q[4];
q[6] <= q[5];
q[7] <= q[6];

end 
assign dout = q[7];
endmodule

Example of Shift Register using For Loop-Blocking Assignment
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module shift_register (
input logic clk, din,
output logic dout);

logic [7:0] q;
always_ff@(posedge clk) 
begin

q[0] <= din;
for(int i=0; i<7; i=i+1) begin
q[i+1] <= q[i];

end
end 
assign dout = q[7];
endmodule

Synthesis compiler will
unroll For loop and 
replicate 7 chained 

registers

8-bit Shift Register using For Loop

8-bit Shift Register without using For Loop

Synthesis compiler will 
generate 8-bit shift register 

by unrolling for loop

Iteration variable 
‘i’ declared inside 
for loop, hence 
called automatic 
variable. 
Scope of ‘i’ is 
within for loop 
only. Once for 
loop terminates, 
‘i’ is no longer 
accessible 



Example of For Loop replicating Combinational Logic
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module count_ones #(parameter SIZE = 4) (
input logic [SIZE-1:0] bitstream,
output logic [$clog2(SIZE) : 0] countones);
always_comb begin

countones = 0;
int index; // iteration variable declared outside for loop
for(index = 0; index < SIZE; index++) begin
countones = countones + bitstream[index];

end
end
endmodule: count_ones

Count ones in input bit stream using For Loop

Synthesis compiler unrolled For loop and generated three 
instances of “adder” logic since SIZE=4

Based on SIZE value, 
unrolling of for loop will 
generate that many adder 
logic

countones = countones + bitstream[0];
countones = countones + bitstream[1];
countones = countones + bitstream[2];
countones = countones + bitstream[3];

For SIZE=4, 
Equivalent
logic

$clog2 return the ceiling of the log base 2 
of the argument (the log rounded up to an 
integer value). Example :

$clog2(4) returns 2
$clog2(16) returns 4
$clog2(7) returns 3



repeat loop
❑ A repeat loop will blindly execute block of code a set number of times 

▪ As with For loops, a repeat loop is synthesizable if the bounds of the loop is a fixed value

▪ repeat loop's index can never be used inside the loop. 

▪ In Synthesizable code, repeat loops should only be used to expand replicated code !!

▪ More often, repeat loops are used in testbenches.

▪ Syntax :
repeat(<iteration_index>) begin

<one or more statements>

end

▪ Example of repeat loop in testbench (non-synthesizable code) : 
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module testbench;
logic clock;
initial begin

repeat(5) begin
#10 clock = !clock;

end
end
endmodule: testbench

#10 clock = !clock;
#10 clock = !clock;
#10 clock = !clock;
#10 clock = !clock;
#10 clock = !clock;

Same as



Example of Repeat loop in Synthesizable Code
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module exponential
#(parameter E = 3, parameter N = 4, parameter M = N *2)(
input logic clk,
input logic [N-1:0] d,
output logic [M-1:0] q);

always_ff@(posedge clk) begin
logic [M-1:0] q_temp;
if(E==0)

q <= 1; // if E==0, d0 will result in value ‘1’
else begin  // else multiply ‘d’ value by ‘E’ num of times

q_temp = d;
repeat(E-1) begin
q_temp = q_temp * d;

end
q <= q_temp; // final multiplication output stored in D-FF

end
end
endmodule: exponential

Compute Exponential dE using repeat loop

For E=3, Two chained multipliers are inferred by synthesizer.
to perform d3 and inferred D-Flipflop to store output 

exponential result 

For E -1 = 2, repeat loop will 
execute below mentioned : 
q_temp = q_temp * d;
q_temp = q_temp * d; 

Note : Total combinational delay of chained multiplier logic 
should be within 1 clock cycle in order for valid and stable 
result to be registered in output flipflops. Some synthesis 
compilers can do register retiming, to insert or move 
registers to create pipeline within combinational logic



while loop
❑ A while loop executes programming statement(s) until the end expressions becomes false 

▪ As with For loops, a repeat loop is synthesizable if the bounds of the loop is a fixed value

▪ End expression of while loop is tested at the top of the loop

▪ If end expression is False then statement(s) within while loop are not executed

▪ If end expression is True then statement(s) within while loop are executed, then it returns at the 
top of the loop and tests the end expression again

▪ In Synthesizable code, while loop usage is not common instead for and repeat loops are used !!

▪ More often, while loops are used in testbench code (non-synthesizable)

▪ Syntax & Example :
while(<end_expression>) begin

<one or more statements>

end
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module count_ones #(parameter SIZE = 4) (
input logic [SIZE-1:0] bitstream,
output logic [$clog2(SIZE) : 0] countones);
always_comb begin

countones = 0;
int index;
while(index < SIZE) begin
countones = countones + bitstream[index];
index = index + 1; 

end
end
endmodule: count_ones

▪ This implementation using 
while loop will not 
synthesize since end 
expression has non-
constant loop condition 
(index is non-constant and 
changing inside while loop). 

▪ Synthesizer cannot statically 
determine how many times 
loop will execute and 
therefore cannot roll out 
the loop.



do-while loop
❑ A do-while executes programming statement(s) until the end expressions becomes false 

▪ Similar to while loop except, the end expression is tested at the bottom of the loop

▪ Statement(s) within the do-while loop will executed at least once when the loop is first entered

▪ If the end expression if False when loop reaches the bottom, the loop exits

▪ If end expression is True then loop returns back to the top and executes statement(s) within do-
while loop

▪ In Synthesizable code, do-while usage is not common instead for and repeat loops are used !!

▪ More often, do-while loops are used in testbench code (non-synthesizable)

▪ Syntax and Example : 
do begin

<one or more statements>

end while(<end_expression>);
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module testbench;
initial begin
int count_value;
do begin

$display(“count value = %d\n”, count_value);
count_value = count_value + 1;

end while(count_value < 16)
end
endmodule: testbench

print count value and 
increment count value at 
least once and then 
until (count_value < 16) 
condition is true, keep 
printing and incrementing 
count value else exit the 
loop



forever loop
❑ A forever loop executes programming statement(s) inside the loop continuously and will 

never stop running
▪ Forever loop has indefinite iteration, hence not synthesizable and mostly used in testbench code

▪ Forever loops are similar to for loops and while loops except forever loop will never stop running 
and  while/for loops have a limit

▪ Syntax & Example :
forever begin

<one or more statements>

end
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module clock_gen_testbench (
logic clock = 1'b0;

initial
begin
forever

#10 clock = !clock;
end

endmodule: clock_gen_testbench

forever will run continuously and will 
generate posedge and negedge of 
clock every 10 timeunits



foreach loop
❑ A foreach loop iterates through all the dimensions of unpacked array 

▪ foreach will automatically declare its loop control variables, starting and ending indices of the 
array and direction of indexing (incrementing or decrementing)

▪ Used for testbench code (Non-synthesizable code)

▪ Syntax :
foreach(<iteration_index>) begin

<one or more statements>

end

▪ Example :

16

module testbench;
byte mem[0:4];
initial begin

byte counter = 100;
foreach(mem[idx]) begin 
mem[idx] = counter++;

end
for(int i = 0; i < $size(mem); i++) begin
$display("mem[%0d]: %0d", i, mem[i]);

end
end
endmodule: testbench

Simulation Output:
mem[0]: 100
mem[1]: 101
mem[2]: 102
mem[3]: 103
mem[4]: 104

idx variable is automatically 
declared, initialized and 
incremented



case statement
❑ Case statement provides a concise way to represent series of decisions choices

▪ It is C like switch statement with exception that case does not support break to exit from branch

▪ SystemVerilog case has implied ”break” statement

▪ case statements are used for developing mux, decoder, encoders, next state logic in FSM

▪ case items are not-necessarily non-overlapping

▪ Syntax :

case(case_expression) 

case_item1 : <statement1>; 

case_item2 : begin

statement2a; 

statement2b;

end

default : case_item_statement5;

endcase
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module alu #(parameter N=1) (
input logic[N-1:0] opnd1, opnd2,
input logic[1:0] operation,
output logic[N-1:0] out);

always_comb
begin
case(operation)      

2'b00: out = opnd1 + opnd2; 
2'b01: out = opnd1 - opnd2; 
2'b10: out = opnd1 & opnd2;
2'b11: out = opnd1 | opnd2; 
default: out =‘X;  // If operation value is ‘X’ or ‘Z default branch is executed 

endcase
end

endmodule: alu

case expression use ===
case equality operator for 
exact match of 4 state values.
If any bit of “operation” in 
case expression is ‘X’ or ‘Z’ it 
will select default branch. 

case items are evaluated in order 
they are listed



case statement – Incomplete Case
❑ Incomplete case items will result in a latch inference
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module alu #(parameter N=1) (
input logic[N-1:0] opnd1, opnd2,
input logic[1:0] operation,
output logic[N-1:0] out);

always@(operation, opnd1, opnd2)
begin
case(operation)      

2'b00: out = opnd1 + opnd2; 
2'b01: out = opnd1 - opnd2; 
2'b10: out = opnd1 & opnd2;

endcase
end

endmodule: alu

Synthesis tool inferred a latch due to missing case items for 
“operation” values 2’b11 or missing default statement. 
Note : if always_comb is used, synthesizer will generate 
compile time error to let designer know that latch will be 
inferred



Seven Segment LED Example Use Case Statement
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module seven_seg(
input  logic [3:0] data, 

output logic [6:0] segments);

always_comb

case (data)

0: segments =       7'b111_1110;

1: segments =       7'b011_0000;

2: segments =       7'b110_1101;

3: segments =       7'b111_1001;

4: segments =       7'b011_0011;

5: segments =       7'b101_1011;

6: segments =       7'b101_1111;

7: segments =       7'b111_0000;

8: segments =       7'b111_1111;

9: segments =       7'b111_0011;

default: segments = 7'b000_0000;    

endcase
endmodule

case statement translates into 
a more complex 
“multiplexor” similar to if-
then-else

Case statement with 
“default” item expression are 
known as full_case and full 
case removes latches from 
my designs. !



Seven Segment LED Example Use Case Statement
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case inside statement
❑ Case inside statement is similar to case statement except it used ==? Wildcard case 

equality operator
▪ Any bit in a case item that is set to X or Z or ?, that bit is ignored when case expression is 

compared with the case item
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module case_inside(
input logic [3:0] sel, 
output logic [3:0] y);
always_comb begin
case(sel) inside
4'b1???: y = 4'b1000;  // this branch will be selected if “sel” MSB is ‘1’, regardless of any values in rest of the “sel” bits
4'b01??: y = 4'b0100; // this branch will be selected if “sel” MSB is ‘01’, regardless of any values in rest of the “sel” bits
4'b01??: y = 4'b0100; // this branch will be selected if “sel” MSB is ‘01’, regardless of any values in rest of the “sel” bits
4’b011?: y = 4’b1100; 
4'b001?: y = 4'b0010; // this branch will be selected if “sel” MSB is ‘001’, regardless of any values in rest of the “sel” bits
4'b0001: y = 4'b0001;
default: y = 4'b0000;
endcase
end

endmodule



casez statement
❑ casez statement :

▪ With a casez statement, any case item bits that are specified with the characters z, Z or ? are 
treated as don’t care bits.

▪ For example:  2b1? can match the case expressions: 2b10, 2b11, or 2b1z 

▪ casez has overlapping case items. If more than one case item matches a case expression, the first 
matching case item has priority
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Simultaneous interrupt requests may be asserted, but returns only the highest priority request.



casex statement
❑ casex statement :

▪ With a casex statement, any case item bits that are specified with the characters x, X, z, Z or ? are 
treated as don’t care bits.

▪ For example:  2b1? can match the case expressions: 2b10, 2b11, 2b1x, or 2b1z  or 2b1?
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module ex_casex(
input logic [3:0] sel, 
output logic [3:0] y);
always_comb begin
casex(sel) 
4’b1xxx: y = 4'b1000;  // process this branch if “sel” MSB is ‘1’  
4'b01??: y = 4'b0100; 
4'b001?: y = 4'b0010; 
4'b0001: y = 4'b0001;
default: y = 4'b0000;
endcase
end

endmodule



case statement modifiers : Unique and Priority
❑ SystemVerilog introduced two statement modifiers 

▪ priority and unique

▪ Both give information to synthesis to aid optimization. 

▪ Both are assertions (simulation error reporting mechanisms)
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module unique_case(
input logic a,b,c
output logic [1:0] sel);

always_comb begin

unique case(sel) inside
2'b00 : out = a;
2'b01 : out = b;
2'b10 : out = c; 

endcase

end
endmodule

Unique indicates to synthesis
▪ All possible values of case expression are in the case 

items
▪ Each case item is unique and only one match should 

occur.
▪ No overlapping case items and hence case items 

can be evaluated in parallel.
▪ It produces parallel decoding which may be 

smaller/faster
▪ Also known as parallel_case and it indicates that no 

priority logic is necessary, slow priority encoders 
removed from designs

Unique indicates to simulation
▪ At simulation run time, a match must be found in 

case items 
▪ At run time, only one match will be found in case 

items

unique modified before case 
indicates to synthesizer that 
case statement can be 
considered  as complete even 
thought only three of the four 
possible values of 2-bit “sel” 
are specified in case items 

unique case



case statement modifiers : Unique and Priority
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module priority_case(
input logic [3:0] sel, 
output logic [3:0] y);
always_comb begin

priority casez(sel)
4'b1???: y = 4'b1000;  
4’b111?: y = 4'b0100; 
4'b001?: y = 4'b0010; 
4'b0001: y = 4'b0001;
endcase

end
endmodule

Priority indicates to synthesis

▪ Priority statement indicates that each 
selection item in a series of decisions must be 
evaluated in the order in which they are 
listed, and all legal cases have been listed. 

▪ A synthesis tool is free to optimize the logic 
assuming that all other unlisted conditions are 
don’t cares 

▪ All possible values for case expression are in 
case items  

▪ It indicates that all *other* testable 
conditions are don’t cares and may be used to 
simplify logic

priority modifier will indicate 
to synthesize compiler if sel
value is say, 4’b1110 treat first 
case item 4’b1??? as highest 
priority and in this case assign 
Y = 4'b1000

priority case



Functions
❑ Function is created when same operation is to be repeated and executed

▪ It enables reusability and make code more modular and maintainable

▪ Syntax : 
function <optional datatype> function_name(<optional input arguments>);

begin

<programming statements>

end

endfunction

▪ When function is called, it executes programming statements and returns a value

▪ Functions can be declared within a module and an interface

▪ Function is used to create combinational logic

▪ Function can be called from continuous assignment statements, always, initial procedural blocks

▪ Function definition can appear before or after the statement which calls function

▪ Function is synthesizable with coding guidelines followed

▪ Function can be used in non-synthesizable code for testbench development

▪ Functions can have input, output and inout ports declared in its argument list
26



Binary to Gray Code Conversion
❑ Gray code named after Frank Gray, is an ordering of the binary numeral system such that 

two successive numbers differ in only one bit
▪ Gray code was originally designed to prevent spurious output from electromechanical switches

▪ Gray codes are widely used to facilitate error correction in digital communication applications

❑ Binary to Gray conversion :
▪ MSB of the gray code is always equal to the MSB of the given binary code.

▪ Other bits of the output gray code can be obtained by XORing binary code bit at that index and 
previous index.
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From previous to next value, only 1-bit changes at a time

G(3) = B(3)
G(2) = B(2) xor B(3)
G(1) = B(1) xor B(2)
G(0) = B(0) xor B(1)



Gray Code to Binary Value Conversion
❑ Gray Code to Binary Conversion :

▪ MSB of the binary code is always equal to the MSB of the given binary number.

▪ Other bits of the output binary code can be obtained by checking gray code bit at that index. 

o Technique 1 : If current gray code bit is 0, then copy previous binary code bit, else copy 
invert of previous binary code bit.   OR

o Technique 2 : Other bits of the output binary value can be obtained by XORing gray code bit 
at that index and binary bit at next index.
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B(3) = G(3)
B(2) = G(2) xor B(3)
B(1) = G(1) xor B(2)
B(0) = G(0) xor B(1)



Binary to Gray Conversion using Function

29

module binary_to_gray_conv #(parameter N = 4)( 
input logic clk, rstn,
input logic[N-1:0] binary_value,
output logic[N-1:0] gray_value);

// Function to convert binary to gray value
function automatic [N-1:0] binary_to_gray(logic [N-1:0] value);

begin 
binary_to_gray[N-1] = value[N-1];
for(int i=N-1; i>0; i = i - 1)
binary_to_gray[i-1] = value[i] ^ value[i - 1];

end
endfunction

// Store binary2gray output in a register
always_ff@(posedge clk or negedge rstn) begin

if (!rstn) begin
gray_value <= 0; 

end
else begin
gray_value <= binary_to_gray(binary_value);

end
end 
endmodule: binary_to_gray_conv

return value assigned to a 
automatic declared variable with 
same name as a function name 

call to a function with input value passed

Function describes
combinational logic

default return type is logic if not specified



Static and Automatic Functions
❑ Functions can be declared as static or automatic

▪ If not specified, then default is static

❑ Static function retains state of any internal variables or storage from one call to the next

▪ Function name and inputs will retain their values when the function exits

❑ Automatic function allocates new storage for internal variables each time the function is called
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module ex_static_add_func(
input logic[1:0] a, b, c, 
output logic[1:0] q); 

function logic[1:0] add3(input logic [1:0] x, y, z); 
logic [1:0] t; 
begin
t = x + y; 
add3 = t + z; 
end 

endfunction

always_comb
q = add3(a, b, c); 

endmodule: ex_static_add_func

Variable “t” is shared across all 
invocations of “add3” since 
add3 is a static function !!!

module ex_automatic_add_func(
input logic[1:0] a, b, c, 
output logic[1:0] q); 

function automatic logic[1:0] add3(input logic [1:0] x, y, z); 
logic [1:0] t; 
begin
t = x + y; 
add3 = t + z; 
end 

endfunction

always_comb
q = add3(a, b, c); 

endmodule: ex_automatic_add_func

“automatic” ensures that all local 
variables are truly local. Each 
invocation of “add3” will use a 
different “t”.!!!



Return on Functions
❑ Functions can return values using two approaches :

▪ Using keyword “return”

▪ Assigning value to variable with same name as function
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module ex_static_add_func(
input logic[1:0] a, b, c, 
output logic[1:0] q); 

function logic[1:0] add3(input logic [1:0] x, y, z); 
logic [1:0] t; 
begin
t = x + y; 
return t + z; 
end 

endfunction

always_comb
q = add3(a, b, c); 

endmodule: ex_static_add_func

Returning value of t+z using 
“return” keyword instead of 
assigning to implicit variable 
add3

module ex_static_add_func(
input logic[1:0] a, b, c, 
output logic[1:0] q); 

function logic[1:0] add3(input logic [1:0] x, y, z); 
logic [1:0] t; 
begin
t = x + y; 
add3 = t + z; 
end 

endfunction

always_comb
q = add3(a, b, c); 

endmodule: ex_static_add_func

Returning value of t+z using by 
assigning result to implicitly 
declared variable name add3 
which same as function name



Void Functions
❑ Void functions does not return value 

▪ It can return results by driving variable declared with ouput direction in its argument list

▪ Function can have only one argument with output direction
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module ex_static_add_func(
input logic[1:0] a, b, c, 
output logic[1:0] q); 

function void add3(input logic [1:0] x, y, z,
output logic [1:0] sum); 

logic [1:0] t; 
begin
t = x + y; 
sum = t + z; 
end 

endfunction

always_comb
add3(a, b, c); 

endmodule: ex_static_add_func

Returning value of t+z by 
driving output variable sum



Function Rules
❑ Functions executes in zero simulation time, hence

▪ Function definition cannot contain any time controlled statements such as #, @, or wait.

❑ Function definition cannot contain non-blocking assignment statements  

❑ Functions can call other functions but cannot call tasks

❑ Functions can have any number of inputs but only one output (one return value)

❑ The order of inputs to a function dictates how it should be wired up when called

❑ Functions can drive global variables external to the function

❑ Variables declared inside a function are local to that function

❑ Functions can be automatic

❑ Function return type defaults to one bit logic unless defined explicitly

❑ Function definition with return type must include either :

▪ using return keyword or

▪ an assignment of result value to the internal variable that has the same name as the 
function. 
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Tasks
❑ Task encapsulates one ore more programming statements which can be called from 

different part of the code
▪ Syntactically similar to function however task do not have a return value

▪ Syntax :   task task_name(<optional input arguments>);

begin

<programming statements>

end

endtask

▪ Tasks can be declared within a module and a interface

▪ Tasks can be used for modeling both combinational and sequential logic.

▪ Programming statements within a task can advance time 
• Tasks contain any time controlled statements such as #, @, or wait, posedge, negedge, etc

• Synthesis compiler require task run in zero simulation time which is identical void functions
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Binary to Gray Conversion using Task
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module binary_to_gray_conv #(parameter N = 4)( 
input logic clk, rstn,
input logic[N-1:0] binary_value,
output logic[N-1:0] gray_value);

// Task to convert binary to gray value
task binary_to_gray(logic [N-1:0] value);

begin 
gray_value[N-1] = value[N-1];
for(int i=N-1; i>0; i = i - 1)
gray_value[i-1] = value[i] ^ value[i - 1];

end
endtask

// Store binary2gray output in a register
always_ff@(posedge clk or negedge rstn) begin

if (!rstn) begin
gray_value <= 0; 

end
else begin
binary_to_gray(binary_value);

end
end 
endmodule: binary_to_gray_conv

Direct driving of output signal 
gray_value from task

call to a task with input value passed

Task describes
combinational logic



Tasks Rules
❑ Tasks can contain both non-blocking and blocking assignment statements

❑ The task would return values in output arguments

❑ Tasks can call another tasks and functions

❑ A task can support multiple goals and can calculate multiple result values

▪ Task can have multiple inputs and outputs specified in its argument list

❑ Tasks can take, drive and source global variables, when no local variables are used. 

▪ When local variables are used, output is assigned only at the end of task execution.

❑ A task must be specifically called with a statement, it cannot be used within an expression as a 
function can.

❑ Tasks can be used in both synthesizable and non-synthesizable code
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Generate and Genvar
❑ Generate

▪ SystemVerilog provides generate statement to create multiple instantiations of module or code 
within module

▪ There are two types of generate statements :

o generate for loops

o generate conditionals 

• generate if-else

• generate case

❑ Genvar
▪ genvar variable is a special integer variable to control and evaluate the generate loop during 

elaboration 

▪ The value of a genvar variable can only be assigned a positive number, 0, X or Z,

▪ genvar variable can only be used during elaboration, and cannot be accessed during runtime

▪ genvar declaration can be inside or outside the generate region, and the same loop index 
variable can be used in multiple generate loops, as long as the loops don’t nest
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generate for loop syntax 
genvar i;
generate 
for (i = 0; i < N; i = i + 1) begin

…..
….. 
…..

end
endgenerate

generate if-else syntax
generate 
if(<expression>) begin

…..
end
else if(<expression>) begin

…..
end

endgenerate



Generate Statement
❑ Permitted items in generate statements are :

▪ Any number of module and primitive instances 

▪ Any number of initial or always procedural blocks

▪ Any number of continuous assignments 

▪ Any number of net and variable declarations 

▪ Any number of parameter redefinitions 

▪ Any number of task or function definitions 

❑ Items that are not permitted in a generate statement include: 
▪ port declarations

▪ constant declarations 

▪ specify blocks. 
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Ripple Carry Adder
❑ A Ripple Carry Adder is made of a number of full adders cascaded together. 

▪ Since carry bit from previous full adder ripples (connected) to the next full adder, hence the 
name Ripple carry adder

▪ It is used to add together two binary numbers using simple logic gates

▪ Ripple-carry adder is relatively slow, since each full adder must wait for the carry bit to be 
calculated from the previous full adder.

▪ The figure below shows 4 full-adders connected together to produce a 4-bit ripple carry adder.

o only the first full adder may be replaced by a half adder (under the assumption that C[0]= 0).
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1-bit Full 
Adder
Inst3

A[3] B[3]

S[3]

C[4]

1-bit Full 
Adder
Inst2

A[2] B[2]

S[2]

1-bit Full 
Adder
Inst1

A[1] B[1]

S[1]

1-bit Full 
Adder
Inst0

A[0] B[0]

S[0]

C[0] (same as Cin)
C[1]C[2]C[3]

4-bit Ripple Carry Adder



Carry Lookahead Adder
❑ A Carry lookahead Adder is made of a number of full adders cascaded together. 

▪ Carry lookahead adder is similar to ripple carry adder with the difference that it calculates the carry bit 
before the full adder is done with its operation.

▪ Advantage of carry lookahead adders is that it adds two numbers faster than ripple carry adder

▪ The drawback is that carry lookahead adder takes more logic. 

▪ For faster performance when adding two number select carry lookahead adder implementation and for 
more lower resource usage select ripple carry adder implementation

▪ The figure below shows 4 full-adders connected together to produce a 4-bit lookahead carry adder.
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4-bit Carry Lookahead 
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Ripple Carry Adder using Generate
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module ripple_carry_adder #(parameter N = 4)( 
input logic[N-1:0] A, B, 
input logic CIN,
output logic[N:0] result);
logic[N:0] l_carry;
logic[N-1:0] l_sum;
// assign Carry in to first full adder carryin
assign l_carry[0] = CIN;

// Instantiate Full Adder for 'N' instances
genvar i;
generate
for(i=0; i<N; i=i+1) begin: fa_loop

fulladder fa_inst(
.a(A[i]),
.b(B[i]),
.cin(l_carry[i]),
.sum(l_sum[i]),
.cout(l_carry[i+1]));

end: fa_loop
endgenerate

// final result of addition and carry
assign result = {l_carry[N], l_sum}; 

endmodule: ripple_carry_adder

genvar ‘i’ controls generate for loop iteration

generate for loop 
statement will 
create ‘N’ number 
of full adder 
module instances

mandatory 
to have 

named for 
loop inside 
generate 

body

fulladder fa_inst0(
.a(A[0]),
.b(B[0]),
.cin(l_carry[0]),
.sum(l_sum[0]),
.cout(l_carry[1]);

fulladder fa_inst1(
.a(A[1]),
.b(B[1]),
.cin(l_carry[1]),
.sum(l_sum[1]),
.cout(l_carry[2]);

fulladder fa_inst2(
.a(A[2]),
.b(B[2]),
.cin(l_carry[2]),
.sum(l_sum[2]),
.cout(l_carry[3]);

fulladder fa_inst3(
.a(A[3]),
.b(B[3]),
.cin(l_carry[3]),
.sum(l_sum[3]),
.cout(l_carry[4]);



Ripple Carry Adder Post Synthesis Netlist
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Full Adder Logic



Ripple Carry Adder Simulation Result
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Generate if conditional Example
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module generate_if_conditional #(parameter OP_TYPE = 0)( 
input  logic [7:0] a, b,
output logic [15:0] z);

generate
if(OP_TYPE == 0) begin

assign z = a + b;
end
else if(OP_TYPE == 1) begin

assign z = a - b;
end
else if(OP_TYPE == 2) begin

assign z = a ^ b; 
end
else begin

assign z = a<<1;
end
endgenerate

endmodule: generate_if_conditional

Based on OP_TYPE value set 
at elaboration time, only one 
the logic within if-else will be 
generated by Synthesis tool. 

For OP_TYPE=0, synthesizer 
generated half adder logic as 
shown below



clock divide by 4 (Implementation-1) 
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module clock_divide_by_4 #(parameter N = 4)( 
input  logic clkin, reset,
output logic clkout);

logic [$clog2(N)-1:0] cnt_value;
always_ff@(posedge clkin or posedge reset) 
begin

if (reset == 1) begin
cnt_value <= 0;
clkout <= 0; 

end
else if(cnt_value == $clog2(N)-1) begin
cnt_value <= 0;
clkout <= ~clkout;

end
else 
cnt_value <= cnt_value + 1;

end
endmodule: clock_divide_by_4

$clog2 function returns the ceiling of the logarithm to the 
base 2.
Example : 
for N=4, $clog2(4) will return 2
for N=6, $clog2(4) will return 3
For N=8, $clog2(4) will return 3

cnt_value == $clog2(N)-1

cnt_value <= cnt_value +1; clkout<= ~clkout;

Question  : If parameter N value is changed in SystemVerilog
code to value 8, would above mentioned circuit work as 
divide by 8 ?



clock divide by 4 Example
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clkout is 4 
times slower 

than clkin

1 2 3 4


