Final Project Part-1 : SHA256

ECE-111 Advanced Digital Design Project
Vishal Karna

UCSan Diego
Winter 2022 JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Final Project Guidelines

[Final Project Includes:
= Part-1: Develop SHA256 RTL model
= Part-2 : Develop bitcoin hashing RTL model using SHA256 hash function
e 2a: Serial Implementation
e 2b : Parallel Implementation

1 Testbench will be provided for both Part-1 and Part-2:
» Expected behavior of SHA256 and bitcoin model will be implemented in testbench

» |f RTL model does not generate correct hash value, then testbench will generate failure
message otherwise it will generate success messages.

= Students have to ensure RTL models developed work as per the expectations

Final Project Guidelines

 Final Project Submission :
= Due date is Mar 18th, 2022 by 11.59 PM (No further extension beyond this date)
* Project report submitted after Mar 18t will not be accepted even for partial credit
" There is no presentation to be performed by each group on their final implementation

" Final report should include both SHA256 and Bitcoin model implementation results and
details

= Note:
» Specifics details on what should final project submission include will be provided to students
» Specific files along with project report will be required to be submitted along with report.
o List of all files will be provided to students
* Project goals such as speed, area, timing, etc will be provided to students

 Project Discussion Sessions :
* Teaching staff (TA’s) will conduct project discussion sessions and office hours

= Students can reach out to TA’ and Tutor to help with final project either in their office hours
and/or through 1-1 zoom sessions. Students should request for such 1-1 session if required.

= Specific project discussion sessions conducted by instructor will be announced on piazza

What is Secure Hash Algorithm (SHA256) ?

(J SHA stands for “Secure Hash Algorithm”

" |tis a cryptographic method of converting input data of any kind and size, into a string of fixed

number of characters
Secure Hashing

Compression Function

— (000 | #blc1d
&”(#df
— |- ||‘ sioksas

Input Data / Message of Fixed Value Output Hash
any size or any type (Message Digest)

1 Goal is to compute a unique hash value for any input data or message
(J No matter the size of the input, the output is the fixed size message digest

 There are multiple SHA Algorithms
= SHA-1 : Input message up to <2764 bits produces 160-bit output hash value (a.k.a message digest)
= SHA-2 : Input message up to 264 bits produces 256-bit output hash value
= SHA-3 : Input message of 22128 bits produces 512-bit output hash value

What is Secure Hash Algorithm (SHA256) ?
1 In SHA-256 messages up to 2764 bits (2.3 billion gigabytes) are transformed into 256-bit digest

Orange » SHA-256 » 78e7771b8b46e11ddb34bad8887e1330525215f96d94778980d1186e6f09f6ba
| J \ l
1

|
4f 72 61 6e 67 65 , , _
12-bit Hexadecimal Input Message Fixed 256-bit Value Digest (Output Hash Value)

The quick brown
fox jumps over »
the Iazv dog SHA-256

88-bit Hexadecimal Input Message

» c03905fcdab297513a620ec81ed46cad4ddb62d41cbbd83eb4a5a3592be26a69

\ J
|

Fixed 256-bit Value Digest (Output Hash Value)

I -

- » SHA-256 » 017fa150d2b079a9fee41169cb09142f2b91badbbbf311797e90982b8dc1bf14
AVATAR., \ J
-, |

32KB AVATAR.JPG Image File Fixed 256-bit Value Digest (Output Hash Value)

SHA256 Properties

 Cryptographic hashing function needs to have certain properties in order to be
completely secured. These are :

= Compression

= Avalanche Effect

= Determinism

" Pre-Image Resistant (One Way Function)
= Collision Resistance

Efficient (Quick Computation)

Compression

1 Output hash should be a fixed number of characters, regardless of the size of the input
message !

L9, » SHA-256 » \a7da489976d0047490617adb4f7a1f27f7af8b52a5176fd002ffe471863520ab’

|
Fixed 256-bit Value Digest (Output Hash Value)

2-bit Hexadecimal Value

S _g» SHA-256 » (4P904266642d4659769bbadgeb8552¢2d53¢f09b1faabdf72154530ba16fc8

5 MB MP3 File Fixed 256-bit Value Digest (Output Hash Value)

For input message of 2-bit value or 5 MB MP3 File, output
hash value is fixed size of 256-bit value .

Avalanche Effect

J A minimal change in the input change the output hash value dramatically !
= This is helpful to prevent hacker to predict output hash value by trial and error method

The quick brown

fox jumps over » SHA-256 » c03905fcdab297513a620ec81ed46cad4ddb62d41cbbd83eb4a5a3592be26a69
‘ the lazy dog ' \]

T |
88-bit Hexadecimal Input Message

Fixed 256-bit Digest (Output Value)

The quick brown
fox jumps over

the lazy dogs
| Y] '

» SHA-256 » 38(701d21dade82b2076989d52644da2a7737d424bbad7381e6926847a92a39

Input Message with additional . kit Di
alphabet added Fixed 256-bit Digest (Output Value)

90-bit Hexadecimal Value
Significantly different output hash values !

Determinism

(J Same input must always generate the same output by different systems

= Any machine in the world which understands hashing algorithm should able generate same
output hash value for a same input message

ﬁl , |
i—:i — | me S &
T I TXT I

6b17cb27b0ccc3316d130979a65a9¢9a 6b17cb27b0ccc3316d130979a65a9c9%a
fc2e07831b999e3b4707f001b10fb5d6 fc2e07831b999e3b4707f001b10fb5d6

Same output hash value generated from same Input message by any machine
which runs same secure hashing algorithm !

Pre-Image Resistant (One-Way) And Efficient

J Secure hashing algorithm should be a One-Way function

=" No algorithm to reverse the hashing process to retrieve the original input message

» Only way is trial and error method, to try each possible input combination to find matching hash value. Not
practical !

" |f input message can be retrieved from output hash value then the whole concept will fail !

password# ‘ db2c26da2750dealadd7d7677c22d6dc
f°_’;;ilz_ " b6dc4e2674357c82c39bb96d563f0578

[Efficient : Creating the output hash should be a fast process that doesn’t make heavy
use of computing power

= Should not need supercomputers or high end machines to generate hash !
= More feasible for usage !

10

Hashing vs Encryption

 Encryption is reversible as original message can be retrieved but Hashing has to be
irreversible !

Encryption & Decryption

Decrvption

1111}
1111}

Two-Way Function

Plain Text Encrypted Text Plain Text

Hashing Algorithm

XN
I N | ..
| 4
Plain Text \ Hash Function / Hashed Text

One-Way Function

Collision Resistance

J Hashing Function suffers from the same birthday problem

= What is a birthday problem !

* Two people can share same birthday as there are 365 days in a year and there are 7.7+ billion
human beings on earth as of year 2020

o Tyron's birthday is on June 1 = 152 (day of the year)
o Jenny's birthday is on December 31 - 365 (day of the year)
o Sasha's birthday is on June 1 2 152 (day of the year) — shares Birthday hash 152 with Tyron

= |In rare occasions hashing may produce hash collision ! — Similar to Birthday Hash Problem

* Since input can be any large combination values and output is smaller fixed value, so it is
theoretically possible to find two input messages having same output hash value

it o o same Hash Value
. P v—— % DRT556677YYRGT63f05785230UGHTBKD
ditferent — : 230UGHTBKGT53f15685EBVDF8901SWQ

. the regular-season ends
iInpu ts

possibility of seeing in h:

that he was approaching

12

Collision Resistance

(1 Hashing algorithm should be rigorous and it must withstand collision !

= Hackers may take advantage of hash collision
= To avoid hash collision, the output length of the hash value can be large enough so

that birthday attack becomes computationally infeasible

* Example : Document hashed with SHA512 is more robust compared to SHA256 as possibility of two
inputs to generate same long hash value is almost none !

password#

foxcon12
% Db2c26da2750dealadd7d7677c22d6dc
b6dc4e2674357¢82c39bb96d563f0578
78FGHWQ23409J5639bb96d77752190
8789VBDWTROPUTGHIKLMNOPTTS891
password# Two different input blocks with same output hash value

defconi2 should be practically impossible even though
TXT theoretically possible !

13

Applications of SHA256 : Verifying File Integrity

L

badFHe

goodFﬂe

~

- . b = *

1 Software manufacturer wants to ensure that the executable file is received by users
without modification

[Sends out the file to users and publishes its hash in NY Times

M The goal is integrity, not secrecy

[Idea: given goodFile and hash(goodFile), very hard to find badFile such that
hash(goodFile)=hash(badFile)

14

http://msn.cwusa.tv/images/Bill-Gates-08-Formal.jpg

Applications of SHA256 : Storing and Validating Password

First Time Account
Registration and |
Password Creation

Re-Login ||»

AutheDiamond

hunter2

SIGN UP

AutheDiamond

hunter2

hunter2

Retrieve
Auth@Diamond’s

password hash

#

HASHING
ALGORITHM

#

HASHING
ALGORITHM

DATABASE

f52f.f6c7 L — -]
o =

DATABASE

Yes Access Granted
£52f_f6c7 @
: No%
Access Denied

f52f..f6c7

 Instead of storing password directly, password is stored in database as a hash value.

(d When user enters the password, first hash is created from the password and then hash value is
checked against the originally stored hash value before granting the access

15

SHA256 Algorithm

_ . Input Message
Input Message = n x 512 bits Size (64 bits)
| I

I MO I I M1 : I Mn I

Message Message Message Block-n

EREN
lock0 lock “essge | rdings | wessgesie } rina
SHPA e 64 rounds of 512 bits XL l'OU"dS.Of 512 bits Output
Initial wo Compression 64 rounds of Last Stage Initial Hash
Hash Compressia Hash (256bits)

u

[T
XL
[T

il
SEEHEEEH

I
N

+
3
I

L
N

=
B 4+ H1 =
—
H3 =
Hash Total E
Size : 256 bits
HO to H7 : 32 / m
—
bits each
ato h: 32 bits -
each

16

Compression
Function includes
two steps :

Work Expansion
followed by
SHA256 operation

SHA256 Algorithm

for (t = 8; t < 64; t++) begin

if (t < 16) begin
w[t] = dpsram_tb[t]; // Get Input Message 512-bit block and store in Wt array

Step 1: end else begin
Word s@ = rightrotate(w[t-15], 7) ~ rightrotate(w[t-15], 18) ~ (w[t-15] >> 3);
. s1 = rightrotate(w[t-2], 17) » rightrotate(w[t-2], 19) ~ (w[t-2] >> 18);
Expansion w[t] = w[t-16] + s@ + w[t-7] + s1;
end
end
A|[B|C|D|E|F |G |H
w(t]
- FH< = klt]
Step 2: ~,~- "
SHA256 -
Operation
” |
Performed - |
64 times ;- -~
t=0to63

17

SHA256 Algorithm

J General Assumptions
" |nput message must be <=2 bits
= Message is processed in 512-bit blocks sequentially
= Message digest (output hash value) is 256 bits

SHA256 Algorithm

 Step 1: Append padding bits (1 and 0’s)
= A L-bit message M is padded in the following manner:
* Add a single “1” to the end of M

* Then pad message with “0’s” until the length of message is congruent to 448, modulo 512
(which means pad with 0’s until message is 64-bits less than some multiple of 512).

1 Step 2 : Append message length bits in O to 63 bit position
= Since SHA256 supports until 2264 input message size, 64 bits are required to append message

length
= N x 512 bits
= L bits >4 P bits
M 1/0{0| ... |0}, ancmnbity
~——~—"|«—64 bits—
L+ P =n x 512 bits Pad 0's
= L = Length of original message Append 1

= P = Padded bits After Message

SHA256 Algorithm

J Example : Lets say, original Message is L = 640 bits

= Since message blocks have minimum 512 chunks, to fit original message of 640 bits in 512
bits chunks, it would require 2 message blocks (n = 2)

* MO (first block) Size = 512 bits (no padding required)
M1 (second block) Size = 512 bits after padding

o 512 bits = 128 bits of original message + 1 bit for appending ‘1’ + 319 bits of 0’s + 64
bit message length

 Message length=decimal value 640 stored in O to 63 bits

< 1024 bits
€ L=640 bits < P=384 bits ———
Value=640
M 1{0]0{...]0 decimal
——~———64 bits—
Pad 319 0’s
Append 1

After Message

SHA256 Algorithm

J Step 3 : Buffer Initialization
" |nitialize message digest (MD) buffers / output hash to these 8 32-bit words

HO = 6a09e667
H1 = bb67ae85
H2 = 3c6ef372
H3 = a54ff53a

H4 = 510e527f
H5 = 9b05688c
H6 = 1f83d9ab
H7 = 5be0cd19

SHA256 Algorithm

(J Step 4 : Processing of the message (algorithm)
* Divide message M into 512-bit blocks, M,, M, ... M, ...
" Process each M; sequentially, one after the other
= |nput:
* W.:a 32-bit word from the message
* K,:aconstant array
* HO, H1, H2, H3, H4, H5, H6, H7 : current MD (Message Digest)
= Qutput:
* HO, H1, H2, H3, H4, H5, H6, H7 : new MD (Message Digest)

SHA256 Algorithm

] Step 4 : Cont’'d

= At the beginning of processing each M,, initialize
(A,B,C,D,E, F G, H)=(HO, H1, H2, H3, H4, H5, H6, H7)

" Then 64 processing rounds of 512-bit blocks

= Each step t (0 <t < 63): Word expansion for W,
* Ift<16
o W, =t 32-bit word of block M,
* If16<t<63
O Sy = (W, s rightrotate 7) xor (W, ;. rightrotate 18) xor (W__,. rightshift 3)
o s, = (W,, rightrotate 17) xor (W, , rightrotate 19) xor (W, , rightshift 10)
O Wi =Wijg+s,+Wi;+s,

SHA256 Algorithm

] Step 4: Cont’d
= K, constants

K [0..63] = 0x428a2f98, 0x71374491, Oxb5c0fbcf, Oxe9b5dba5,
0x3956¢25b, 0x59f111f1, 0x923f82a4, Oxablc5ed5, O0xd807aa98,
0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
Ox9bdc06a7, 0xc19bf174, Oxe49b69cl, Oxefbed 786, 0x0fc19dch,
Ox240calcc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, Oxc6e00bf3,
Oxd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138,
Ox4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e,
0x92722c85, Oxa2bfe8al, 0xa81a664b, O0xc24b8b70, Oxc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
Ox1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, Ox4ed8aa4a,
Ox5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814,
Ox8cc70208, 0x90befffa, Oxa4506ceb, Oxbef9a3f7, Oxc67178f2

SHA256 Algorithm

] Step 4 : Cont’'d
" Eachstept (0<t<63):

Bl S, = (A rightrotate 2) xor (A rightrotate 13) xor (A rightrotate 22)

- maj = (A and B) xor (A and C) xor (B and C)
t, =S, + maj

- S, = (E rightrotate 6) xor (E rightrotate 11) xor (E rightrotate 25)

Bl ch = (E and F) xor ((not E) and G)

A

B

C

D

t,=H+S; +ch +K[t] + W][t]
(A; B; C) DI E) F) Gl H) = (t]_ +t21 A) B; CI D +t11 E; FI G)

!

W,

i

25

SHA256 Algorithm

] Step 4 : Cont’'d
= Finally, when all 64 steps have been processed, set
HO=HO+a
H1=H1+b
H2=H2+c
H3=H3+d
H4=H4 +e
H5=H5+f
H6=H6+g
H7 =H7 +h

J Step 5 : Output

= When all M; have been processed, the 256-bit hash of M is available in HO, H1, H2,
H3, H4, H5, H6, H7

SHA256 Algorithm Flow Chart for FSM Designing

IDLE State

A 4

Read State

Block State
Check if
NUM_OF_BLOCKS < 2?

Compute State

—)

Write State <

If start==1, Initialize h0, h1, h2, h3, h4, h5, h6, h7 to initial hash values
Initializea, b,c,d, e, f, g, h

Initialize write enable to memory, memory address offset, curr_addr to
first message location in memory, index variables, etc

Move to read input message FSM state

Read 640 bits message from testbench memory in chunks of 32bits words
(i.e. read 20 locations from memory by incrementing address offset)
Move to Block creation FSM state

In Block FSM state, Create two message blocks each of 512 bits

First message block has first 16 words of input message stored in 'w' array
Second message block has 4 words of input message, value 1, padding 0 and
message size 640

Assign h0, hl, h2, h3, h4, h5, h6, h7to a, b, ¢, d, e, f, g, h respectively

Check if for both blocks SHA256 operation has been processed and hash is
created, if yes then move to WRITE state otherwise move to compute state

Perform Word expansion of 16 elements of input message block (512 bits) and
create total 64 word array each having 32 bits

Perform 64 rounds of SHA operation to generate hash values in 'a’ thru 'h'
array. Increment number of blocks iteration variable

Add previous hash values with 'a' thru 'h' hash values, go back to BLOCK State

Werite 256 bit hash value stored in h0O to h7 hash variables in testbench
memory using output_addr as a starting address location
Set done = 1 and then move to IDLE state

Module Interface

J Wait in idle state for start, read message starting at message addr and write final
hash {HO, H1, H2, H3, H4, H5, H6, H7} in 8 words to memory starting at output_addr.
message _addr and output_addr are word addresses.

(J Message size is “hardcoded” to 20 words (640 bits).
1 Set done to 1 when finished.
1 Testbench has memory defined named “dpsram[0:16383]” which has all 20 word of

input message available R
I‘ h 4 h 4 h 4
l——
Memory |
(provided by ¢ simplfied_sha256
testbench) | PSS
"

Module Interface

d Write the final hash {HO, H1, H2, H3, H4, H5, H6, H7} in 8 words to memory starting
at output_addr as follows:

mem addr <= output addr;

mem write data <= Hy; output_addr HO

mem addr <= output addr + 1; output_addr + 1 H1

mem_Write_data <= Hl; Output_addr+2 H2
output_addr + 3 H3

mem addr <= output addr + 7; output_addr +4 H4

mem write data <= H,; output_addr + 5 H5
output_addr + 6 H6
output_addr + 7 H7

 Your assignment is to design the yellow box:

Module Interface

module simplified sha256 (input

endmodule

Memory
(provided by
testbench)

input
output
output
output

input

logic
logic
logic
logic
logic

logic

clk, reset n, start,

[15:0] message addr, output addr,
done, mem clk, mem we,

[15:0] mem addr,

[31:0] mem write data,

[31:0] mem read data);

V'

simplified_sha256

V Y N N

No Inferred Megafunctions or Latches

 In your Quartus compilation message ensure :

= No inferred megafunctions: Most likely caused by block memories or shift-register replacement.
Can turn OFF “Automatic RAM Replacement” and “Automatic Shift Register Replacement” in
“Advanced Settings (Synthesis)”. If you still see “inferred megafunctions”, contact Professor.
Your design will not pass if it has inferred megafunctions.

= No inferred latches: Your design will not pass if it has inferred latches.

; Fitter Summary

No Block Memory Bits

O In your bitcoin_hash.fit it must say Total block memory bits is 0 (otherwise will not pass).

S e e e S L S S S s S S S S S S +

; Fitter Status
; Quartus Prime Version
; Revision Name

; Successful - Wed May 09 15:37:04 2018 H
; 17.1.0 Build 590 10/25/2017 SJ Lite Edition ;
; bitcoin_hash ?

Specify the settings for the logic options in your project. Assignments made to an individual node or entity in the

Assignment Editor will override the option settings in this dialog box.

; Top-level Entity Name ; bitcoin_hash 2 l‘\» Filter Show: All N
; Family ; Arria II GX
; Device ; EP2AGX45DF29I5 Name: Setting: &
; Timing Models ; Final
; Logic utilization ; 8 % Allow Synchronous Control Signals on
Combinational ALUTs ; 2,009 / 36,100 (6 %) Analysis & Synthesis Message Level Medium
Memory ALUTs ; 0/ 18,050 (0 %)
; Dedicated logic registers s X;257 // 36,100 (3 '$) ; Auto Carry Chains Oon
; Total registers s 1257
U metal pine ;118 / 404 (29 %) Auto Clock Enable Replacement On
; Total virtual pins ;0 Auto DSP Block Replacement On
: Ls PSP . | 1o 7 bai + fal ’),E]‘)S‘A,f}f\/l < 0.5) ;
: |psp block 18-bit elements ;0 /232 (0%) | Atftn Galed Glnck Coerion o
Auto Open-Drain Pins On
Auto RAM Block Balancing On
"W . . »” Auto RAM Replacement Off
4 If not, go to “Assignments—>Settings | AR o Logc Cl comversr or
. V74 . . ¥)) Auto ROM Replacement On
in Quartus, go to “Compiler Settings”, o
I . k llAd d S tt . (S t h])II Auto Shift Register Replacement off
C IC Va nce e I ngs yn eSIS Block Design Naming Auto
Carry Chain Length 70
o 1
Turn OFF “Auto RAM Replacement
d IIA S h 'f R . R | ” Allows the Compiler to find a group of shift registers of the same length that can be replaced with the
a n uto I t eg I Ste r e p a Ce I I l e nt altshift_taps megafunction. The shift registers must all use the same clock and clock enable signals, Reset
must not have any other secondary signals, and must have equally spaced taps that are at least three
registers apart. Reset All

Cancel Help

Final Project Submission

1 Put following files into (LastName, FirstName)_(LastName, FirstName)_finalproject.zip

Both design files and also testbench code for both SHA256 and Bitcoin hashing project
Modelsim transcript files msim_transcript for both SHA256 and Bitcoin hashing project

For both SHA256 and bitcoin hashing provide, fitter and sta files (files with extension .fit, .sta)
Report for both SHA256 and Bitcoin hashing project

Finalsummary.xls file with fmax, number of cycles, aluts, registers detail filled. Template of this file is
provided as part of Final_Project.zip folder. This should be submitted for both SHA256 and bitcoin hash

1 Final report should including following mentioned :

Explain briefly what SHA-256 is and bitcoin hashing (may use lecture slide contents)
Describe algorithm for both SHA-256 and Bitcoin hashing implemented in your code
Simulation waveform snapshot for both SHA-256 and Bitcoin hashing

Provide modelsim transcript window output indicating passing test results generated from self-checker
in testbench for both SHA-256 and Bitcoin hashing

Provide synthesis resource usage and timing report for bitcoin_hash only.
o Should include ALUTs, Registers, Area, Fmax snapshots
o Provide fitter report snapshot
o Provide Timing Fmax report snapshots
o Make sure to use Arria Il GX EP2AGX45DF29I5 device and use Fmax for Slow 900mV 100C Mod

Fill up finalsummary.xlsx

O Fill up finalsummary.xIsx posted on Piazza as part of Final_Project.zip (to be filled for both
simplified_sha256 bitcoin_hash project in separate fillsummary.xlsx)

Fmax Delay| Area*Delay

Last Name First Name Student ID Sectionld Email Compiler Settings| ZALUTs| ZRegisters Area (MHz)| #Cwvcles| (microsec)| (milisec*area)
SMITH ROBERT BENJAMIN| A12345678 925042| rsmith@ucsd edu balanced 31607 20932 52539 134.01 242 1.806 94 877
JONWES ALICE MARIE A23456789 025044| ajones@ucsd edu balanced 31607 20932 52539 134.01 242 1806 o4 877

O If you worked alone, just fill out one row

L Spreadsheet already contains calculation fields: e.g. Area = #ALUTs + #Registers. Please use them.
L Students to fill ALUTs, Registers, Fmax and Cycles column in excel sheet.

O #cycles will be generated for your design from testbench code.

 Make sure to use Arria Il GX EP2AGX45DF29I5 device

O Make sure to use Fmax for Slow 900mV 100C Model

d Make sure to use Total number of cycles

(J Note : Best Fmax with area will be considered as one of the grading point for bitcoin hashing

project.

simplified_sha256.fit & bitcoin_hash.fit Fitter Report

[Copy of the fitter reports (not the flow report) with area numbers.
(d Make sure to use Arria Il GX EP2AGX45DF29I5 device
(IMPORTANT: Make sure Total block memory bits is 0.

T i D L A O’ P U S A O DD +
; Fitter Summary -
L HSSNE AL A S £ IED IS LI I NI KD D S S O L +
; Fitter Status ; Successful - Wed May 09 15:37:04 2018 ;
; Quartus Prime Version ; 17.1.0 Build 590 10/25/2017 S8J Lite Edition ;
; Revision Name ; bitcoin hash o
; Top-level Entity Name ; bitcoin hash
; Family ; Arria ITI GX
; Device ; EP2AGX45DF29I5
; Timing Models : Final
; Logic utilization ; 8 %

Combinational ALUTs ; 2,009 / 36,100 (6 %)

Memory ALUTS ;s 0 / 18,050 (0 %)
, Dedicated logic registers ; 1,257 / 36,100 (3 %)
; Total registers : 1257
; Total pins s 118 / 404 (29 %)
; Total wvirtual pins ;0
; Total block memory bits 0/ 2,939,904 (0 %)
; DSP block 18-bit elements 0/ 232 (0 %)
: Total GXB Receiver Channel PCS 0O/ 8 (0%)
; Total GXB Receiver Channel PMA s 0/ 8 (0 %)
; Total GXB Transmitter Channel PCS ; 0 / 8 (0 %)
; Total GXB Transmitter Channel PMA ; O / 8 (0 %)
;s Total PLLs ;s 0/ 4 (0 %)
; Total DLLs ;s 0/ 2 (0 %)
o —— o ————— +

simplified _sha256.sta & bitcoin_hash.sta

1 Copy of the sta (static timing analysis) reports.
(J Make sure to use Fmax for Slow 900mV 100C Model
J IMPORTANT: Make sure “clk” is the ONLY clock.

1 You must,
assign mem_clk = clk;

 Your bitcoin_hash.sta.rpt must show “clk” is the only clock.

o m e e e e +
; Slow 908mV 100C Model Fmax Summary
Fommmmmm - e e e +
; Fmax ; Restricted Fmax ; Clock Name ; Note ;
Fommmmmmmm - e D e +
; 151.95 MHz ; 151.95 MHz s clk

e Fommmmmm e m e m o e et $------ +

37

Hints

1 Since message size is hardcoded to 20 words, then there will be exactly 2 blocks.

 First block:
= w[0]...w[15] correspond to first 16 words in memory

J Second block:
= w[0]...w[3] correspond to remaining 4 words in memory
= w[4] <= 3280000000 to put in the “1” delimiter
= w[5]...w[13] <=32’00000000 for the “0” padding

= W[14] <= 3200000000 for the “0” padding (these are upper 32 bits of message
length bits)

= w[15] <=32'd640, since 20 words = 640 bits (these are lower 32 bits of message
length bits)

Hints

J You must use “clk” as the “mem_clk”.

assign mem_clk = clk

1 Using “negative” phase of “clk” for “mem_clk” is not allowed.

Hints : Parameter Arrays
(J Declare SHA256 K array like this:

// SHA256 K constants

parameter int sha256_k[0:63] ='{
32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5, 32'h3956¢25b, 32'h59f111f1, 32'h923f82a4, 32'hablc5ed5,
32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3, 32'h72be5d74, 32'h80deblfe, 32'h9bdc06a7, 32'hc19bf174,
32'hed49b69cl, 32'hefbed 786, 32'h0fc19dc6, 32'h240calcc, 32'h2de92c6f, 32'h4a7484aa, 32'h5¢cb0a9dc, 32'h76f988da,
32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7, 32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13, 32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
32'ha2bfe8al, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3, 32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5, 32'h391c0cb3, 32'h4ed8aada, 32'h5b9cca4df, 32'h682e6ff3,
32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208, 32'h90befffa, 32'had506ceb, 32'hbef9a3f7, 32'hc67178f2

|3
[Use it like this:

tmp <= g + sha256_KkJi];

40

Hints : Right Rotation

J Right rotate by 1
{x[30:0], x[31]}
(x>>1) | (x<<31))

(J Right rotate by r

((x>>r) | (x << (32-r))

// right rotation
function logic [31:0] rightrotate (input logic [31:0] x,
input logic [7:0] r);
rightrotate = (x >> r) | (x << (32-1r));
endfunction

41

Possible Results

1 Areasonable “median” target:

= #ALUTs = 1768, #Registers = 1209, Area = 2977
= Fmax = 107.97 MHz, #Cycles = 147

= Delay (microsecs) = 1.361, Area*Delay (millesec*area) = 4.053

* Toread from the memory:

Memory Model

* Set mem_addr = address to read from (ex: 0x0000), mem_we =0
* At next clock cycle, read data from mem_read_data

* To write to the memory:

* Set mem_addr = address to write to (ex: 0x0004), mem_we = 1, mem_write_data = data

that you wish to write

Memory
(provided by
testbench)

-

y

simplified_sha256

43

Memory Model

* You can issue a new read or write command every cycle, but you have to wait
for next cycle for data to be available on mem_read_data for a read command.

* Be careful that if you set mem_addr and mem_we inside always_ff block,
compiler will produce flip-flops for them, which means external memory will not
see the address and write-enable until another cycle later.

mem clk I - | l I

mem_we

1

mem addr[15:0] -

mem read data[31:0]

mem_write data [31:0]

/' '\ / I,\
assert read signals safe toread assert write signals safe to deassert
and deassert

l_..r_J L_..'_J

read write

d THIS IS INCORRECT

always ff @ (posedge clk, negedge reset n) begln
1f (!reset n) begin
state <= S50;
end else
case (state)
S0: begin
mem we <= 0; // mem we is 0 for memory read

mem addr <= 100; // address from where we want to read
state <= 51;

end

Sl: begin
value <= mem read data; // data not yet available
state <= 352;

end

45

Memory Model

1 Have to wait an extra cycle, correct way of reading from memory

always ff @ (posedge clk, negedge reset n) begin
if (!reset n) begin
state <= 50;
end else
case (state)
S0: begin
mem we <= 0;

mem addr <= 100;

end

O

Sl: // memory only sees addr 100 in this cycle

S2: begiln

value <= mem read data; // for addr 100 .

Pipelining the Memory Read

case (state)
S0: begin
mem we <= 0;
mem addr <= 100;
state <= S1;

end

S1: begin
mem we <= 0;
mem addr <= 101;
state <= S2;

end

S2: begin

value <= mem read data; // for addr 100 <
state <= S3;

end

S3: begin
value <= mem read data; // for addr 101 Sa——

state <= 54;

Memory Write Example

1 Notice here that we assign address to mem_addr and data to mem_write_data
in the same cycle.

always ff @ (posedge clk, negedge reset n) begiln
1f (!reset n) begin
state <= 50;
end else
case (state)
SO0: begin
mem we <= 1; // mem we 1s 1 for writing
mem addr <= 100; // assigning address where we want to write
mem write data <= 20; //assigning the value whick

state <= 81;

S1l: begin
state <= 82;

48

FSM Design Template (Part-1 Scalable Implementation to Part-2)

j == number of block iteration variable

I ;= number of processing counter variable

i > 64
Pl

Compute (Hash
functions
calculations)

Block (fetch j < num_blocks

message in 512-bit
block w

Idle (initialize values)

start

| <=64

j >= num_blocks

Write (write back to

memory)
i>8

49

i1 := first message block index
i2 := second message block index
j1 = compute counter variable for first block

j2 = compute counter variable for second block
i1<16

Block1 (fetch 16
words in a 512-bit
fashion)

Idle (initialize values)

start

function calculation)

memory, set done to

ji1<64

Compute1 (hash lock2 (fetch 4 words

then do the padding)

i2>=4

Write (write to

Compute2 (hash

1) function calculation)

j2 <64

2)

50

References

O SHA256 Algorithm References :
= https://en.wikipedia.org/wiki/SHA-2
= https://medium.com/bugbountywriteup/breaking-down-sha-256-algorithm-2ce61d86f7a3

1 Hashing Function Application (Password Protection) :
= https://www.youtube.com/watch?v=cczlpiiu42M&t=3s

51

https://en.wikipedia.org/wiki/SHA-2
https://medium.com/bugbountywriteup/breaking-down-sha-256-algorithm-2ce61d86f7a3
https://www.youtube.com/watch?v=cczlpiiu42M&t=3s

