
Final Project Part-1 : SHA256

ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Final Project Guidelines

2

❑ Final Project Includes:
▪ Part-1 : Develop SHA256 RTL model

▪ Part-2 : Develop bitcoin hashing RTL model using SHA256 hash function

• 2a : Serial Implementation

• 2b : Parallel Implementation

❑ Testbench will be provided for both Part-1 and Part-2:
▪ Expected behavior of SHA256 and bitcoin model will be implemented in testbench

▪ If RTL model does not generate correct hash value, then testbench will generate failure
message otherwise it will generate success messages.

▪ Students have to ensure RTL models developed work as per the expectations

Final Project Guidelines

3

❑ Final Project Submission :
▪ Due date is Mar 18th, 2022 by 11.59 PM (No further extension beyond this date)

▪ Project report submitted after Mar 18th will not be accepted even for partial credit

▪ There is no presentation to be performed by each group on their final implementation

▪ Final report should include both SHA256 and Bitcoin model implementation results and
details

▪ Note :
• Specifics details on what should final project submission include will be provided to students

• Specific files along with project report will be required to be submitted along with report.

o List of all files will be provided to students

• Project goals such as speed, area, timing, etc will be provided to students

❑ Project Discussion Sessions :

▪ Teaching staff (TA’s) will conduct project discussion sessions and office hours

▪ Students can reach out to TA’ and Tutor to help with final project either in their office hours
and/or through 1-1 zoom sessions. Students should request for such 1-1 session if required.

▪ Specific project discussion sessions conducted by instructor will be announced on piazza

What is Secure Hash Algorithm (SHA256) ?

4

❑ SHA stands for “Secure Hash Algorithm”

▪ It is a cryptographic method of converting input data of any kind and size, into a string of fixed
number of characters

Input Data / Message of
any size or any type

Secure Hashing
Compression Function

Fixed Value Output Hash
(Message Digest)

❑ Goal is to compute a unique hash value for any input data or message

❑ No matter the size of the input, the output is the fixed size message digest

❑ There are multiple SHA Algorithms
▪ SHA-1 : Input message up to <2^64 bits produces 160-bit output hash value (a.k.a message digest)

▪ SHA-2 : Input message up to 2^64 bits produces 256-bit output hash value

▪ SHA-3 : Input message of 2^128 bits produces 512-bit output hash value

What is Secure Hash Algorithm (SHA256) ?

5

❑ In SHA-256 messages up to 2^64 bits (2.3 billion gigabytes) are transformed into 256-bit digest

Orange SHA-256 78e7771b8b46e11ddb34ba48887e1330525215f96d94778980d1186e6f09f6b4

Fixed 256-bit Value Digest (Output Hash Value)
4f 72 61 6e 67 65

12-bit Hexadecimal Input Message

The quick brown
fox jumps over

the lazy dog SHA-256 c03905fcdab297513a620ec81ed46ca44ddb62d41cbbd83eb4a5a3592be26a69

Fixed 256-bit Value Digest (Output Hash Value)
88-bit Hexadecimal Input Message

SHA-256 017fa150d2b079a9fee41169cb09142f2b91badbbbf311797e90982b8dc1bf14

Fixed 256-bit Value Digest (Output Hash Value) 32KB AVATAR.JPG Image File

SHA256 Properties

6

❑ Cryptographic hashing function needs to have certain properties in order to be
completely secured. These are :
▪ Compression

▪ Avalanche Effect

▪ Determinism

▪ Pre-Image Resistant (One Way Function)

▪ Collision Resistance

▪ Efficient (Quick Computation)

Compression

7

❑ Output hash should be a fixed number of characters, regardless of the size of the input
message !

SHA-256 d9904266f642d4659769bba49eb8552e2d53ef09b1faabd8f72154530ba16fc8

Fixed 256-bit Value Digest (Output Hash Value) 5 MB MP3 File

SHA-256 a7da489976d0047490617adb4f7a1f27f7af8b52a5176fd002ffe471863520ab

Fixed 256-bit Value Digest (Output Hash Value)
2-bit Hexadecimal Value

a

For input message of 2-bit value or 5 MB MP3 File, output
hash value is fixed size of 256-bit value

Avalanche Effect

8

❑ A minimal change in the input change the output hash value dramatically !
▪ This is helpful to prevent hacker to predict output hash value by trial and error method

The quick brown
fox jumps over

the lazy dog SHA-256 c03905fcdab297513a620ec81ed46ca44ddb62d41cbbd83eb4a5a3592be26a69

Fixed 256-bit Digest (Output Value)
88-bit Hexadecimal Input Message

The quick brown
fox jumps over
the lazy dogs SHA-256 38d701d21dade82b2076989d52644da2a7737d42f4bba97381e6926847a9aa39

Fixed 256-bit Digest (Output Value)Input Message with additional
alphabet added

90-bit Hexadecimal Value

Significantly different output hash values !

Determinism

9

❑ Same input must always generate the same output by different systems
▪ Any machine in the world which understands hashing algorithm should able generate same

output hash value for a same input message

6b17cb27b0ccc3316d130979a65a9c9a
fc2e07831b999e3b4707f001b10fb5d6

Today is a
sunny day

6b17cb27b0ccc3316d130979a65a9c9a
fc2e07831b999e3b4707f001b10fb5d6

Same output hash value generated from same Input message by any machine
which runs same secure hashing algorithm !

Pre-Image Resistant (One-Way) And Efficient

10

❑ Secure hashing algorithm should be a One-Way function
▪ No algorithm to reverse the hashing process to retrieve the original input message

➢ Only way is trial and error method, to try each possible input combination to find matching hash value. Not
practical !

▪ If input message can be retrieved from output hash value then the whole concept will fail !

db2c26da2750dea1add7d7677c22d6dc
b6dc4e2674357c82c39bb96d563f0578

password#
foxcon12

❑ Efficient : Creating the output hash should be a fast process that doesn’t make heavy
use of computing power
▪ Should not need supercomputers or high end machines to generate hash !

▪ More feasible for usage !

Hashing vs Encryption

11

❑ Encryption is reversible as original message can be retrieved but Hashing has to be
irreversible !

One-Way Function

Two-Way Function

Collision Resistance

12

❑ Hashing Function suffers from the same birthday problem
▪ What is a birthday problem !

• Two people can share same birthday as there are 365 days in a year and there are 7.7+ billion
human beings on earth as of year 2020

o Tyron's birthday is on June 1 → 152 (day of the year)

o Jenny's birthday is on December 31 → 365 (day of the year)

o Sasha's birthday is on June 1 → 152 (day of the year) – shares Birthday hash 152 with Tyron

▪ In rare occasions hashing may produce hash collision ! – Similar to Birthday Hash Problem
• Since input can be any large combination values and output is smaller fixed value, so it is

theoretically possible to find two input messages having same output hash value

DRT556677YYRGT63f05785230UGHTBKD
230UGHTBKGT53f15685EBVDF8901SWQ

Two
different

inputs

Same Hash Value

Collision Resistance

13

❑ Hashing algorithm should be rigorous and it must withstand collision !

▪ Hackers may take advantage of hash collision

▪ To avoid hash collision, the output length of the hash value can be large enough so
that birthday attack becomes computationally infeasible
• Example : Document hashed with SHA512 is more robust compared to SHA256 as possibility of two

inputs to generate same long hash value is almost none !

Db2c26da2750dea1add7d7677c22d6dc
b6dc4e2674357c82c39bb96d563f0578
78FGHWQ23409J5639bb96d77752190
8789VBDWTROPUTGHIKLMNOPTT891

password#
foxcon12

password#
defcon12

Two different input blocks with same output hash value
should be practically impossible even though

theoretically possible !

Applications of SHA256 : Verifying File Integrity

14

❑ Software manufacturer wants to ensure that the executable file is received by users
without modification

❑ Sends out the file to users and publishes its hash in NY Times

❑ The goal is integrity, not secrecy

❑ Idea: given goodFile and hash(goodFile), very hard to find badFile such that
hash(goodFile)=hash(badFile)

goodFile

BigFirm™ User

VIRUS

badFile

NY Times

hash(goodFile)

http://msn.cwusa.tv/images/Bill-Gates-08-Formal.jpg

Applications of SHA256 : Storing and Validating Password

15

❑ Instead of storing password directly, password is stored in database as a hash value.

❑ When user enters the password, first hash is created from the password and then hash value is
checked against the originally stored hash value before granting the access

First Time Account
Registration and
Password Creation

Re-Login

Access Granted

Access Denied

Yes

No

Message
Block-0
512 bits

C C CH0

H1

H2

H3

H4

H5

H6

H7

Message
Block-1
512 bits

Message Block-n

512 bits
Message Padding 0’s

A

B

C

D

E

F

G

H

H0

H1

H2

H3

H4

H5

H6

H7

A

B

C

D

E

F

G

H

H0

H1

H2

H3

H4

H5

H6

H7

Kt [0 to 63]
Constants
2048 bits

Kt [0 to 63]
Constants
2048 bits

Kt [0 to 63]
Constants
2048 bits

64 rounds of
Compression

64 rounds of
Compression

64 rounds of
Compression

SHA256 Algorithm

16

Final
Output

Hash
(256bits)

Initial
Hash

Initial
Hash

Last Stage
Hash

1st Stage
Hash

2nd Stage
Hash

Message size

Input Message = n x 512 bits
Padding 0

(1 to 448bits)
Input Message
Size (64 bits)

M0 M1 Mn

W0
to

W15

W0
to

W15

Hash Total
Size : 256 bits
H0 to H7 : 32
bits each
a to h : 32 bits
each

H0

H1

H2

H3

H4

H5

H6

H7

H0

H1

H2

H3

H4

H5

H6

H7

A

B

C

D

E

F

G

H

Step 1:
Word

Expansion

C

SHA256 Algorithm

17

Step 2:
SHA256

Operation

Compression
Function includes
two steps :
Work Expansion
followed by
SHA256 operation

Performed
64 times
t = 0 to 63

w[t]

k[t]

SHA256 Algorithm

18

❑ General Assumptions

▪ Input message must be <=264 bits

▪ Message is processed in 512-bit blocks sequentially

▪ Message digest (output hash value) is 256 bits

SHA256 Algorithm

19

❑ Step 1: Append padding bits (1 and 0’s)

▪ A L-bit message M is padded in the following manner:
• Add a single “1” to the end of M

• Then pad message with “0’s” until the length of message is congruent to 448, modulo 512
(which means pad with 0’s until message is 64-bits less than some multiple of 512).

❑ Step 2 : Append message length bits in 0 to 63 bit position
▪ Since SHA256 supports until 2^64 input message size, 64 bits are required to append message

length

M 1 0 0 0…
Message

Length(L-bit)

N x 512 bits

L bits P bits

64 bits

Append 1
After Message

Pad 0’sL + P = n x 512 bits

▪ L = Length of original message

▪ P = Padded bits

SHA256 Algorithm

20

❑ Example : Lets say, original Message is L = 640 bits
▪ Since message blocks have minimum 512 chunks, to fit original message of 640 bits in 512

bits chunks, it would require 2 message blocks (n = 2)

• M0 (first block) Size = 512 bits (no padding required)

• M1 (second block) Size = 512 bits after padding

o 512 bits = 128 bits of original message + 1 bit for appending ‘1’ + 319 bits of 0’s + 64
bit message length

• Message length=decimal value 640 stored in 0 to 63 bits

M 1 0 0 0…
Value=640

decimal

1024 bits

L=640 bits P=384 bits

64 bits

Append 1
After Message

Pad 319 0’s

SHA256 Algorithm

21

❑ Step 3 : Buffer Initialization

▪ Initialize message digest (MD) buffers / output hash to these 8 32-bit words

H0 = 6a09e667
H1 = bb67ae85
H2 = 3c6ef372
H3 = a54ff53a
H4 = 510e527f
H5 = 9b05688c
H6 = 1f83d9ab
H7 = 5be0cd19

SHA256 Algorithm

22

❑ Step 4 : Processing of the message (algorithm)

▪ Divide message M into 512-bit blocks, M0, M1, … Mj, …

▪ Process each Mj sequentially, one after the other

▪ Input:

• Wt: a 32-bit word from the message

• Kt : a constant array

• H0, H1, H2, H3, H4, H5, H6, H7 : current MD (Message Digest)

▪ Output:

• H0, H1, H2, H3, H4, H5, H6, H7 : new MD (Message Digest)

SHA256 Algorithm

23

❑ Step 4 : Cont’d

▪ At the beginning of processing each Mj, initialize
(A, B, C, D, E, F, G, H) = (H0, H1, H2, H3, H4, H5, H6, H7)

▪ Then 64 processing rounds of 512-bit blocks

▪ Each step t (0 ≤ t ≤ 63): Word expansion for Wt

• If t < 16
o Wt = tth 32-bit word of block Mj

• If 16 ≤ t ≤ 63
o s0 = (Wt-15 rightrotate 7) xor (Wt-15 rightrotate 18) xor (Wt-15 rightshift 3)

o s1 = (Wt-2 rightrotate 17) xor (Wt-2 rightrotate 19) xor (Wt-2 rightshift 10)

o Wt = Wt-16 + s0 + Wt-7 + s1

SHA256 Algorithm

24

❑ Step 4: Cont’d

▪ Kt constants

K [0..63] = 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98,
0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6,
0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3,
0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138,
0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e,
0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814,
0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

SHA256 Algorithm

25

❑ Step 4 : Cont’d
▪ Each step t (0 ≤ t ≤ 63):

S0 = (A rightrotate 2) xor (A rightrotate 13) xor (A rightrotate 22)

maj = (A and B) xor (A and C) xor (B and C)

t2 = S0 + maj

S1 = (E rightrotate 6) xor (E rightrotate 11) xor (E rightrotate 25)

ch = (E and F) xor ((not E) and G)

t1 = H + S1 + ch + K[t] + W[t]

(A, B, C, D, E, F, G, H) = (t1 + t2, A, B, C, D + t1, E, F, G)

SHA256 Algorithm

26

❑ Step 4 : Cont’d

▪ Finally, when all 64 steps have been processed, set

H0 = H0 + a

H1 = H1 + b

H2 = H2 + c

H3 = H3 + d

H4 = H4 + e

H5 = H5 + f

H6 = H6 + g

H7 = H7 + h

❑ Step 5 : Output

▪ When all Mj have been processed, the 256-bit hash of M is available in H0, H1, H2,
H3, H4, H5, H6, H7

SHA256 Algorithm Flow Chart for FSM Designing

IDLE State

Read State

Compute State

Write State

Block State
Check if

NUM_OF_BLOCKS < 2?

Yes

No

▪ If start==1, Initialize h0, h1, h2, h3, h4, h5, h6, h7 to initial hash values
▪ Initialize a, b, c, d, e, f, g, h
▪ Initialize write enable to memory, memory address offset, curr_addr to

first message location in memory, index variables, etc
▪ Move to read input message FSM state

▪ Read 640 bits message from testbench memory in chunks of 32bits words
(i.e. read 20 locations from memory by incrementing address offset)

▪ Move to Block creation FSM state

▪ In Block FSM state, Create two message blocks each of 512 bits
▪ First message block has first 16 words of input message stored in 'w' array
▪ Second message block has 4 words of input message, value 1, padding 0 and

message size 640
▪ Assign h0, h1, h2, h3, h4, h5, h6, h7 to a, b, c, d, e, f, g, h respectively
▪ Check if for both blocks SHA256 operation has been processed and hash is

created, if yes then move to WRITE state otherwise move to compute state

▪ Perform Word expansion of 16 elements of input message block (512 bits) and
create total 64 word array each having 32 bits

▪ Perform 64 rounds of SHA operation to generate hash values in 'a' thru 'h'
array. Increment number of blocks iteration variable

▪ Add previous hash values with 'a' thru 'h' hash values, go back to BLOCK State

▪ Write 256 bit hash value stored in h0 to h7 hash variables in testbench
memory using output_addr as a starting address location

▪ Set done = 1 and then move to IDLE state

❑Wait in idle state for start, read message starting at message_addr and write final
hash {H0, H1, H2, H3, H4, H5, H6, H7} in 8 words to memory starting at output_addr.
message_addr and output_addr are word addresses.

❑Message size is “hardcoded” to 20 words (640 bits).

❑ Set done to 1 when finished.

❑ Testbench has memory defined named “dpsram[0:16383]” which has all 20 word of
input message available

Memory
(provided by
testbench)

simplfied_sha256

mem_clk

mem_addr[15:0]

mem_we

mem_write_data [31:0]

mem_read_data[31:0] m
em

o
ry

 in
te

rf
ac

e clk

reset_n

m
es

sa
ge

_a
d

d
r[

1
5

:0
]

st
ar

t

d
o

n
e

o
u

tp
u

t_
ad

d
r[

1
5

:0
]

Module Interface

❑Write the final hash {H0, H1, H2, H3, H4, H5, H6, H7} in 8 words to memory starting
at output_addr as follows:

mem_addr <= output_addr;

mem_write_data <= H0;

mem_addr <= output_addr + 1;

mem_write_data <= H1;

...

mem_addr <= output_addr + 7;

mem_write_data <= H7;

H0

H1

output_addr

output_addr + 1

H2

H3

output_addr + 2

output_addr + 3

H4output_addr + 4

H5

H6

output_addr + 5

output_addr + 6

H7output_addr + 7

Module Interface

❑ Your assignment is to design the yellow box:

module simplified_sha256(input logic clk, reset_n, start,

input logic [15:0] message_addr, output_addr,

output logic done, mem_clk, mem_we,

output logic [15:0] mem_addr,

output logic [31:0] mem_write_data,

input logic [31:0] mem_read_data);

...

endmodule

Memory
(provided by
testbench)

simplified_sha256

mem_clk

mem_addr[15:0]

mem_we

mem_write_data [31:0]

mem_read_data[31:0] m
em

o
ry

 in
te

rf
ac

e clk

reset_n

m
es

sa
ge

_a
d

d
r[

1
5

:0
]

st
ar

t

d
o

n
e

o
u

tp
u

t_
ad

d
r[

1
5

:0
]

Module Interface

No Inferred Megafunctions or Latches
❑ In your Quartus compilation message ensure :

▪ No inferred megafunctions: Most likely caused by block memories or shift-register replacement.
Can turn OFF “Automatic RAM Replacement” and “Automatic Shift Register Replacement” in
“Advanced Settings (Synthesis)”. If you still see “inferred megafunctions”, contact Professor.
Your design will not pass if it has inferred megafunctions.

▪ No inferred latches: Your design will not pass if it has inferred latches.

31

No Block Memory Bits
❑ In your bitcoin_hash.fit it must say Total block memory bits is 0 (otherwise will not pass).

❑ If not, go to “Assignments→Settings”
in Quartus, go to “Compiler Settings”,
click “Advanced Settings (Synthesis)”

❑ Turn OFF “Auto RAM Replacement”
and “Auto Shift Register Replacement”

32

Final Project Submission
❑ Put following files into (LastName, FirstName)_(LastName, FirstName)_finalproject.zip

▪ Both design files and also testbench code for both SHA256 and Bitcoin hashing project

▪ Modelsim transcript files msim_transcript for both SHA256 and Bitcoin hashing project

▪ For both SHA256 and bitcoin hashing provide, fitter and sta files (files with extension .fit, .sta)

▪ Report for both SHA256 and Bitcoin hashing project

▪ Finalsummary.xls file with fmax, number of cycles, aluts, registers detail filled. Template of this file is
provided as part of Final_Project.zip folder. This should be submitted for both SHA256 and bitcoin hash

❑ Final report should including following mentioned :
▪ Explain briefly what SHA-256 is and bitcoin hashing (may use lecture slide contents)

▪ Describe algorithm for both SHA-256 and Bitcoin hashing implemented in your code

▪ Simulation waveform snapshot for both SHA-256 and Bitcoin hashing

▪ Provide modelsim transcript window output indicating passing test results generated from self-checker
in testbench for both SHA-256 and Bitcoin hashing

▪ Provide synthesis resource usage and timing report for bitcoin_hash only.

o Should include ALUTs, Registers, Area, Fmax snapshots

o Provide fitter report snapshot

o Provide Timing Fmax report snapshots

o Make sure to use Arria II GX EP2AGX45DF29I5 device and use Fmax for Slow 900mV 100C Mod
33

Fill up finalsummary.xlsx

❑ Fill up finalsummary.xlsx posted on Piazza as part of Final_Project.zip (to be filled for both
simplified_sha256 bitcoin_hash project in separate fillsummary.xlsx)

❑ If you worked alone, just fill out one row

❑ Spreadsheet already contains calculation fields: e.g. Area = #ALUTs + #Registers. Please use them.

❑ Students to fill ALUTs, Registers, Fmax and Cycles column in excel sheet.

❑ #cycles will be generated for your design from testbench code.

❑ Make sure to use Arria II GX EP2AGX45DF29I5 device

❑ Make sure to use Fmax for Slow 900mV 100C Model

❑ Make sure to use Total number of cycles

❑ Note : Best Fmax with area will be considered as one of the grading point for bitcoin hashing
project. 34

simplified_sha256.fit & bitcoin_hash.fit Fitter Report

❑ Copy of the fitter reports (not the flow report) with area numbers.

❑ Make sure to use Arria II GX EP2AGX45DF29I5 device

❑ IMPORTANT: Make sure Total block memory bits is 0.

35

simplified_sha256.sta & bitcoin_hash.sta

❑ Copy of the sta (static timing analysis) reports.

❑ Make sure to use Fmax for Slow 900mV 100C Model

❑ IMPORTANT: Make sure “clk” is the ONLY clock.

❑ You must,
assign mem_clk = clk;

❑ Your bitcoin_hash.sta.rpt must show “clk” is the only clock.

36

Hints

37

❑ Since message size is hardcoded to 20 words, then there will be exactly 2 blocks.

❑ First block:

▪ w[0]…w[15] correspond to first 16 words in memory

❑ Second block:

▪ w[0]…w[3] correspond to remaining 4 words in memory

▪ w[4] <= 32’80000000 to put in the “1” delimiter

▪ w[5]…w[13] <= 32’00000000 for the “0” padding

▪ W[14] <= 32’00000000 for the “0” padding (these are upper 32 bits of message
length bits)

▪ w[15] <= 32’d640, since 20 words = 640 bits (these are lower 32 bits of message
length bits)

Hints

38

Hints

❑ You must use “clk” as the “mem_clk”.

assign mem_clk = clk

❑ Using “negative” phase of “clk” for “mem_clk” is not allowed.

39

❑ Declare SHA256 K array like this:

// SHA256 K constants
parameter int sha256_k[0:63] = '{

32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5, 32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3, 32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc, 32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7, 32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13, 32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3, 32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5, 32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208, 32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2

};

❑ Use it like this:

tmp <= g + sha256_k[i];

Hints : Parameter Arrays

40

❑ Right rotate by 1

{x[30:0], x[31]}

((x >> 1) | (x << 31))

❑ Right rotate by r

((x >> r) | (x << (32-r))

// right rotation

function logic [31:0] rightrotate(input logic [31:0] x,

input logic [7:0] r);

rightrotate = (x >> r) | (x << (32-r));

endfunction

Hints : Right Rotation

41

Possible Results

42

Memory Model

43

Memory Model

44

Memory Model

45

Memory Model

46

Pipelining the Memory Read

47

Memory Write Example

48

FSM Design Template (Part-1 Scalable Implementation to Part-2)

49

FSM Design Template (Part-1 Non-Scalable Implementation to Part-2)

50

References

51

❑ SHA256 Algorithm References :

▪ https://en.wikipedia.org/wiki/SHA-2

▪ https://medium.com/bugbountywriteup/breaking-down-sha-256-algorithm-2ce61d86f7a3

❑ Hashing Function Application (Password Protection) :

▪ https://www.youtube.com/watch?v=cczlpiiu42M&t=3s

https://en.wikipedia.org/wiki/SHA-2
https://medium.com/bugbountywriteup/breaking-down-sha-256-algorithm-2ce61d86f7a3
https://www.youtube.com/watch?v=cczlpiiu42M&t=3s

