
Lecture-8 and 9 Procedural Blocks
ECE-111 Advanced Digital Design Project

Vishal Karna

Winter 2022

Difference Between a Latch and a Flip-Flop

2

❑ Latch is controlled by level triggered enable
signal (either positive or negative level
triggered)

❑ Flip-Flop is controlled by edge triggered
control signal, such as clock (either positive
or negative edge triggered).

❑ Latch is asynchronous (its output state
changes as soon as its input changes and
when active level is maintained at Enable
input)

❑ Flip-Flop is synchronous (its output responds
to the changes in the input only at positive or
negative edge of input clock signal)

Latch Flip-Flop

System Verilog Procedural block

❑ SystemVerilog provides two types of procedural blocks :
▪ initial

▪ always
• always@, always_ff, always_comb, always_latch

❑ always blocks are synthesizable procedural blocks and it is used for developing
RTL code which specifies design behavior
▪ Synthesize compiler converts always block into actual hardware logic

❑ Initial block is a non-synthesizable procedural block and it is used for
simulation purpose
▪ It is typically used for developing testbench code which contains stimulus for design

▪ Synthesize compiler will ignore initial block if specified within design modules

• initial block will not be synthesized into hardware logic

3

Always Block : always@
❑ always procedural blocks are used to describe events that should happen under certain conditions

▪ always block runs continuously throughout the simulation

▪ module can have multiple always blocks and each of them running concurrently at given time step

❑ Syntax and structure of always block :

always@(sensitivity list) begin

<procedural statements>

end

❑ begin and end is required if there are multiple procedural statement, otherwise it is optional

❑ The sensitivity list tells the always block when to execute its body
▪ Whenever any variable in the sensitivity list changes, the always executes its procedural statements enclosed

within begin and end

▪ Depending on the way the sensitivity list is specified, either combinational logic or sequential logic (such as
flip-flop) will be inferred

❑ Variables on the LHS of procedural statements inside always block must be of type logic or reg
4

Example :
logic sum;
always@(a,b) begin // a, b is a trigger condition for always block
sum = a + b; // statement will execute if either a or b changes

end

body

Always Block : always@
❑ Always procedure can be used to model :

▪ Combinational logic

▪ Clocked sequential logic (such as flipflops)

▪ Level sensitive logic (such as latches)

❑ Sensitivity list can have any number of signals and it can be specified in multiple different ways :

▪ Edge sensitive list used for sequential circuit
• always@(posedge clk) // always block will trigger whenever there is a rising edge of clk

• always@(negedge clk) // always block will trigger whenever there is a negedge edge of clk

• always@(posedge clk or negedge reset) // always block will trigger if there is a rising edge of clk or falling
edge of reset

▪ Level sensitive list used for combinational circuit
• always@(address) // always block will trigger whenever address value changes

• always@(mode or select)

• always@(mode, select)

❑ Synthesis compiler will infer a flip-flop (sequential logic) if sensitivity list has posedge or negedge
5

There is no difference and no advantage using “or” over “,” separator
In sensitivity list representation. Using “or” is more verbose however
could be confusing and might be treated as “or” gate. Suggestion is to use
comma as a separator in sensitivity list

Types of always procedural block

6

Category Usage Example Purpose Introduced in
Verilog or SV ?

always@(<level sensitivity list>) always@(a, b) begin
// assignment statements

end

Model Combinational
Logic

Verilog,
SystemVerilog

always@(<edge sensitivity list>) always@(posedge clk, negedge reset) begin
// assignment statements

end

Model Sequential Logic Verilog,
SystemVerilog

always@(*) always@(*) begin
// assignment statements

end

Model Combinational
or Sequential Logic

Verilog,
SystemVerilog

always_comb always_comb begin
// assignment statements

end

Model Combinational
Logic

SystemVerilog

always_ff@(<edge sensitivity list>) always_ff@(posedge clk, negedge reset) begin
// assignment statements

end

Model Sequential Logic SystemVerilog

always_latch always_latch begin
// assignment statements

end

Model a Latch (Level
Sensitive Sequential

Logic)

SystemVerilog

Always Block : always@

❑ Multiplexer using always@ procedural block

7

module mux(
input logic[1:0] din0,
input logic[1:0] din1,
input logic sel,
output logic[1:0] mux_out

);

// always block to describe 2to1 multiplexor
always@(sel,din0,din1) // complete sensitivity list
begin

if(sel == 1'b0) begin
mux_out = din0;

end else begin
mux_out = din1;

end
end

endmodule: mux

Body of always block
with procedural and
conditional statements

Synthesis compiler will generate 2to1 MUX

Always Block : always@
❑ The sensitivity list must include all input signals used by procedural statement within always

block to properly model combinational logic.
▪ Omission of any input signal which impacts behavior of logic, can lead to simulation and synthesis

mismatches.

❑ In below mentioned example din1 input signal is missed out in sensitivity list specification,
▪ Synthesis result would still produce a 2to1 MUX, however when simulating design any change in din1

will not propagate to output signal mux_out even when sel value is set to 1’b0.

8

module mux(
input logic[1:0] din0, din1
input logic sel,
output logic[1:0] mux_out);

// always block to describe 2to1 multiplexor
always@(sel, din0) // din1 missed out in sensitivity list
begin
if(sel == 1'b0) begin
mux_out = din0;

end else begin
mux_out = din1;

end
end

endmodule: mux

▪ Multiple procedural
statements with blocking
“=“ assignments

▪ Change in value of din1 will
not propagate to output of
mux due to din1 signal not
specified in sensitivity list of
always block

Synthesis compiler will still generate 2to1 MUX
even with din1 signal missing in sensitivity list.

Simulation vs Synthesis results mis-match due
to incomplete sensitivity list !!!

Always Block : always@

❑ Simulation result for mux implementation with complete sensitivity list

❑ Simulation result for mux implementation with din1 missing in sensitivity list

9

change in value of din1 from “00” to “10” to “11” when
sel == 1, did not propagate to mux_out

change in value of din1 from “00” to “10” to “11” when
sel == 1, propagated to mux_out

Always Block : always@*

❑ Verilog-2001 attempted to address incomplete sensitivity list with the addition of special token
@* that would infer a complete sensitivity list

▪ always@* or always@(*) both representation means the same

10

module mux(
input logic[1:0] din0,
input logic[1:0] din1,
input logic sel,
output logic[1:0] mux_out

);

// always block to describe 2to1 multiplexor
always@(*) // automatically infers sel, din0, din1 in sensitivity list
begin

if(sel == 1'b0) begin
mux_out = din0;

end else begin
mux_out = din1;

end
end

endmodule: mux

due to din0, din1 all signals in
RHS automatically inferred in
sensitivity list, any change in
value of din0 and din1 will
propagate at the output of the
mux when sel is 0 and 1
respectively

always@* Limitations
❑ always@* does not infer a complete sensitivity list when the always @* block contains functions.

▪ it will not infer sensitivity to signals that are externally referenced in a function or a task that is called
from the always block.

▪ it will only be sensitive to the signals passed into the function or task

11

module mux(
input logic[1:0] din0, din1,
input logic sel,
output logic[1:0] mux_out

);
// function to return selected input value
function logic[1:0] func_mux(logic l_sel)
begin
if(l_sel == 1'b0) begin
func_mux = din0;

end else begin
func_mux = din1;

end
end
endfunction
// example of incomplete sensitivity list inference
always@(*) begin //@(*) will not automatically infer din0 and din1 in sensitivity list
mux_out = func_mux(sel);

end
endmodule: mux

change in “din0” or “din1” value will not trigger the function func_mux
since din0 and din1 are not part of function arguments and hence values
will not propagate to mux_out until “sel” value changes

always@* Limitations
❑ Simulation result of always@(*) with functional call inside always block

▪ Due to function call does not have din0 and din1 arguments, always@(*) will not
automatically infer din0 and din1 in sensitivity list.

▪ Change in values of din0 and din1 will not propagate to output of mux if sel value does not
change

12

change in value of din1 from “00” to “10” to “11” when sel == 1,
did not propagate to mux_out

Why did din0 value propagated to mux_out ?
Reason >> since “sel” value changed, function func_mux
gets triggered which in turn caused “din0” value to get
assigned to “mux_out”

How to address always@* incomplete sensitivity list inference?
❑ Approach A : If function or task is called from the always procedural block, replace always@*

with always@ having all input signals specified in its sensitivity list.

13

module mux(
input logic[1:0] din0, din1,
input logic sel,
output logic[1:0] mux_out

);
// function to return selected input value
function logic[1:0] func_mux(logic l_sel)
begin

if(l_sel == 1'b0) begin
func_mux = din0;

end else begin
func_mux = din1;

end
end
endfunction
// example of complete sensitivity list inference
always@(sel, din0, din1) begin //sel, din0 and din1 all input signals are in sensitivity list

mux_out = func_mux(sel);
end
endmodule: mux

change in “din0” or “din1” value will trigger the function func_mux
even though din0 and din1 are not part of function arguments but
din0 and din1 are specified in always@ sensitivity list.

How to address always@* incomplete sensitivity list inference ?
❑ Approach B : List all input signals (din0, din1 and sel) as part of function call argument and

update function signature to have additional arguments
▪ This will enforce always@(*) to automatically infer all sel, din0 and din1 in its sensitivity list

14

module mux(
input logic[1:0] din0, din1,
input logic sel,
output logic[1:0] mux_out

);
// function to return selected input value
function logic[1:0] func_mux(logic l_sel, logic din_0, logic din_1)
begin

if(l_sel == 1'b0) begin
func_mux = din_0;

end else begin
func_mux = din_1;

end
end
endfunction
// example of complete sensitivity list inference
always@(*) begin //sel, din0 and din1 are automatically inferred in sensitivity list

mux_out = func_mux(sel, din0, din1);
end
endmodule: mux

change in “din0” or “din1” value will trigger the function func_mux
since din0 and din1 are provided as arguments to func_max causing
always@* to infer automatically din0 and din1 in its sensitivity list

always@* Limitations
❑ Simulation result of Approach A and Approach B RTL model implementations

❑ Approach A requires changing always@(*) with always@(sel, din0, din1)
▪ Responsibility of designer to ensure all required input signals are specified in sensitivity list

▪ In case of complex RTL Models, there is a possibility designer might unintentionally forget to mention
some of the required input signals in sensitivity list, resulting in simulation vs synthesis mis-matches

❑ Approach B requires change in function argument list and potentially change in code inside
function
▪ In case of complex RTL Models, changing function implementation might not be always feasible

❑ Is there a better way to address this limitation ?

▪ Yes, use “always_comb” supported by SystemVerilog !
15

change in value of din1 from “00” to “10” to “11” when sel == 1, propagates to
mux_out and does not rely only on change in value of sel

Always block : always_comb
❑ An always_comb will infer an accurate sensitivity list for combinational logic without designer to

explicitly specify all required input signals in always@ sensitivity list
▪ Within always_comb, function calls does not have to have all input signals as part of the argument list,

since all required input signals are automatically inferred in sensitivity list

16

module mux(
input logic[1:0] din0, din1,
input logic sel,
output logic[1:0] mux_out

);
// function to return selected input value
function logic[1:0] func_mux(logic l_sel) begin

if(l_sel == 1'b0) begin
func_mux = din0;

end else begin
func_mux = din1;

end
end
endfunction
// example of automatic complete sensitivity list inference
always_comb begin //sel, din0 and din1 all input signals are automatically inferred in sensitivity list

mux_out = func_mux(sel);
end
endmodule: mux

change in “din0” or “din1” value will trigger the function func_mux even
though din0 and din1 are not part of function arguments since always_comb
will automatically infer din0 and din1 in sensitivity list.

Always block : always_comb
❑ always_comb has several advantages over always@* and always@(<sensitivity_list>) :

▪ always_comb automatically executes once at time zero, whereas always@* and always@(a,b) waits
until a change occurs on a signal in the inferred sensitivity list.

• Hence outputs of the combinational logic procedure are updated to match the values of the inputs at the start
of the simulation. This is not true with always@*

▪ always_comb is sensitive to changes within the contents of a function, whereas always@* is only
sensitive to changes to the arguments of a function. Also always@* doesn’t infer sensitivity from tasks.

▪ always_comb enforces some coding rules to ensure proper combinational logic is modeled
• Only one source can write to variables on the LHS of assignments within an always_comb procedure,

whereas always @* permits multiple processes to write to the same variable.

o This avoids multiple driver ahead of the time during RTL code development

• always_comb will give compile time error when having incomplete case statement to avoid unintentional latch.

o With always @* and always@(a,b) there might be warning from synthesis compiler however code will
synthesis and will infer unintentional latch causing simulation vs synthesis mist-match (see next slide)

❑ In SystemVerilog always_comb is a better version of always @* and it is a best practice to use
always_comb for modeling combinational circuit !! 17

Always block : always_comb

18

module mux_3x1(
input logic a, b, c,
input logic [1:0] sel,
output logic y
);
always@(a, b, c, sel) begin

case (sel)
2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
// Missing case expression for 2'b11

endcase
end
endmodule: mux_3x1

Synthesis compiler throws error and synthesis process fails due to
missing case item expression when using always_comb construct :
Warning : Incomplete case statement has no default case statement.
Warning : Inferring latches for variable "y", which holds is previous
value in one or more paths through always constuct
SystemVerilog RTL Coding Error : always_comb construct does not
infer purely combination logic !

module mux_3x1(
input logic a, b, c,
input logic [1:0] sel,
output logic y
);
always_comb begin

case (sel)
2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
// Missing case expression for 2'b11

endcase
end
endmodule: mux_3x1

Synthesis compiler infers hardware and does not generate error. Unwanted
latch created at output 'y' by Synthesis compiler due to missing case expression.

Always block : always_ff
❑ always_ff procedure is used to model sequential flip-flop logic

▪ always_ff differs from always_comb; in always_ff sensitivity list must be specified by designer

o This is required since synthesis and compiler tools cannot infer the clock name and edge
automatically from the body of always_ff

o Synthesis and compiler tools does not know whether a reset is asynchronous or
synchronous. If asynchronous then reset information is required to be specified in
sensitivity list

▪ Example Syntax :

always_ff@(posedge clk)

q<=d

always_ff@(posedge clock or posedge reset) //both “or” and “,” as a separator are allowed

begin

if(reset) out <= 0;

else out <= out + 1;

end

19

Always block : always_ff

❑ always_ff enforces many of the synthesis requirements for RTL sequential logic coding :
▪ Sensitivity list must specify either posedge or negedge of a clock required to update state of

flip-flop

▪ Sensitivity list must specify posedge or negedge of any asynchronous set or reset signals

▪ Mixing of single edge and double edge expressions are not allowed within sensitivity list

▪ Other than clock, asynchronous set/reset signals, sensitivity list cannot contain any other
signals such as D input or an enable input.

▪ Variables written on the left-hand side of assignments within always_ff procedure cannot be
assigned by any other procedure or continuous assignment statement

▪ Cannot mix blocking and non-blocking assignments to a same variable within always_ff

❑ Violation of any rules mentioned above while modeling sequential logic, there will be
syntax error from synthesis compiler 20

D-FlipFlop Model Without Reset

21

module dff(
input logic clk, d,
output logic q
);

always_ff@(posedge clk) begin
q <= d; // ‘q’ gets ‘d’

end
endmodule: dff

• SystemVerilog calls “<=“ a “non-blocking” assignment.
• It means “wait until next positive edge of clk” before

updating “q”
• This is why synthesis will produce a positive edge-

trigged D-FF
• “always_ff” indicates that this is a “clocked always

statement

Credit to : Professor Bill Lin, UCSD, ECE Department

D-FlipFlop without any reset

No reset signal specified

D-FlipFlop with Synchronous Active High Reset

D-FlipFlop Model with Reset using always_ff

22

module dff(
input logic clk, d, reset,
output logic q
);
always_ff@(posedge clk) begin
if(reset)

q <= 0;
else

q <= d;
end
endmodule: dff

D-FlipFlop with Asynchronous positive Edge Reset

module dff(
input logic clk, d, reset,
output logic q
);
always_ff@(posedge clk, posedge reset) begin

if(reset)
q <= 0;

else
q <= d;

end
endmodule: dff

▪ reset signal is checked only on
each positive edge of the clock,
hence it is synchronous to “clk”

▪ Having reset in sensitivity list indicates to
synthesizer to create asynchronous reset.

▪ Change in reset from ‘0’ to ‘1’ anytime will
cause procedural statements within
always_ff block to evaluate

mux is inferred before D input
due to if and else condition logic
of flipflop to model synchronous
reset.

No Mux inferred before D input of
flipflop for asynchronous reset

if condition must
have matching
polarity of reset
signal, since
posedge is
specified before
“reset” signal in
always_ff
sensitivity list

For synchronous reset, “reset”
signal should *not* be specified
in always_ff sensitivity list

▪ non-blocking assignment with
clock edge sensitivity will infer a
flipflop

Simulation Result for D-Flipflop with Synchronous Reset

23

Input d = 1 is sampled on this positive edge of rising clock and propagates to output ‘q’ and ouput q=1 is
retained for the entire clock cycle

Mixing Single and Double Edge in Sensitivity List

24

D-FlipFlop with Asynchronous Reset

module dff1(
input logic clk, d, reset,
output logic q
);
always_ff@(posedge clk, reset)
begin

if(reset)
q <= 0;

else
q <= d;

end
endmodule: dff1

Mixing single and double
edge in sensitivity list is not
allowed and Code will not

Synthesis

Resettable D-FlipFlop Model

25

D-FlipFlop with Asynchronous Negedge Reset

module dff(
input logic clk, d, reset,
output logic q
);
always_ff@(posedge clk, negedge reset) begin

if(!reset)
q <= 0;

else
q <= d;

end
endmodule: dff

▪ By specifying the negedge reset signal here,
synthesis tools will infer asynchronous
resettable D-FFs

▪ Due to negedge specified before signal
“reset” in sensitivity list, if condition should
have “!” before “reset” signal, otherwise
synthesizer will give error.

Inverter is inferred by Synthesizer
due to negative edge reset
mentioned in D-Flipflop model

D-FlipFlop Model with clock enable using always_ff

26

D-FlipFlop with Clock Enable and Asynchronous Reset

module dff(
input logic clk, d, reset, ce,
output logic q
);
always_ff@(posedge clk, posedge reset)
begin

if(reset)
q <= 0;

else
if(ce) // synchronous clock enable
q <= d;

end
endmodule: dff

Dissimilar D-FlipFlops (Bad SystemVerilog Coding)

27

Synchronous Reset D-FlipFlop with Non-Reset Follower FlipFlop

module bad_FF_coding(
input logic clk, d, reset_n,
output logic q2);
logic q1;
always_ff@(posedge clk) begin

if(!reset_n)
q1 <= 1'b0;

else begin
q1 <= d;
q2 <= q1;

end
end
endmodule: bad_FF_coding

Since the two flip-flops (FF1 and FF2)
were inferred in the same procedural
always_ff block and second flip-flop
FF2 is not resettable, the reset signal
reset_n will be used as a data enable
for the second flop FF2

Creates synchronous reset for first
stage Flipflop FF1

Creates second stage flipflop FF2 with no reset
since q2<=0 is not mentioned under if(!reset_n)

Creates first stage flipflop FF1 with Synchronous reset

FF1

FF2

Credit : Clifford Cummings (Sunburst Design), Don Mills (LCDM), Steve Golson (Trilobyte), SNUG-2003 Conference

Dissimilar D-FlipFlops (Good SystemVerilog Coding)

28

Synchronous Reset D-FlipFlop with Non-Reset Follower FlipFlop

module good_FF_coding(
input logic clk, d, reset_n,
output logic q2);
logic q1;
always_ff@(posedge clk) begin

if(!reset_n)
q1 <= 1'b0;

else
q1 <= d;

end
end
always_ff@(posedge clk) begin

q2 <= q1;
end
endmodule: good_FF_coding

Since the two flip-flops (FF1 and FF2)
were inferred in different procedural
always_ff, the reset signal reset_n will
not be used as a data enable for the
second flop FF2

Creates synchronous reset for first stage Flipflop FF1

Creates second stage flipflop FF2 with no reset

Creates first stage flipflop FF1 with Synchronous reset

FF1

FF2

Credit : Clifford Cummings (Sunburst Design), Don Mills (LCDM), Steve Golson (Trilobyte), SNUG-2003 Conference

Multiple assignment statement on same variable

29

Multiple assignments on same variable

module adder(
input logic clk, add1, add2,
output logic result

);
always_ff@(posedge clk) begin

if(add1) result <= result + 1;
if(add2) result <= result + 2;

end
endmodule: adder

If add1 and add2 both are ‘1’ then result is
assigned result+1 and result+2 simultaneously
due to non-blocking assignment which is
ambiguous.
Code will synthesis however circuit will not
function correctly

Always block : always_latch
❑ always_latch is introduced in SystemVerilog to model latch logic.

▪ Similar to always_comb, all signals read within always_latch block are automatically inferred
in sensitivity list. Including in case of function calls with partial list of signals in argument list.

▪ always_latch indicates to EDA tools, that designer of RTL code intents to model a latch

❑ always_latch enforces some of the coding guidelines for synthesis
▪ Any constructs such as #,@ and wait, which delays execution of statements are not permitted

within always_latch

▪ Variables assigned in always_latch cannot be assigned by any other procedure or continuous
assignment statement.

30

module latch(
input logic d, enable,
output logic q
);
always_latch
begin

if(enable)
q <= d;

end
endmodule: latch

Inputs ‘d’ and ‘enable’
automatically inferred in
sensitivity list by
always_ff

Always block : always_latch
❑ Synthesis compiler will infer a latch logic in all three implementations shown below

31

module latch(
input logic d, enable,
output logic q
);
always@(d, enable) begin

if(enable)
q <= d;

end
endmodule: latch

module latch(
input logic d, enable,
output logic q
);
always_latch begin

if(enable)
q <= d;

end
endmodule: latch

module latch(
input logic d, enable,
output logic q
);
always@(*) begin

if(enable)
q <= d;

end
endmodule: latch

Approach-A : Latch Model using
always@(<explicit sensitivity list>)

Approach-B: Latch Model using
always@(*) auto sensitivity list

Approach-C Latch Model using
always_latch auto sensitivity list

Best
Practice

Synthesis compiler throws warning
for potential unitential latch for
designer to confirm
Warning (10240): Verilog HDL
Always Construct warning at
latch.v(6) : inferring latch(es) for
variable "q", which holds its
previous value in one or more paths
through the always construct

Synthesis compiler does not generate
any warning message since always_ff
instructs synthesis compiler to infer an
intentional latch. Instead generates a
info message
Info (10041): Inferred latch for "q" at
latch.v(6)

Missing else
branch will result
in latch inference

Missing else
branch will result
in latch inference

Latch Model Simulation Result
❑ Same simulation result for latch RTL modeled with Approach-A, Approach-B and Approach-C

32

When enable is 0, ‘q’ latches
to previous value of ‘0’

When enable is 1, output
‘q’ follows input ‘d’

Latch with Asynchronous Clear
❑ RTL model of latch with asynchronous negedge clear using always_latch

33

module latch(
input logic d, enable, clear,
output logic q
);
always_latch begin

if(!clear) // asynchronous !clear
q <= 0;

else if(enable)
q <= d;

end
endmodule: latch

When clear == 0, output of latch
‘q’ is cleared and set to value 0

Simulation result of latch with asynchronous clear

Latch Model with Function Call
❑ Function calls within always_latch does not have to have all input signals as part of the argument

list, since all required input signals are inferred in sensitivity list.

❑ However with always@(*) latch implementation, explicitly designer has to list down all required
input signals as arguments in function call for function to trigger when input changes.

❑ Both implementations will infer a latch when synthesizing the logic, however simulation behavior
will be different with always_latch vs always@(*) implementations.

34

module latch(
input logic d, enable,
output logic q
);

function logic func_latch();
func_latch = d;

endfunction

always@(*) begin
if(enable)
q <= func_latch();

end
endmodule: latch

module latch(
input logic d, enable,
output logic q
);

function logic func_latch();
func_latch = d;

endfunction

always_latch begin
if(enable)
q <= func_latch();

end
endmodule: latch

Same synthesis results.
(latch will be inferred)

Different simulation resultsfunc_latch will not
trigger when there
is change in value of
“d” and when
enable is ‘1’ but
enable value did
not change

func_latch will be
triggered whenever
there is change in
value of “d” and
when enable is ‘1’
but enable value
did not change

Latch RTL model using always@(*) Latch RTL model using always_latch

Latch Model Simulation Result
❑ always@(*) vs always_latch simulation result of RTL model of latch with function call

35

When enable is 0, ‘q’ latches
to previous value of ‘0’

When enable is 1, output
‘q’ follows input ‘d’

When ‘d’ value changed from ‘1’ to ‘0’, the value of latch output ‘q’ stays at previous
value of ‘1’ even when enable is ‘1’ since func_mux did not trigger due to ‘d’ not
getting automatically infered in sensitivity list

always@(*) based
implementation
simulation result

always_latch based
implementation
simulation result

Summary on always Procedures

❑ Verilog-2001 supported below mentioned always procedures :
▪ always@(<explicit sensitivity list>) to model combinational and sequential logic

▪ always@(*) to model combinational and sequential logic

Note : Avoid Verilog always@(*) usage !!

❑ SystemVerilog introduced three more always procedures which brings some
enhanced capabilities and addressed ambiguity in Verilog Language :
▪ always_comb to model combinational logic

▪ always_latch to model latch

▪ always_ff@(<explicity sensitivity list>) to model sequential logic

❑ SystemVerilog always procedures addressed some of the limitations of Verilog-
2001 always procedures and clearly conveys design intent to EDA tools
▪ Hence suggestion is to use SystemVerilog always procedures wherever possible in RTL model !!

36

Summary on always Procedures

❑ always_comb and always_latch will execute at time zero of the simulation, ensuring the
variables on the left-hand side of assignments within the block correctly reflect the
values on the right and side at time 0.

❑ always_comb and always_latch are sensitive to signal changes within a function called
by the procedural block, and not just the function arguments, which was a bug with
always @(*)

❑ always_latch and always_ff procedural blocks are huge! They can prevent serious
modeling errors, and they enable software tools to verify that design intent has been
met.

❑ Recommendation — Use always_comb, always_latch and always_ff in all RTL code.

▪ Only use the general purpose always procedure in models that are not intended to
be synthesized, such as bus-functional models, abstract RAM models, and
verification testbenches.

37

RTL model for 4-bit counter using always_ff

38

N-bit unsigned up counter with asynchronous clear

module counter #(parameter N=4)
(

input logic clk, clr,
output logic[N-1:0] q

);
logic[N-1:0] cnt;
always_ff@(posedge clk or posedge clr)
begin
if(clr)
cnt <= 'b0;

else
cnt <= cnt + 1'b1;

end
assign q = cnt;

endmodule: counter

Feedback from q to input of adder is
created due to counter incrementing
from the previous output value

will infer asynchronous clear

‘+’ operator will infer an
adder

Creating Combinational Logic and D-flipflop

39

module ex1(
input logic clk,
input logic t, c,
output logic f

);

always_ff@(posedge clk)
begin

f <= t & c;
end

endmodule: ex1

▪ Positive edge triggered D-
Flipflop produced for “f”

▪ “And” gate produced for t & C

Credit to : Professor Bill Lin, UCSD, ECE Department

Combinational logic produced for t & C

D-Flipflop produced to store output
of combination logic t & c

Clocked always_ff Block

40

module ex2(
input logic clk,
input logic a, b, c,
output logic f);

logic t;
always_ff@(posedge clk) begin

t <= a & b;
f <= t & c;

end
endmodule: ex2

LHS stores output of AND-gate to “t” register

RHS reads from “t” register

D-FF
produced for

“t” and “f”

RHS taken
from FF
output

LHS goes into FF

Credit to : Professor Bill Lin, UCSD, ECE Department

Clocked always_ff Block

41

module ex3(
input logic clk, reset_n, a, b, c,
output logic f);
logic t;
always_ff@(posedge clk, negedge reset_n) begin

if(!reset_n) begin
t <= 0;
f <= 0;

end else begin
t <= a & b;
f <= t & c;

end
end

endmodule: ex3

Credit to : Professor Bill Lin, UCSD, ECE Department

this if part specifies

how registers should be

initialized

▪ Template specifies async reset

edge-triggered D-FFs

▪ Positive edge-triggered on “clk”

▪ Async reset negative edge on

“reset_n”

RHS taken from FF

output

LHS goes into FF

resets on neg edge of

reset_n

Clocked always_ff Statement

42

module ex4 (
input logic clk, reset_n, op,
input logic[3:0] x,
output logic[3:0] dataout);
always_ff@(posedge clk, negedge reset_n) begin
if(!reset_n)
dataout <= 4'b0000;

else
if (op)

dataout <= dataout + x;
else

dataout <= dataout - x;
end

endmodule: ex4

Credit to : Professor Bill Lin, UCSD, ECE Department

• this else part specifies how registers should be updated at each cycle.
• all “outputs” (LHS) are stored in a register in a clocked always stmt. LHS

specifies “new” value that will be stored after next clk tick.
• should use “<=“ instead of “=“, which means on the RHS, the value is the

“current” value of the register

this if part specifies how registers should be initialized

all “outputs” (LHS) are
stored in a register in a
clocked always stmt.

Arithmetic operators (e.g. “+”) are replaced
with library logic implementations.

If-then-else & case stmts translated as MUXes

Multiple always_ff Clocked Statement

43

module ex5 (
input logic clk, reset_n, op,
input logic[3:0] x,
output logic[3:0] dataout);
logic[3:0] y, z;
always_ff@(posedge clk, negedge reset_n) begin
if(!reset_n)
y <= 4'b0000;

else
if (op)

y <= y + x;
else

y <= y - x;
end

always_ff@(posedge clk, negedge reset_n) begin
if(!reset_n) begin
dataout <= 4'b0000;
z <= 4'b0000;

end else begin
z <= y + 1;
dataout <= dataout + z;

end
endmodule: ex5

Credit to : Professor Bill Lin, UCSD, ECE Department

▪ this nested if-else produced
mux

▪ And non-blocking assignments
inside Clocked always_ff
produced FF1

1st always stmt

writes to “z” reg

reads from “z” reg
output from clocked

always stmt is

output of reg.

2nd always stmt

FF1

FF2

FF3

mux

▪ This logic produced
counter with output
stored in flipflop FF3

Both always_ff procedural blocks will run
concurrently at any given time steps

Mixing Procedural Blocks and Continuous Assignment Statements

44

module ex6 (input logic clk, reset_n, op,
input logic [3:0] x,
output logic [3:0] dataout);
logic [3:0] y, z;

always_ff@(posedge clk, negedge reset_n) begin
if (!reset_n)
y <= 4'b0000;
else
if (op)
y <= y + x;

else
y <= y - x;

end

assign z = y + 1;
assign dataout = z + 1;
endmodule: ex6

Credit to : Professor Bill Lin, UCSD, ECE Department

always_ff statement Two continuous assign statements

Takes More Recent Value of ‘z’

always_ff and all continuous assignments runs
concurrently at any given time steps

Mixing Procedural Blocks and Continuous Assignment Statements

45

module ex7 (input logic clk, reset_n, op,
input logic [3:0] x,
output logic [3:0] dataout);
logic [3:0] y, z;

always_ff@(posedge clk, negedge reset_n) begin
if (!reset_n)
y <= 4'b0000;
else
if (op)
y <= y + x;

else
y <= y - x;

end

always_comb
begin
z = y + 1;
dataout = z + 1;
end
endmodule: ex7

Credit to : Professor Bill Lin, UCSD, ECE Department

always_ff statement always_comb statements

Takes More Recent Value of ‘z’

should use “=“ in comb. logic always

stmts. no reg. RHS just takes

output from the previous eqn.

same behavior as ex6, but using always_comb

instead of 2 assign statements
Always_comb representation is similar
to having 2 continuous assignments
assign z = y + 1;
assign dataout = z + 1;

Initial block
❑ Initial block contains one or more programming statements and timing information to

instruct simulators when to drive and which values to drive ports of design block
▪ It is specified using keyword initial

▪ begin and end keywords must be used to specify multiple statements within initial block

▪ Syntax :

❑ Initial block is used to develop testbench code to simulate design / RTL code :
▪ Create and specify how stimulus will be applied to input signals in design

▪ Specifies initialization of local variables in testbench code and forcing of internal design signals

▪ Specifies how the design signals are monitored and displayed

▪ Specifies simulation pass and fail criteria and checking mechanism

▪ Specifies the file where the signal waveform information is to be dumped 46

initial
<optional delay> <programming statement>

end

Initial begin
<optional delay> <programming statement>
….
….
<optional delay> <programming statement>

end

Initial Procedural block

❑ Initial block is executed at the beginning of the simulation at time 0

❑ Initial block is executed only once in simulation

▪ Initial block finishes once all the statements within the block are executed and does
not execute again for a given run of a simulation

▪ Delay statements within initial block will advance simulation

47

module tesbench;
logic reset, enable;
initial begin

reset = 1;
enable = 0;
#10ns reset = 0;
enable = 1;
#5ns;
enable = 0;

end
endmodule

initial block starts execution at time 0

initial block terminates forever once enable is assigned value 0 at time 15ns

• reset will get value 1 and enable will be get value 0 at time 0ns
• simulation will advance to 10ns and then reset will get new

value 0 and enable is assigned new value 1;
• simulation will advance 5ns to reach at 15ns (10ns + 5ns)

timestamp and then enable will be assigned new value 0

Multiple Initial blocks
❑ SystemVerilog module can have multiple initial blocks

▪ All initial blocks executes concurrently and starts it execution at time 0

48

module multiple_initial_block_test;
logic reset, enable;
// initial block-1
initial begin

reset = 1;
#20ns reset = 0;

end
// initial block-2
initial begin

enable = 0;
#15ns enable = 1;
#25ns enable = 0;

end
// initial block-3
initial begin

$monitor("time=%g ns, reset=%b, enable=%b\n", $time, reset, enable);
#50ns;
$display("time=%g ns, End of Simulation!\n", $time);
$finish;

end
endmodule

Simulation Result
▪ time=0ns, reset=1, enable=0
▪ time=15ns, reset=1, enable=1
▪ time=20ns, reset=0, enable=1
▪ time=40ns, reset=0, enable=0
▪ Time=50ns, End of Simulation!

All initial blocks executes only once
during given simulation !!

Each initial block starts execution
at time 0 as three separate threads
running concurrently

Total Simulation Time = 50ns
▪ initial block-1 has total delay of 20ns
▪ initial block-2 has total delay of 35ns

• block-2 (15ns + 25ns) = 35ns
▪ initial block-3 has total delay of 50ns
Since initial block-3 has longest delay of
50ns, hence simulation will run until
50ns and it will then terminate

$finish is a system task in SystemVerilog
which terminates simulation

$monitor is a system task in
SystemVerilog which executes whenever
there is change in value of variables it is
monitoring, in this example each time
reset or enable value changes $monitor
task will be called

Initial block – Pre-mature Termination !
❑ One initial block can pre-maturely terminate execution of other initial blocks !!

49

module multiple_initial_block_test;
logic reset, enable;
// initial block-1
initial begin

reset = 1;
#20ns reset = 0;

end
// initial block-2
initial begin

enable = 0;
#15ns enable = 1;
#25ns enable = 0;

end
// initial block-3
initial begin

$monitor("time=%g ns, reset=%b, enable=%b\n", $time, reset, enable);
#30ns; // changed delay from 50ns to 30ns
$display("time=%g ns, End of Simulation!\n", $time);
$finish;

end
endmodule

Simulation Result
▪ time=0ns, reset=1, enable=0
▪ time=15ns, reset=1, enable=1
▪ time=20ns, reset=0, enable=1
▪ time=30ns, End of Simulation!
Note : simulation is not able to advance to
time 40ns to drive enable = 0 from initial
block-2 since $finish is encountered at time
30ns from initial block-3, which pre-maturely
terminated initial block-2 !

Total Simulation Time = 30ns
▪ initial block-1 has total delay of 20ns
▪ initial block-2 has total delay of 35ns

• block-2 (15ns + 25ns) = 35ns
▪ initial block-3 has total delay of 30ns
Since initial block-2 has longest delay of
35ns, however since initial block-3 has
$finish system task, which executes at
30ns, simulation will terminate at 30ns

#25ns enable=0 which is scheduled for
execution at simulation timestamp 40ns
will not execute since initial block-3 will
pre-maturely terminate initial block-2 and
entire simulation due to $finish executed
in initial block-3 at time 30ns.

Initial block – Race Condition !
❑ Initial blocks can have race conditions since they are executing concurrently !!

▪ there is no specific order in which statements across initial block executes at given time stamp

▪ it is choice of a simulator to pick the order. Order of execution will impact output value.

50

module multiple_initial_block_with_race;
logic reset, enable;
// initial block-1
initial begin

reset = 1;
#20ns reset = 0;

end
// initial block-2
initial begin

enable = 0;
#20ns enable = reset;

end
// initial block-3
initial begin

$monitor("time=%g ns, reset=%b, enable=%b\n", $time, reset, enable);
#30ns;
$display("time=%g ns, End of Simulation!\n", $time);
$finish;

end
endmodule

Possible Simulation Result-1
▪ time=0ns, reset=1, enable=0
▪ time=20ns, reset=0, enable=0
▪ time=30ns, End of Simulation!
Note : if simulator decided to first execute
statement (#20ns reset=0) from initial block-
1 then enable will get assigned new value of
reset which is 0 in initial block-2 at
timestamp @20ns

There is a race condition between initial
block-1 and initial block-2
▪ @20ns from initial block-1 reset is

getting assigned with new value 0
▪ @20ns from initial block-2 reset value

is assigned to enable

Which value of reset will be assigned to
enable @20ns ?
▪ Previous value 1 or new value 0 ?
▪ Based on order of execution picked by

simulator, enable will have value 1 or 0

Possible Simulation Result-2
▪ time=0ns, reset=1, enable=0
▪ time=20ns, reset=0, enable=1
▪ time=30ns, End of Simulation!
Note : if simulator decided to first execute
statement (#20ns enable=reset) from initial
block-2 then enable will get assigned old
value of reset which is 1 in initial block-2 at
timestamp @20ns.

Summary on initial and always procedure block

❑ There is no implied order of execution between initial and always constructs.

▪ initial blocks are not necessarily required to be scheduled and executed before the always constructs
51

❑ Not synthesizable and does not generate
hardware logic

❑ Synthesizable and it can generate hardware
logic

❑ Used for simulation purpose ❑ Used for specifying design behavior (RTL
code)

❑ Starts execution from beginning of a
simulation at time 0

❑ Starts execution from beginning of a
simulation at time 0

❑ Executes only once during simulation and it
terminates when all statements within it are
executed

❑ Executes repeatedly. Its activity shall cease
only when the simulation is terminated

❑ Any number of initial blocks can be defined
within a module

❑ Any number of always blocks can be defined
within a module

❑ Multiple initial blocks executes concurrently ❑ Multiple always blocks executes concurrently

initial always

