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Finite State Machine
❑ Sequential circuits works on a clock cycle which may be synchronous or asynchronous. 

▪ Sequential circuits use current inputs and previous inputs by storing the information and putting back into 
the circuit on the next clock cycle

❑ Finite State Machine (FSM)  is a model used to design sequential logic circuits. 
▪ It is conceived as an abstract machine that can be in one of a finite number of states.

▪ The machine is in only one state at a time; the state it is in at any given time is called the current state.

▪ It can change from one state to another when initiated by a triggering event or condition, this is called a 
transition.

▪ A particular FSM is defined by a list of its states, and the triggering condition for each transition. 

▪ It can be implemented using models like Mealy and Moore machine. 
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Moore and Mealy Finite State Machine (FSM)
❑ Moore FSM

▪ Output is solely based on present state of FSM

▪ Output is associated with a state

▪ Generally, more states than mealy (more hardware)

▪ More logic required to decode the outputs resulting 
in more circuit delays. 

▪ Output react slower to input (one clock cycle later)

▪ Synchronous output and state generation

3

❑ Mealy FSM
▪ Output based on present state and input(s)

▪ Output changes during transition of states

▪ Generally less states than moore

▪ Reacts faster to inputs and generally reacts in 
same cycle

▪ Asynchronous output generation

▪ Typically more complex to design than Moore



Moore and Mealy Finite State Machine
❑ FSM can be represented in form of state table or state transition diagram

❑ Example : Sequence Detector can be developed using Finite State Machine
▪ Design a circuit to detect consecutive series of three or more ‘1’s in serial input bit stream

▪ Output will become ‘1’ when three or more consecutive ones are detected

▪ 4 states required to such sequence detector state machine :

o State IDLE: reset sate (zero 1s detected)

o State S1: one 1 detected

o State S2: two 1s detected

o State S3: three 1s detected

▪ Let’s consider below mentioned input bit stream and observe output (out) behavior
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in 0 1 1 1 0 1 0 1 1

out 0 0 0 1 0 0 0 0 0

1 1 

1 1

after three consecutive 
1’s, out signal is set to 1

after three consecutive 
1’s, out signal is set to 1

Overlap condition should be 
considered as three consecutive 1’s 
and out signal is set to 1

0

0



Moore and Mealy Finite State Machine (FSM)
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Moore FSM Diagram for 
Sequence Detector

IDLE/
out=0

S1/ 
out=0

in=0

S2/ 
out=0

S3/ 
out=1

in=0

in=1

in=0
in=0 in=1

in=1

in=1

Mealy FSM Diagram For 
Sequence Detector

IDLE S1

S2S3

in=0/out=0

in=1/out=0

in=0/out=0 in=1/out=0

in=0/out=0

in=0/out=0

in=1/out=1

in=1/out=1

Note : In moore FSM, output is 
specified as part of present state

State Transition Table for 
Sequence Detector



Sequence Detector (Moore FSM – 2 always block approach)
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module sequence_detector_moore( 
input logic clk, rstn,
input logic in,
output logic out);

// Parameters to define FSM state encodings 
localparam [1:0] IDLE=2'b00,

S1=2'b01,
S2=2'b10,
S3=2'b11;

// Current state and next state variables
logic[1:0] present_state, next_state;

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) 

present_state <= IDLE; 
else 
present_state <= next_state; 

end

(continued on next page….)

Synthesis will 
generate d-flipflop
for present_state

For sequential logic
Non-blocking 
assignments used

State encodings are 
declared as localparam
so that these cannot be 
modified from outside



Sequence Detector (Moore FSM – 2 always block approach)
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// Combination Logic for Next State and Output
always@(present_state,in) begin
case(present_state)

IDLE: begin
out = 0;
if(in==1) next_state = S1;
else next_state = IDLE;

end
S1: begin
out = 0;
if(in==1) next_state = S2;
else next_state = IDLE;

end
S2: begin
out = 0;
if(in==1) next_state = S3;
else next_state = IDLE;

end
S3: begin
out = 1;
if(in==1) next_state = S3;
else next_state = IDLE;

end
(continued on next page….)

For Moore FSM, output is set without 
influence of input “in” signal and 
purely based on present_state

For next state and 
output combination 
logic, blocking 
assignments should 
be used

both present_state and 
input “in” variable should 
be listed in sensitivity list

IDLE/
out=0

S1/ 
out=0

in=0

S2/ 
out=0

S3/ 
out=1

in=0

in=1

in=0
in=0 in=1

in=1

in=1

Next state logic and output logic 
code in same always block  !!!



Sequence Detector (Moore FSM – 2 always block approach)
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default: begin  
out = 0;
next_state = IDLE;

end
endcase
end
endmodule: sequence_detector_moore

default is specified 
in case a bad state 
is reached

Sequence Detector State machine diagram generated by Synthesizer

Sequence Detector RTL Netlist View 
generated from Synthesizer

State machine Transition Table



Sequence Detector (Moore FSM – 3 always block approach)
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module sequence_detector_moore( 
input logic clk, rstn,
input logic in,
output logic out);

// Parameters to define FSM state encodings 
localparam [1:0] IDLE=2'b00,

S1=2'b01,
S2=2'b10,
S3=2'b11;

// Current state and next state variables
logic[1:0] present_state, next_state;

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) 

present_state <= IDLE; 
else 
present_state <= next_state; 

end

(continued on next page….)

1st always block for 
present state 
sequential logic

State encodings are 
declared as localparam
so that these cannot be 
modified from outside



always@(present_state) begin
case(present_state)
S3: out = 1;
default: out = 0;

endcase
end
endmodule: sequence_detector_moore

Sequence Detector (Moore FSM – 3 always block approach)
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// Combination Logic for Next State and Output
always@(present_state,in) begin
case(present_state)

IDLE: begin
if(in==1) next_state = S1;
else next_state = IDLE;

end
S1: begin
if(in==1) next_state = S2;
else next_state = IDLE;

end
S2: begin
if(in==1) next_state = S3;
else next_state = IDLE;

end
S3: begin
if(in==1) next_state = S3;
else next_state = IDLE;

end
default: next_state = IDLE;

endcase
end
(continued….)

both present_state and 
input “in” variable should 
be listed in sensitivity list

Output is dependent
Only on present state 
in moore

3rd always block
separate combinational 
block for output
logic

2nd always block for
separate combinational 
block for next state logic

1st always block for present 
state FF (see previous slide) 



Sequence Detector (Mealy FSM)

11

module sequence_detector_mealy( 
input logic clk, rstn,
input logic in,
output logic out);

// Parameters to define FSM state encodings 
localparam [1:0] IDLE=2'b00,

S1=2'b01,
S2=2'b10,
S3=2'b11;

// Current state and next state variables
logic[1:0] present_state, next_state;

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) 

present_state <= IDLE; 
else 
present_state <= next_state; 

end

(continued on next page….)

Synthesis will 
generate d-flipflop
for present_state

For sequential logic
Non-blocking 
assignments used

State encodings are 
declared as localparam
so that these cannot be 
modified from outside



Sequence Detector (Mealy FSM)

12

// Combination Logic for Next State and Output
always@(present_state, in) begin
case(present_state)

IDLE: begin
if(in==1) begin

next_state = S1;
out = 0;

end
else begin 

next_state = IDLE; 
out = 0; 

end
end
S1: begin
if(in==1) begin

next_state = S2;
out = 0;

end
else begin 

next_state = IDLE; 
out = 0; 

end
end
(continued on next page….)

both present_state and 
input “in” variable should 
be listed in sensitivity list

For Mealy FSM, output is set
based on influence of both 
input “in” signal and present_state
Note : out = 0; statement is 
specified within if(in == 1) condition 
in mealy. And in moore, out = 0; is 
specified outside if(in == 1) condition

For next state and 
output combination 
logic, blocking 
assignments should 
be used

Melay FSM Diagram

IDLE S1

S2S3

in=0/out=0

in=1/out=0

in=0/out=0 in=1/out=0

in=0/out=0

in=0/out=0

in=1/out=1

in=1/out=1



Sequence Detector (Mealy FSM)
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S2: begin
if(in==1) begin

next_state = S3;
out = 1;

end
else begin 

next_state = IDLE; 
out = 0; 

end
end
S3: begin

if(in==1) begin
next_state = S3;
out = 1;

end
else begin 

next_state = IDLE; 
out = 0; 

end
default: begin out = 0; next_state = IDLE; end

endcase
end
endmodule: sequence_detector_mealy

default is specified 
in case a bad state 
is reached

Sequence Detector State machine diagram generated by Synthesizer

For each state, under 
else condition if 
“out=0” is not present 
then Synthesis 
compiler will create 
latch for the output 
“out” signal

Sequence Detector RTL Netlist view generated by Synthesizer



Sequence Detector Simulation Snapshot(Moore FSM vs Mealy FSM)
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Sequence Detector Moore FSM Simulation Snapshot 
(Note : simulation result for 2 always vs 3 always block approach is same)

Sequence Detector Mealy FSM Simulation Snapshot

1 1 1 1 1 1 1 1 1 1 11 10 0 0 0 0 0 0 00 0 0 0

1 1 1 1 1 1 1 10 00 0 0 0 0 0 00 0 0 0 0 01 11 1 1 1 1 1111 10 0 0 00 1

After three 1’ detected out goes to ‘1’ Output did not react to change in 
input immediately in moore

Output reacted to change in input 
immediately in mealyAfter three 1’ detected out goes to ‘1’



Sequence Detector (One always block approach)
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module sequence_detector_one_always_block( 
input logic clk, rstn,
input logic in,
output logic out);

// Parameters to define FSM state encodings 
localparam [1:0] IDLE=2'b00,

S1=2'b01, S2=2'b10, S3=2'b11;

// Current state and next state variables
logic[1:0] state;

// Use of same clocked always block 
always_ff@(posedge clk) begin
if(!rstn) 

state <= IDLE; 
out <= 0;

else 
case(state)

IDLE: begin
out <= 0;
if(in==1) state <= S1;
else state <= IDLE;
end

// Does not need two separate state variable

// Combination Logic for Next State and Output
S1: begin

out <= 0;
if(in==1) state <= S2;
else state <= IDLE;

end
S2: begin
out <= 0;
if(in==1) state <= S3;
else state <= IDLE;

end
S3: begin
out <= 1;
if(in==1) state <= S3;
else state <= IDLE;

end
default: begin  
out <= 0;
state <= IDLE;

end
endcase
end
endmodule: sequence_detector_one_always_block

Use of non-blocking assignment 
statement in case encoding 
branches

Inputs are no longer 
asynchronously sampled. 
Change in input is captured with 
respect to clock edge event

Output will stay asserted longer 
even when state has transitioned 
to another state where output 
should have gone back to reset or 
some other value 



Sequence Detector Simulation Snapshot (One block vs Two block approach)
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Sequence Detector Moore FSM Simulation Snapshot 
(Note : simulation result for 2 always vs 3 always block approach is same)

Sequence Detector FSM Simulation Snapshot
(Note : simulation result for 1 always block

1 1 1 1 1 1 1 1 1 1 11 10 0 0 0 0 0 0 00 0 0 0

out = 1 took additional one cycle in case 
of 1 always block approach compared to 

2 or 3 always block implementation

In case of 1 always block 
implementation out = 1 stays for 
additional one additional clock cycle 
then 2 or 3 always block approach



One Always Block Approach For FSM Modeling
❑ One always block state machine is slightly more simulation-efficient than the two always 

block state machine :
▪ Since the inputs are only examined on clock changes (less work for simulator)

❑ There some dis-advantages of one always block approach :
▪ RTL simulation does not model accurate gate level implementation

• At the gate level combinational logic output updates when any input changes

• In one process RTL simulation, combinational logic mixed with sequential logic, it is only 
evaluated at the clock edge 

▪ State machine can be more difficult to modify and debug since all sequential and combinational 
logic is mixed in one always block

▪ Placing output assignments inside of the always block will infer output flip-flops.

• This might lead to late availability of output. Sometimes not desirable in some applications.

❑ Output assignments inside of a sequential always block cannot be Mealy outputs
▪ Hence cannot model Mealy FSM using one always block approach !
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State Encoding
❑ States in FSM are represented by encoded value. There are multiple choices:

▪ Binary encoding, One-hot encoding, Gray encoding, Johnson encoding and more.

▪ Binary encoding and one-hot encoding are two commonly choices.

❑ Binary encoding of states

▪ binary encoding For N states, use ceil(log2N) bits to encode the state with each state 
represented by a unique combination of the bits. 

▪ Tradeoffs: 
o Most efficient use of state registers (less number of Flipflops are required)

o Slower and more complicated combinational logic to detect when in a particular state.  

▪ Example : 
o In case of 4 states,  2 Flipflops are required to represent each state

o enum logic [1:0]   {RESET = 2’b00, WAIT = 2’b01, LOAD = 2’b10, DONE = 2’b11} next_state
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State Encoding
❑ One-hot encoding of states :

▪ For N states, use N bits to encode the state 

o bit corresponding to the current state is 1, all the others 0. 

▪ Tradeoffs: 

o Leads to simpler and Faster design. Much less combinational logic for state decoding 

• Good alternative when trying to optimize speed or to reduce power dissipation.

o Can be costly in terms of FFs for FSMs with large number of states

o FPGAs have larger number for Flipflops.  Therefore one-hot state machine encoding is often 
a very appropriate with most FPGA targets 

▪ Example : In case of 4 states, 4 Flipflops are required for state encoding (one FF per state)

o STATE S1 : 4’b0001

o STATE S2 : 4’b0010

o STATE S3 : 4’b0100

o STATE S4 : 4’b1000

19
FF1  FF2  FF3  FF4



One-Hot FSM Implementation Example

20Credit to : Clifford E. Cummings, Sunburst Designs



One Hot State Encoding
❑ In case of one-hot encoding style FSM, Quartus Prime will not auto-generate FSM state 

diagrams !

▪ Example: if sequence detector state machine state encoding is changed from binary 
counting to one hot encoding style as described below, no state machine diagram 
generated however it will still work as an FSM
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Sequence Detector State machine diagram will not be generated by Quartus Synthesizer
Functionally logic will still behave as a correct FSM !

parameter[3:0]  IDLE=4’b0001, S1=4’b0010,  S2=4’b0100, S3=1000;
logic[3:0] present_state, next_state; 



State Encoding Constants and Variables Declaration
❑ There are multiple ways to declare FSM state encoding constants and variables :

▪ Using enumeration :

• enum logic[1:0] {WAIT=2'b00, EDGE=2'b01} present_state, next_state;

▪ Using Parameter :

• parameter  logic [1:0]  RESET = 2’b00, WAIT = 2’b01, LOAD = 2’b10, DONE = 2’b11;

logic [1:0] present_state, next_state;

▪ Using Local Parameter :

• localparam logic [1:0]  RESET = 2’b00, WAIT = 2’b01, LOAD = 2’b10, DONE = 2’b11;

logic [1:0] present_state, next_state;

▪ Using Using typedef : (Introduced in SystemVerilog. Not supported in Verilog)

• typedef enum logic [1:0] {WAIT=2'b00, EDGE=2'b01} e_states;

e_states present_state, next_state;
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Final Note on Moore vs Mealy FSM Modeling
❑ A given state machine can have both Moore and Mealy style outputs. 

▪ Nothing wrong with either implementation, but one to be aware of the timing differences 
between the two types. 

▪ The output timing behavior of the Moore machine can be achieved in a Mealy machine by 
“registering” the Mealy output values

▪ Note : registering output or registered output means having flipflop at the output signal
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Registered Output of Mealy matches 
the output timing behavior of Moore 

machine



FSM Design Steps Using SystemVerilog
❑ Specify circuit function 

❑ Draw state transition diagram 

❑ Minimize number of States

❑ Derive state transition table

❑ Determine next state and output function

❑ Assign encodings (bit patterns) to symbolic states 

❑ Implement State Machine using SystemVerilog : 

▪ Use either of the parameters/enum/localparam/typedef to represent encoded states. 

▪ Use separate always blocks for next state register assignment and combinational logic blocks 

▪ Use always_comb for all combinational block specification

▪ Use case within combinational block (including default case item expression). 
• Within each case section assign all outputs and next state value based on inputs. 

• Ensure default case item is specified to avoid latches

❑ Note:

▪ For Moore style machine make outputs dependent only on state not dependent on inputs.

▪ Try not to mix up combinational logic and sequential logic inside same always block
24



Level to Pulse Converter
❑ A level-to-pulse converter produces a  single cycle pulse each time its input goes high

▪ It is also known as synchronous rising edge detector

▪ Usage: Pushing a button of a signal traffic light controller at pedestrian crossing 

• Pressing button for arbitrary period of time by pedestrian should generate single-cycle 
enable signals for counters in traffic light controller system

25

Whenever input L goes 
from Low to High

Output P produces single  
pulse which is one clock 

period wide

Level to 
Pulse 

Converter

L
P

CLK



Level to Pulse Converter : Moore and Mealy State Diagrams
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Moore State Transition Diagram

Binary State Encoding

❑ WAIT (2’b00) : Input is ‘0’, wait for ‘1’

❑ EDGE (2’b01) : ‘0’ to ‘1’ edge detected on Input

❑ LEVEL (2’b11): Input is stable at  ‘1’

WAIT /
P = 0

Waiting for 
Rise on L

EDGE /
P = 1

0 to 1 rise 
detected

LEVEL /
P = 0

High Input, 
Waiting for 

fall on L

L=0

L=1 L=1

L=0

L=0

L=1

When L=1 and State=WAIT, output 
P is asserted and until state 
transition to EDGE occurs

Mealy State Transition Diagram

WAIT  
Waiting for 

Rise on 
input L

EDGE 
1 to 0 rise 

detected & 
Waiting for 

fall on L

L=0/P=0

L=1/P=1

L=1/P=0

L=0/P=0

While in State=EDGE, and input 
L is high, then output P is at 0

Mealy FSM has 1 less state 
than Moore FSM !!

If L=1 at the clock edge, then 
state jumps to EDGE

Output P is set to 1 
only in Edge State While in State=LEVEL, and 

input L is high, then output P is 
at 0

If L=0 at the clock edge, then 
state stays in WAIT state for L 

to become 1



Level to Pulse Converter (Moore FSM)
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module level_to_pulse_converter_moore( 
input logic clk, rstn,
input logic L,
output logic P);

// FSM state encodings and state registers declaration
enum logic[1:0] {WAIT=2'b00,

EDGE=2'b01,
LEVEL=2’b11} present_state, next_state;

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) 

present_state <= WAIT; 
else 
present_state <= next_state; 

end

(continued….)

Synthesis will 
generate d-flipflop
for present_state

For sequential logic
Non-blocking 
assignments used

State variables are declared as enumerated encoded logic

// Combination Logic for Next State and Output
always_comb begin
case(present_state)

WAIT: begin
P = 0;
if(L==1) next_state = EDGE;
else next_state = WAIT;

end
EDGE: begin
P = 1;
if(L==1) next_state = LEVEL;
else next_state = WAIT;

end
LEVEL: begin
P = 0;
if(L==1) next_state = LEVEL;
else next_state = WAIT;

end
default: begin  
P = 0;  next_state = WAIT;

end
endcase
end
endmodule: level_to_pulse_converter_moore

Output P is set to ‘1’ as soon as rising edge 
on P is detected

Since output P requirement is single cycle 
pulse, P is set to ‘0’ if input stays at level ‘1’ 
after rising edge detection

for next state combinational logic 
always_comb specified to 
automatically Infer sensitivity list



Level to Pulse Converter Simulation and Synthesis Results (Moore FSM)
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Simulation Waveform

Output P is single cycle pulse, available after 
somtime there is rising edge on input L

Post Synthesis RTL Netlist Schematic Moore State Diagram Mealy State Transition Table

2 Flipflops to represent three states WAIT EDGE, LEVEL



Level to Pulse Converter (Mealy FSM with Reduced States)
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module level_to_pulse_converter_mealy( 
input logic clk, rstn,
input logic L,
output logic P);

// FSM state encodings and state registers declaration
enum logic[1:0] WAIT=2'b00,

EDGE=2'b01} present_state, next_state;

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) 

present_state <= WAIT; 
else 
present_state <= next_state; 

end

(continued….)

Only two states required for Mealy compared to Moore FSM

// Combination Logic for Next State and Output
always_comb begin
case(present_state)

WAIT: begin
if(L==1) begin

next_state = EDGE; P = 1;
end
else begin 

next_state = WAIT;  P = 0; 
end

end
EDGE: begin
if(L==1) begin

next_state = EDGE; P = 0;
end
else begin 

next_state = WAIT; P = 0; 
end

end
default: begin P = 0; next_state = WAIT; end

endcase
end
endmodule: level_to_pulse_converter_mealy

Output P is set to ‘1’ as soon
as input L is detected as ‘1’ in 
WAIT state

Since output P requirement is 
single cycle pulse, P is set to ‘0’ 
if input stays at level ‘1’ after 
rising edge detection

for next state combinational logic 
always_comb specified to 
automatically Infer sensitivity list



Level to Pulse Converter Simulation and Synthesis Results (Mealy FSM)
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Simulation Waveform

Output P is available as soon as input L changed from ‘0’ to ‘1’.  However output P pulse is not 
stable for 1 cycle. Which does not meet design requirement for P to be 1 cycle pulse !!

Post Synthesis RTL Netlist Schematic Moore State Diagram Mealy State Transition Table

1 Flipflop to represent two states WAIT and EDGE. 
1 less D-flipflop required in Mealy compared to Moore FSM



Level to Pulse Converter (Mealy FSM with Reduced States + Registered output)
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module level_to_pulse_converter_mealy( 
input logic clk, rstn,
input logic L,
output logic P);

// FSM state encodings and state registers declaration
enum logic[1:0] {WAIT=2'b00,

EDGE=2'b01} present_state, next_state;

logic r_P; // local variable declaration

// Sequential Logic for present state
always_ff@(posedge clk) begin
if(!rstn) begin

present_state <= WAIT; 
P <= 0;

end
else begin
present_state <= next_state; 
P <= r_P;

end
end
(continued….)

Only two states required for Mealy compared to Moore FSM

// Combination Logic for Next State and Output
always_comb begin
case(present_state)

WAIT: begin
if(L==1) begin

next_state = EDGE; r_P = 1;
end
else begin 

next_state = WAIT;  r_P = 0; 
end

end
EDGE: begin
if(L==1) begin

next_state = EDGE; r_P = 0;
end
else begin 

next_state = WAIT; r_P = 0; 
end

end
default: begin r_P = 0; next_state = WAIT; end

endcase
end
endmodule: level_to_pulse_converter_mealy

Output is assigned to 
local variable r_P

Synthesizer will create D-
flipflop to provide registered 
output P.
Output P is registered to 
ensure P is at least 1 cycle 
pulse



Level to Pulse Converter Synthesis Results (Mealy FSM) : With Registered Output
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Post Synthesis RTL Netlist Schematic

Mealy Reduced State Diagram
Mealy Reduced State 

Transition Table Post Synthesis Resource Utilization

Synthesizer created D-flipflop 
to provide registered output P.

Only 2 states in Mealy FSM compared 
to Moore which as 3 States

1 Flipflop for registering output P  and 1 Flipflop 
for representing two states WAIT and EDGE



Level to Pulse Converter Simulation Result(Mealy FSM) : With Registered Output
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Post Synthesis RTL Netlist Schematic

Registered Output P which is 
single cycle pulse when there 
is rising edge on L detected.

Glitches in Simulation on 
unregistered output r_P

Unregistered output r_P is available as 
soon as input L changed from ‘0’ to ‘1’



References
❑ For FSM design and synthesis coding guidelines refer to below mentioned white paper :

▪ http://www.sunburst-design.com/papers/CummingsSNUG1998SJ_FSM.pdf
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http://www.sunburst-design.com/papers/CummingsSNUG1998SJ_FSM.pdf

