
Blockchain, Bitcoin Hashing and Final Project Part-2

ECE-111

Vishal Karna

Winter 2022

Blockchain and Bitcoin Hashing Concepts

2

What is a Blockchain ?

❑ A blockchain is a chain of digital data blocks
▪ Each blocks can store digital information about financial transactions such as date, time, dollar, sender,

receiver or it can be medical records or property purchase deeds and much more.

▪ Chaining of blocks is done through cryptographic hashing algorithms, such as SHA-256, Scrypt, etc

▪ Blocks which are chained together, its data can never be changed again (Immutable !)

▪ Entire block chain is publicly available to anyone who wants to see it, in exactly the way it was once
added to the blockchain.

▪ Blockchain is a distributed and decentralized public ledger.
3

W10 W10 X89 X89 G65 890T

Signatures of each block generated through cryptographic hashing.
Blocks chained through signatures

Digital Data Digital Data Digital Data Digital Data

Blockchain is dependent on Hashing

❑ Hashing is a cryptographic method of converting input data of any kind and size, into a string of
fixed number of characters.

❑ Characteristics of hashing cryptography algorithms : (Example : SHA-256, Scrypt, etc)
▪ The same input must always generate the same output. (Determinstic !)

▪ The hash should be of a fixed number of characters, regardless the size or type of input data (Compression!)

▪ There should be no way to reverse the hashing process to see the original data set. (Pre-Image Resistant !)

▪ Any change in the input must produce an entirely different output (Avalanche effect !)

▪ Practically impossible to find two different inputs that produce the same output (Collision Resistance !)

▪ Creating the hash should be a fast process that doesn’t make heavy use of computing power (Efficient !)
4

Change in only
one character

Significantly
different output
hash value for a
small change in

input

Also known as Signature, or
Hash or Message Digest

Bitcoin Blockchain

❑ The Bitcoin blockchain is the oldest blockchain in existence.
▪ The blocks on the Bitcoin blockchain consist of approximately 1 MB of data each.

▪ The data on the Bitcoin blockchain exclusively exists out of transaction data in regard to Bitcoin
transactions.

▪ It is a giant track record of all the Bitcoin transactions that have ever occurred, all the way back to the
very first Bitcoin transaction.

▪ Bitcoin blockchain uses SHA-256 cryptographic hashing algorithm to chain blocks 5

Each bitcoin block can
contain 1 MB of data

prev. hash and hash created
using SHA-256

Previous
block hash Current

block hash

Block-2
hash

Block-1
hash

Block-3
hash

Bitcoin Blockchain Example
❑ Block-1 registers two bitcoin transactions T1 and T2 between Damian and George.

❑ Signature is generated for Block-1 say, X32 using hashing algorithm

❑ Block-2 registers two new bitcoin transactions T3 and T4.

❑ The data in block 1 is now linked to block 2 by adding the signature of block 1 (X32) to
the data of block 2.

❑ The signature of block 2 (9BZ) is now partially based on the signature of block 1, because it is
included in the string of data in block 2

❑ The signature links the blocks to each other, making them a chain of blocks !!

6

What if block data is altered by malicious user ?

❑ Let’s say transaction between Damian and George is altered and Damian now supposedly sent 500 Bitcoin
to George instead of 100 Bitcoin.

❑ Changing any single bit of data will generate a new signature for Block-1 (say W10)

❑ The new signature W10 does not match the signature that was previously added to block 2 anymore.

o Hence Block 1 and 2 are now considered no longer chained to each other !!

❑ This indicates to other users of this blockchain that some data in block 1 was altered, and because the
blockchain should be immutable :

o All users reject this change by shifting back to their previous record of the blockchain where all the
blocks are still chained together (the record where Damian sent 100 BTC to George)

7

W10 X32

How is the data block accepted in blockchain ?
❑ A signature doesn’t always qualify for block to be accepted in block chain

❑ A block will only be accepted on the blockchain if its digital signature starts with — for example — 7
consecutive number of zeroes.

❑ What if the signature (hash) of a block doesn’t start with ten zeroes?

❑ Well, in order to find the block a signature that meets the requirements, the string of data of a block needs
to be changed repeatedly until that specific string of data leads to a signature starting with ten zeroes.

❑ Because the transaction data and metadata (block number, timestamp, et cetera) need to stay the way they
are, a small specific piece of data is added to every block that has no purpose except for being changed
repeatedly in order to find an eligible signature. This piece of data is called the nonce of a block.

❑ The nonce is a completely random string of numbers

8

What makes blockchain immutable ?
❑ Let’s say a corrupt miner has altered a block of transactions and is now trying to calculate new signatures

for the subsequent blocks in order to have the rest of the network accept his change.

▪ The problem for him is, the rest of the network is also calculating new signatures for new blocks.

▪ The corrupt miner will have to calculate new signatures for these blocks too as they are being added to
the end of the chain. After all, he needs to keep all of the blocks linked, including the new ones
constantly being added.

▪ Unless the miner has more computational power than the rest of the network combined, he will never
catch up with the rest of the network finding signatures.

9

Bitcoin Blockchain Nodes

10

❑ Say a trader named John is trying to buy goods
using bitcoin from a merchant who accepts
bitcoin.

❑ Flint, Eric, Greg, Alice are bitcoin Miners and
they will provide services to John to add John’s
new bitcoin transaction block to the block
chain ledger by generating hash for this block
& meeting required acceptance criteria for
output hash value. They will keep using
different nonce values until they are able to
generate the hash value meeting the criteria.

❑ All miners are competing. First person to
generate output hash value meeting the
requirement (also known as difficulty target)
will successfully able to add John’s transaction
block to the bitcoin block chain ledger and
collect bitcoin(s) as a reward/service fee.

❑ All other Miners who did not win, will then
update new block chain on their local
hardware. (i.e. update bitcoin ledger)

❑ All miners have invested in expensive local
hardware which might be several GPUs/CPUs,
and more. They burn power/electricity when
mining for bitcoin.

All Minors have same
copy of bitcoin

blockchain on their local
hardware. Hence bitcoin
blockchain is considered
as a de-centralized and

distributed public ledger

Bitcoin Blockchain Mining Example

11

Final Project Part-2 : Bitcoin Hashing Project Details and
Requirements and Report

12

Bitcoin Data Block Header

13

❑ Bitcoin’s header format :

Field Purpose Updated when … Size (Words)

Version Block version number You upgrade the
software and it
specifies a new version

1

hashPrevBlock 256-bit hash of the previous
block header

A new block comes in 8

hashMerkleRoot 256-bit hash based on all of
the transactions in the block

A transaction is
accepted

8

Time Current timestamp as
seconds since 1970-01-
01T00:00 UTC

Every few seconds 1

Bits Current target in compact
format

The difficulty is
adjusted

1

Nonce 32-bit number (starts at 0) A hash is tried
(increments)

1

Main Point
These 19 words
are given and

fixed. These 19
words are
stored in
memory

instantiated in
testbench code

Try different nonces
(0 to 15 nonce value
instead of random

nonce values)

Bitcoin Hashing Project Assumptions

14

❑ Input Message :

▪ Input message (Wt) is of size 20 words (where 1 word = 32 bits)

▪ Hence total input message size : 20 x 32 = 640 bits

▪ Size of each data block in bitcoin block chain is 512 bits

▪ Since 640 bits cannot be stored in 1 digital block, there are total 2 digital blocks created for
input message

▪ 640 bits of message is stored in memory which is instantiated in testbench code. Actual
content of input message is not important for code development and simulation.

▪ Out of 20 words, 19 words are data/metadata and final 1 word is a nonce.

❑ SHA-256 should be used to create output hash value for each digital block
▪ Since there two digital blocks provided in memory, there will be 2 hash values created (one hash value for

each block)

❑ For sake of simplicity and convergence, project should assume only 16 nonce values (0 to 15)
and hence 16 attempts for each block to create its hash value.
▪ For first block hash value computed is same for each nonce value hence hash value is created only once

▪ For second block, hash value is created 16 times. And during each iteration of nonce, nonce value is
incremented by 1.

Bitcoin Hashing (Serial Implementation)

15

w[0] to w[15]
Input

Message

SHA256
(Phase-1)

SHA256
(Phase-2)

Kt[0:63]
constant

Output 256-bit Hash
of Message Block-1

Final Hash Value :
256 hash value for
each nonce 0 to 15

H0
H1
H2
H3
H4
H5
H6
H7

H0
H1
H2
H3
H4
H5
H6
H7

w[0] to w[2]
Input

Message +
w[4] to w[15]
are Padding

words +
w[3]=Nonce

2nd Message Block (128 bits +
Padding + Nonce = 512bits)

SHA256
(Phase-3)

Original Hash
Constants

H0
H1
H2
H3
H4
H5
H6
H7

Original Hash
Constants

H0
H1
H2
H3
H4
H5
H6
H7

Output 256-bit Hash of Message Block-2
becomes w[0] to w[7] input message +

w[8] to w[15] are padding = 512-bit
message block

H[0][nonce]
H[1]nonce]
H[2][nonce]
H[3][nonce]
H[4][nonce]
H[5][nonce]
H[6][nonce]
H[7][nonce]

Kt[0:63]
constant

Kt[0:63]
constant

Execute Phase-2
SHA256 for 16 times i.e.

1 iteration for each
nonce value = 0 to 15

Execute Phase-1, SHA256
only 1 time as there is no
"nonce" in first Message

Block

Execute Phase-3
SHA256 for 16 times i.e.

1 iteration for each
nonce value = 0 to 15

1st Message Block
(16 words of input message. Each
word is 32 bits, 16x32 = 512bits)

Bitcoin Hashing

16

❑ There are 3 phases in bitcoin hashing :
▪ Phase 1: Processing 1st block of the 1st SHA 256 hash function

• H0…H7 correspond to constants, 32’h6a09e667, etc.
• Wt’s correspond to first 16 words in memory
• Kt[0:63] constant

▪ Phase 2: Processing 2nd block of the 1st SHA 256 hash function
• H0…H7 come from the Phase 1
• Wt’s correspond the last 3 words in memory, the nonce, 32’h80000000 padding, ten 32’h00000000

padding, and 32’d640 message size padding
• Kt[0:63] constant

▪ Phase 3: Processing the 2nd SHA 256 hash function
• H0…H7 correspond to constants, 32’h6a09e667, etc.
• Wt’s correspond the H0…H7 from Phase 2, 32’h80000000 padding, six 32’h00000000 padding, and

32’d256 message size padding
o Note : In phase-3 message size is 256 bits as input message is 256 bit output has from phase-2

• Kt[0:63] constant

▪ Phase-2 and 3 are performed 16 times. This will produce 16 finals hashes.
• Note : Phase-2 input message includes 1 word reserved for nonce whereas in Phase-3 in input

message there is no nonce value to be added.

Bitcoin Data Block Header

17

❑ Compute final hash for SHA256(SHA256(message)) for 16 nonces = 0, 1, … 15,
each message = {block header, nonce}

❑ Will produce 16 final hashes

H0[0], H1[0], H2[0], H3[0], H4[0], H5[0], H6[0], H7[0]
H0[1], H1[1], H2[1], H3[1], H4[1], H5[1], H6[1], H7[1]

:
:

H0[15], H1[15], H2[15], H3[15], H4[15], H5[15], H6[15], H7[15]

❑ We will just write to memory H0[0], H0[1] …, H0[15], a total of 16 words

Bitcoin Hashing

18

❑ Change input message by changing the “nonce” (32-bits = 1 word), starting with nonce
= 0 …

❑ Keep trying new nonces 1, 2, … until finish hash < target goal
▪ Note : There is no actual acceptance criteria and difficulty hash value target for this project.

Instead after fixed 16 iterations of nonce (from 0 to 15), hash value obtained is considered as
meeting target goal (also known as acceptance criteria for hash value)

❑ For the final project, we will simply compute final hashes for 16 nonces, nonce = 0, 1, 2, … 15
without checking if any < target

❑ Key observation: The hash computation for the 1st block of the 1st hash is the same for all nonce
values; therefore, can be computed just once.

Bitcoin Hashing (Parallel Implementation)

19

SHA256
(Phase-1)

❑ For Each Nonce value, Execute Phase-2 in parallel as inputs for Phase-2 are available at the same time for all
nonce values

❑ Phase-2 and Phase-3 for same nonce value has to be executed serially as Phase-3 needs output hash from
Phase-2 as its input message

H[0][nonce]
H[1]nonce]
H[2][nonce]
H[3][nonce]
H[4][nonce]
H[5][nonce]
H[6][nonce]
H[7][nonce]

SHA256
(Phase-2)
nonce=0

SHA256
(Phase-3)

SHA256
(Phase-2)
nonce=15

SHA256
(Phase-3)

…….

…….

…….

…….

Note :
▪ Phase-2 Input message will have nonce

value
▪ Phase-3 Does not have nonce value in its

input message.

Output Hash for each
Nonce Value

Bitcoin Hashing (Parallel Implementation)

20

❑To Perform 16 SHA256 operations in parallel, 16 copies of SHA256 logic is required and this
will consume more logic within FPGA.

❑Arria-II FPGA will not able to fit 16 instances of SHA256. So to address this :
▪ First perform in parallel implementation of SHA256 for nonce 0 to 7 and then re-use same logic

and one more time perform SHA256 operation in parallel for nonce 8 to 16. This will required 8
instances of SHA256

▪ Also, in Part-1 project, simplified SHA256 should be optimized to have w[16] message word array
implementation instead of w[63].

• Not having w[16] implementation, and then still re-using simplified sha256 in part-1 even 8
instances of sha256 will not fit in message array. This is word expansion array, can we perform
word expansion using only w[16] instead of w[63] ? – Answer is yes.

❑ Note to Students :
▪ First Goal should be to make serial implementation of Bitcoin Hashing Model work and make sure

functionality of the model is correct using bitcoin_hashing testbench which has self checker in test

▪ And then optimize for performance at cost of extra hardware logic and implement parallel
implementation

Final Project Module Interface

❑ Wait in idle state for start

❑ Read 19 word block header starting at block_addr

❑ Compute final hash for SHA256(SHA256(message)) for 16 nonces, each message = {block
header, nonce}

❑ Just write final H0 for each of the 16 nonces into memory starting at output_addr.

❑ Set done to 1 when finished.

Memory
(provided by
testbench)

bitcoin_hash

mem_clk

mem_addr[15:0]

mem_we

mem_write_data [31:0]

mem_read_data[31:0] m
em

o
ry

 in
te

rf
ac

e clk

reset_n

m
es

sa
ge

_a
d

d
r[

1
5

:0
]

st
ar

t

d
o

n
e

o
u

tp
u

t_
ad

d
r[

1
5

:0
]

21

Final Project Module Interface

❑ Write the final hash values for H0[0], H0[1] …, H0[15] in 16 words to memory starting
at output_addr as follows:
▪ Note : There are 2 blocks for input message, and there is 256-bit (8 words) hash value created for

each block hence total (8 words of hash x 2=) 16 words for hash to be stored in memory.

H0[0]

H0[1]

output_addr

output_addr + 1

H0[15]output_addr + 15

:
:

:
:

22

Final Project Module Interface

❑ Your assignment is to design the yellow box assuming below mentioned
primary ports and module name:
module bitcoin_hash (input logic clk, reset_n, start,

input logic [15:0] message_addr, output_addr,

output logic done, mem_clk, mem_we,

output logic [15:0] mem_addr,

output logic [31:0] mem_write_data,

input logic [31:0] mem_read_data);

...

endmodule

Memory
(provided by
testbench)

bitcoin_hash

mem_clk

mem_addr[15:0]

mem_we

mem_write_data [31:0]

mem_read_data[31:0] m
em

o
ry

 in
te

rf
ac

e clk

reset_n

m
es

sa
ge

_a
d

d
r[

1
5

:0
]

st
ar

t

d
o

n
e

o
u

tp
u

t_
ad

d
r[

1
5

:0
]

23

Rough Estimation of Cycles
❑ Basic implementation: at least 2147 cycles

Cycle Count Step Comments

19 Read 19 words

64 Process 1st block in 1st

SHA256 hash
Same for all 16
nonces

16*64 = 1024 For each nonce, process 2nd

block of 1st SHA256 hash

16*64 = 1024 For each nonce, compute
2nd SHA256 hash

16 For each nonce, write out
H0 (hash value)

24

Rough Estimation of Cycles
❑ Hide reading: at least 2128 cycles

Cycle Count Step Comments

64 Process 1st block in 1st

SHA256 hash
19 words read “on-
the-fly”. Same for all
16 nonces

16*64 = 1024 For each nonce, process 2nd

block of 1st SHA256 hash

16*64 = 1024 For each nonce, compute
2nd SHA256 hash

16 For each nonce, write out
H0

25

No Inferred Megafunctions or Latches
❑ In your Quartus compilation message

▪ No inferred megafunctions: Most likely caused by block memories or shift-register replacement.
Can turn OFF “Automatic RAM Replacement” and “Automatic Shift Register Replacement” in
“Advanced Settings (Synthesis)”. If you still see “inferred megafunctions”, contact Professor.
Your design will not pass if it has inferred megafunctions.

▪ No inferred latches: Your design will not pass if it has inferred latches.

26

No Block Memory Bits
❑ In your bitcoin_hash.fit it must say Total block memory bits is 0 (otherwise will not pass).

❑ If not, go to “Assignments→Settings”
in Quartus, go to “Compiler Settings”,
click “Advanced Settings (Synthesis)”

❑ Turn OFF “Auto RAM Replacement”
and “Auto Shift Register Replacement”

27

Final Project Submission
❑ Put following files into (LastName, FirstName)_(LastName, FirstName)_finalproject.zip

▪ Both design files and also testbench code for both SHA256 and Bitcoin hashing project

▪ Modelsim transcript files msim_transcript for both SHA256 and Bitcoin hashing project

▪ For both SHA256 and bitcoin hashing provide, fitter and sta files (files with extension .fit, .sta)

▪ Report for both SHA256 and Bitcoin hashing project

▪ Finalsummary.xls file with fmax, number of cycles, aluts, registers detail filled. Template of this file is
provided as part of Final_Project.zip folder. This should be submitted for both SHA256 and bitcoin hash

❑ Final report should including following mentioned :
▪ Explain briefly what SHA-256 is and bitcoin hashing (may use lecture slide contents)

▪ Describe algorithm for both SHA-256 and Bitcoin hashing implemented in your code

▪ Simulation waveform snapshot for both SHA-256 and Bitcoin hashing

▪ Provide modelsim transcript window output indicating passing test results generated from self-checker
in testbench for both SHA-256 and Bitcoin hashing

▪ Provide synthesis resource usage and timing report for bitcoin_hash only.

o Should include ALUTs, Registers, Area, Fmax snapshots

o Provide fitter report snapshot

o Provide Timing Fmax report snapshots

o Make sure to use Arria II GX EP2AGX45DF29I5 device and use Fmax for Slow 900mV 100C Mod
28

Fill up finalsummary.xlsx

❑ Fill up finalsummary.xlsx posted on Piazza as part of Final_Project.zip (to be filled for both
simplified_sha256 bitcoin_hash project in separate fillsummary.xlsx)

❑ If you worked alone, just fill out one row

❑ Spreadsheet already contains calculation fields: e.g. Area = #ALUTs + #Registers. Please use them.

❑ Students to fill ALUTs, Registers, Fmax and Cycles column in excel sheet.

❑ #cycles will be generated for your design from testbench code.

❑ Make sure to use Arria II GX EP2AGX45DF29I5 device

❑ Make sure to use Fmax for Slow 900mV 100C Model

❑ Make sure to use Total number of cycles

❑ Note : Best Fmax with area will be considered as one of the grading point for bitcoin hashing
project. 29

bitcoin_hash.fit Fitter Report

❑ Copy of the fitter reports (not the flow report) with area numbers.

❑ Make sure to use Arria II GX EP2AGX45DF29I5 device

❑ IMPORTANT: Make sure Total block memory bits is 0.

30

bitcoin_hash.sta

❑ Copy of the sta (static timing analysis) reports.

❑ Make sure to use Fmax for Slow 900mV 100C Model

❑ IMPORTANT: Make sure “clk” is the ONLY clock.

❑ You must,
assign mem_clk = clk;

❑ Your bitcoin_hash.sta.rpt must show “clk” is the only clock.

31

Tips

❑ Many possible implementations, so no single “right way”.

❑ In FSM code, combined always block for sequential and combination logic using non-
blocking assignments should be used

❑ Good rule of thumb is to make your code easy to read.

▪ If there are too many nested if-then-else such that the code is hard to read, try to
simplify the code as it tends to lead to better implementations.

▪ Minimizing the number of states is not necessarily good if it means that you have to
add many if-then-else to effectively recreate the same next-state logic.

❑ Add comments before each block of code explaining what it is trying to achieve

32

Tips

❑ Debug your design first with a smaller NUM_NONCES. e.g., by changing the NUM_NONCES
parameter in testbench and your design to NUM_NONCES = 1 or NUM_NONCES = 2.

module tb_bitcoin_hash();

parameter NUM_NONCES = 16

:

Initial

begin

:

$stop;

end

:

endmodule

module bitcoin_hash(input logic clk, reset_n ...);

parameter NUM_NONCES = 16

:

always_ff @(posedge clk, negedge reset_n)

begin

if (!reset_n) begin

:

end else case (state)

:

endcase

end

endmodule

Testbench

Your Design

Can change this
parameter to try
smaller design

33

Implementing Parallelism

• Can implement “vectorization” like this (effectively doing SIMD
execution like a GPU).

• This will create 16 sets of A, B, … H registers and 16 sets of logic for
sha256_op, but under the same state machine control.

parameter NUM_NONCES = 16

logic [31:0] A[NUM_NONCES], B[NUM_NONCES], ..., H[NUM_NONCES];

always_ff @(posedge clk, negedge reset_n)

begin

if (!reset_n) begin

...

end else case (state)

IDLE:

...

COMPUTE: begin

...

for (int n = 0; n < NUM_NONCES; n++) begin

{A[n], B[n], ..., H[n]} <= sha256_op(A[n], B[n], ..., H[n], ...);

end

...

end

...

endcase

end

34

Implementing Parallelism

• Can also use module instantiation to create multiple instances of the
SHA256 unit.

parameter NUM_NONCES = 16

// INSTANTIATE SHA256 MODULES

genvar q;

generate

for (q = 0; q < NUM_NONCES; q++) begin : generate_sha256_blocks

sha256_block block (

.clk(clk),

.reset_n(reset_n),

.state(state),

.mem_read_data(mem_read_data),

...);

end

endgenerate

always_ff @(posedge clk, negedge reset_n)

begin

...

end

state

always_ff
sha256_

block
sha256_

block
.

sha256_
block

35

Optimization in Quartus

• In practice, these modes don’t always do what you want, so wait until
the end to try out different optimization modes.

36

Some Possible & Median Results

❑ Targeting Delay Only: effectively create 16 SHA256 units to work in parallel

❑ Targeting Area*Delay: effectively use one SHA256 unit to enumerate 16 nonces

Possible
Delay Only

Median
Delay Only

Possible
Area*Delay

Median
Area*Delay

#ALUTs 25,201 31,607 1,627 1,525

#Registers 19,432 20,932 1,230 2,076

Area 44,633 52,539 2,857 3,601

Fmax (Mhz) 182.55 134.01 179.21 151.92

#Cycles 225 242 2,201 2,252

Delay
(microsecs)

1.233 1.806 12.282 14.821

Area*Delay
(millisec*area)

55.012 94.877 35.089 53.369

37

