Lecture-14 : Packed/Unpacked Array, Memory Modeling

ECE-111
Vishal Karna

, UCSan Diego
Winter 2022 JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Packed and Unpacked Arrays

Packed Array Unpacked Array
Example : bit[2:0][7:0] A Example : bit[7:0] B[2:0]
[7:0] [7:0] [7:0] i

A[0] |[7[6|5]|4|3|2|1|0 \ Compiler might
allocate these three
7-bit vectors in non-

6/[5/4|3|2|1|0|7|6|5|4|3|2|1|0|7|6|5|4|3|2|1|0

2,
N
[)
\ 4
A

A

. 716|5(4|3|2|1]|0|+
A[1] A[0] — A[2:0] All] contiguous memory

A

v

[

') / location

A[2] |7|6|5/4|3|2|1{0

A[2:0]
\ J
{
Information is represented as a contiguous set of bits. [7:0]
Dimensions declared before variable name O Information may or may not be represented as

_ a contiguous set of bits. Looks like a RAM !!
Can be constructed with :

= of single bit data types (reg, logic, bit), d Dimensions declared after variable name
= enumerated types O Can be constructed with any data type:
= packed structures = of single bit data types (reg, logic, bit),
= packed arrays * enumerated types, user defined types
Examples : = packed structures, packed arrays, unpacked array
= bit [3:0] C; = 4 bit vector O Examples:
= |ogic [2:0] [7:0] A; = logic type 24 bit vector * |ogic[3:0] D [7:0][2:0]; = 2-dimension array of 4-bit vector

= bit [7:0] B [2:0]; = 1-dimension array of 8-bit vector °

Packed and Unpacked Arrays

Packed Array Unpacked Array
[Assigning values to packed arrays : Assigning values to unpacked arrays :
= Assigning constant value : = Assigning constant value :
* logic [7:0] P = 8'h24; * logic R[7:0] ='{0,0,1,0,0,1,0,0}; // unpacked array
* logic [1:0][3:0] Q =8'h24; * logic [1:0] S[3:0] = 8'h24; // mix of packed and

unpacked array

= Assigning the result of a replication operator
« logic [1:0][3:0] Q = {2{4'b1001}}; = Assigning the result of a replication operator
* logic [1:0] T[2:0] ="' {3{2'b11}}; // mix of packed and
unpacked array

= Assigning th It of tenati t
ssigning the result of a concatenation operator e logic V[1:0][2:0] = ' {2{'{1,0,1}}}; // unpacked array

* logic [1:0][3:0] Q ={4'h2, 4'h4};

= Assigning the result of a concatenation operator

d Use packed arrays to model « logic [1:0] T[2:0] = “ {{2'b11}, {2'b10}, {2'b01}}; // mix
= Vectors of 1-bit types, e.g., logic of packed and unpacked array
= \lectors where it is useful to access subfields * logic V[1:0][2:0] ="' {'{1,0,1}, '{0,1,1}}; // unpacked

J Use unpacked arrays to model
= Arrays accessed one element at a time, e.g., RAM
= Arrays of byte, int, real, etc.

Packed and Unpacked Arrays

Declaration of Packed and Unpacked Array Indexing Packed and Unpacked Array
An 8-bit vector An ! T T T T T 9 7 o
reg [7:0} Areg; eg| ¢ ¢ 4] 1l declaration: reg [7:0] Areg; T
Areg {7:53 i3 4 i
7]] o
| 7]
A memory of 8 one-bit elements Amem : .
reg Amern [7:0]; : # declaration: reg Amem {7:0}; Amem
: — Amem [3] i}
L o]
0 3 0 3
7 7
i A two-dimensional memory of one-bit elements Bmem It declaration: req Bmem [7:0%0:3 Bmem
reg Bmem [7:0] [0:3]; Bmem 121 11] [7:0%0:3}
0 0
7 0 7 0
0
{1 A memory of four B-bit words : i /I declaration: reg{7:0] Cmem [0:3}
reg [7:0] Cmem[0:3]; Cmem ' Cmem [1][6 -: 4]
3
/! A two-dimensional memaory of 3-bit elements A . N0
reg[2:0] Dmem {0:3] [0:4]; g ::Z{r::;agglufzr;. reg [2:0] Dmem [0:3][0:4]
Dmem

Figure 3.16 Array Addressing and Seiectic;n
Figure 3.8 Array structures 8 ¥ £

any veclor
operation can
be performed on
packed arrays

Packed and Unpacked Arrays

Referencing packed arrays

A packed array can be referenced as a whole, as bit-selects, or as
part-selects. Multidimensional packed arrays can also be referenced
in slices. A slice is one or more contiguous dimensions of an array.

logiec [3:0](7:0] data; // 2~D packed array

wire [31:0] out = data; // whole array
wire sign = data[3][7]; // bit-select
wire [3:0] nib = data [0]{3:0]; // part-select

byte high byte; ‘
agsign high _byte = data[3}; // 8~bit slice

logic [15:0] word;
assign word = datafl;0]}; // 2 slices

Operations on packed arrays

Because packed arrays are stored as vectors, any legal operation
that can be performed on a Verilog vector can also be performed on
packed arrays. This includes being able to do bit-selects and part-
selects from the packed array, concatenation operations, math oper-
ations, relational operations, bit-wise operations, and logical opera-
tions.

logic [3:0][15:0]) a, b, result; // packed arrays

result = {3 << 1) + b;

Indexing arrays of arrays

unpacked When indexing arrays of arrays, unpacked dimensions are refer-
dimensions are enced first, from the left-most dimension to the right-most dimen-
indexed before cio, packed dimensions (vector fields) are referenced second, from
dimgnasc;g?g the left-most dimension to the right-'most dimension. 'Figure'S-S
illustrates the order in which dimensions are selected in a mixed

packed and unpacked multi-dimensional array.

Figure 5-5: Selection order for mixed packed/unpacked multi-dimensional array

logie [3:0][7:0] mixed array {0:7]1(0:7]1[0:7};

et

mixed_array [0] [1] [21 (3] [4] = 1'bl;
J

Memory Modeling

[When modeling memory in SystemVerilog code, one can either use:

Dedicated registers (flipflops) within each ALUT inside FPGA
OR
Embedded memory IP’s, such as Block Rams, available inside FPGA

d Memory modeling using flipflops inside ALUT vs using Embedded Memory

Memory modeled using flipflops inside ALUT reduces design performance and utilizes more
area

Flipflops inside ALUT to model memory should be used when all embedded memory
resources are used

Embedded memory IP’s within FPGA are optimized for speed and area.

Embedded Memory IP is known as Block Ram

Synthesizer will generate messages whenever it infers embedded memory IP resources
Memory modeled using logic cells is know as Distributed Ram

Synthesizer tool should be instructed to use embedded memory for RAM modeling,
otherwise it will use flipflops within ALUT's

Memory Modeling

(] Altera FPGA devices has various types of Memory IP cores

= Based on SystemVerilog memory modeling style and if auto option RAM replacement feature
set in synthesizer settings, synthesizer will select appropriate embedded memory IP to meet
speed, area, power targets

= With Auto option, synthesizer will favor larger block ram’s to fit entire memory inside single
embed memory block.

o This gives the best performance and requires no logic elements (LEs) for glue logic !

Table 1. Memory IP Cores and Their Features
Memory IP Supported Memory Features
Mode
RAM: 1-PORT Single-port RAM « Non-simultaneous read and write operations from a single address.

« Read enable port to specify the behavior of the RAM output ports during
a write operation, to overwrite or retain existing value.

e Supports freeze logic feature.

RAM: 2-PORT Simple dual-port RAM | « Simultaneous one read and one write operations to different locations.
e Supports error correction code (ECC).
e Supports freeze logic feature.

True dual-port RAM e Simultaneous two reads.
e Simultaneous two writes.
« Simulatenous one read and one write at two different clock frequencies.
e Supports freeze logic feature.
ROM: 1-PORT Single-port ROM e One port for read-only operations.

« Initialization using a .mif or .hex file.

ROM: 2-PORT Dual-port ROM e Two ports for read-only operations.
e Initialization using a .mif or .hex file.

Embedded Memory Blocks in Intel Altera FPGA Devices

Table 4. Embedded Memory Blocks in Intel FPGA Devices
Device Family Memory Block Type
""‘;‘i“ts{}ﬁ"" M9K (9 Kbits) ““:'{‘;'i‘t:;“ M10K (10 Kbits) “i?:ti}z“ L"?:_“c‘;""
Arria® II GX Yes Yes - - - Yes
Arria II GZ Yes Yes Yes = = Yes
Arria V Yes - - Yes = Yes
Intel Arria 10 Yes - - - Yes Yes
Cyclone® IV - Yes - - - Yes
Cyclone V Yes - - Yes - Yes
Intel Cyclone - Yes - - - Yes
10 LP
Intel Cyclone Yes - - - Yes Yes
10 GX
MAX® 11 - - - - - Yes
Intel MAX 10 - Yes - - - Yes
Stratix IV Yes Yes Yes - - Yes
Stratix V Yes - - - Yes Yes
Note: To identify the type of memory block that the software selects to create your memory,

refer to the Fitter report after compilation.

10

Single Port Distributed RAM with Asynchronous Read

// Single-port Distributed RAM with Asynchronous Read
module single_port_distributed _ram_modell #(

parameter DATA_WIDTH~4, //width of data bus

parameter ADDR_WIDTH=4 //width of addresses buses)(& <<Filter>>
input logic clk, // clock

. . o . R Resource Usage
input logic wr_en, // '1' indicates write and '0' indicates read —

. . . . 1 ¥ Estimated ALUTs Used: 36
input logic[DATA_WIDTH-1:0] write_data, //data to be written to memory b AL UTs 26
input logic[ADDR_WIDTH-1:0] addr, //address for write or read operation - Memory ALUTS

output logic[DATA_WIDTH-1:0] read_data //read data from memory);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

- LUT_REGs

Dedicated logic registers 64

NN

4 v Estimated ALUTs Unavailable 0
// Synch ronous write 1 -- Due to unpartnered combinatignal logic 0
always_ff@(posedge clk) begin 2 — Due to Memory ALUTS 0
if(wr_en) mem[addr] <= write_data; 2
end 5] Total combinational functio 36
Since address is not registered for read, Indicates distributed memory model was
synthesizer will not able to map memory implemented
// asynchronous read model to internal embedded block ram IP.
assign read_data = mem[addr]; Instead will use ALUT’s and dedicated logic

Synthesizer indicates that Block

endmodule: registers and create distributed RAM .
Ram IP was *not* inferred

instances of uninfTerre
© 286030 Timing-Driven Synthesis 1s running

©® 16010 Generating hard_block partition "hard_block:auto_generated_inst"
i]

i]

21057 Implemented 114 device resources after synthesis - the final resource count might be different 11
Quartus Prime Analysis & Synthesis was successful. 0 errors, 2 warnings

Single Port Block RAM with Asynchronous Read
// Single-port Block RAM with Asynchronous Read

module single_port_block_ram_model2 #(& <<Filter>>
parameter DATA_WIDTH=4, //width of data bus Resource Usage
parameter ADDR_WIDTH=4 //width of addresses buses)(¥ | Ectimated ALUTs Used
inPUt Iogic clk, // clock / -- Combinational ALUTs
input logic wr_en, // '1' indicates write and '0' indicates read : __ Memory ALUTS

input logic[DATA_WIDTH-1:0] write_data, //data to be written

input logic[ADDR_WIDTH-1:0] addr, //address for write or read operation
output logic|[DATA_WIDTH-1:0] read_data //read data from memory);
// Two dimensional memory array

— LUT_REGs

Lo I v S o R s B

Dedicated logic registers

3
2
3
4 v Estimated ALUTs Unavailable
1
2
5
5]

0
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0]; Due to unparmered combinational 0
logic[ADDR_WIDTH-1:0] read_addr_t; - Due to Memory ALUTS 0
// SynChronous write Total combinational functions 0

always_ff@(posedge clk) begin
if(wr_en) mem[addr] <= write_data;
read addr t = addr; , Since address is registered for read,

n n Synthesizer will map memory model

to internal embedded block ram IP.

Dedicated logic register and ALUT count is O
since Synthesizer mapped SystemVerilog code
to embedded Block Ram

end

Message from synthesizer
“1 megafunctions from design logic”
indicates that Block Ram IP was inferred
for given SystemVerilog model

// asynchronous read
assign read_data = mem[read_addr_t];
endmodule

megatunctions esign
0 | megatunction instantiation "altsyncram:mem_rt]_0"
© 12133 Instantiated megafunction "altsyncram:mem_rtl_0" with the following parameter:
© 12021 Found 1 design units, including 1 entities, in source file db/altsyncram_emal. tdf

12

1 Single-Port Embedded Block RAM

Post Synthesis and Mapping Schematic

em

1'ho

write_data[3..0] [

wr_en| >

1T'h1]

addr[3.0] [L———

ck[>—

read addr_t[3..0]

CLKO
CLR1

DATAIN[3.0]

ENA1 DATAOUT[3.0]
RADDR[3.0]
WADDR[3..0]

WE

— > re

with Asynchronous Read

AL LSRRI IR

altsyncram_emaiawto_gensrated

ram_block1a0

D

= CLK

4 hg

SCLR

Embedded Block Ram already registers

SYNC_RAM

ackdri0L. e

=
EMAZ

arm ok a0 3]

al'ts

write damafiil. 3Hngs

PORTASDDRE.O] PORTADATAOUT

Read address hence post mapping netlist will
not show externally placed register (flipflop)
before read address port

Embedded Block Ram Cells_ _ __----

/ -

s

inferred by Synthesizer

PORTADATAIN
—PORTARE
PORTAMWE

p, R
4 ram_block1a1

y ®0
ENAZ

PORTASDDRE. O]
PORTADATAIN

PORTA DU TR

—PORTARE
PORTAMWE

P 4 HAM
L ram_block 1a2

L]
ENAZ

PORTASDDRE. O] PORTA DA TR

PORTADATAIN

—PORTARE

C = 'FIETAWE

~ RAM

ram_block 1a3

P
EMAZE

-

PORTAADDRE.O] PORTADATAOUT

PORTADATAIN
1Th1
—|PORTARE

PORTAWE

RAM

Simulation Result For Single-Port RAM with Asynchronous Read

(] Embedded Block RAM Simulation Result

| Wave - Default

-
£
£
Sl
+) 2 write_data 12
S
L SN L_EE:\ _::EEL_JD 1
h write t di
upon each write to memory, read is . . .
P , , , Y During read, data returned is immediate and also last
automatically available in next clock cycle . .
written data on this address

Read on addr=4, returns last value return which in 11

] Distributed RAM Simulation Result
ﬂ Wave - Default

v

U v e

pem 0 1 2 5 Ya- 5 Y6 Y7L Y8 Yo T T2 5[f4. 5 16

IDEEE 11 1 —¥s Y21 Y1 2 Ja 11 13 s 112
(14 ;{10) 20— 0013 14 Y0 i1 1 [fs

111 | ll ; IE 12

|+ |+ |+

i 10

|—|

upon each write to memory, read is automatically available Read on addr=4. returns last value return which in 11
however it is less than 1 cycle pulse since address changed

Single Port Distributed RAM & Block RAM with Synchronous Read

// Single-port Distributed RAM with Synchronous Read (Read // Single-port Block RAM with Synchronous Read (Read Through)

Through)
module single port_distributed _ram_model3 #(
parameter DATA_WIDTH=4,
parameter ADDR_WIDTH=4)(
input logic clk, rstn, // added reset
input logic wr_en,
input logic[DATA_ WIDTH-1:0] write_data,
input logiclADDR_WIDTH-1:0] addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array

logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write and read
always_ff@(posedge clk) begin
if(wr_en) mem[addr] <= write_data;

module single_port_block_ram_model4 #(
parameter DATA_WIDTH=4,
parameter ADDR_WIDTH=4

)
input logic clk,
input logic wr_en,
input logic[DATA_ WIDTH-1:0] write_data,
input logiclADDR_WIDTH-1:0] addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write and read
always_ff@(posedge clk) begin
if(wr_en) mem[addr] <= write_data;

if(!rstn) read_data <= 0;* read_data <= mem[addr];
else read_data <= mem[addr]; end
end endmodule
endmodule
Distributed Memory model with reset for read data output This Memory model will infer embedded Block Ram

Memory will have
Synchronous read
behavior

are only mappable onto distributed RAM. No with Synchronous Read

Embedded Block Ram inferred by Synthesizer

Post Synthesis and Mapping Schematic
1 Single-Port Distributed Block RAM with Asynchronous Read (Read Through)

rstn D

0

4'h0 1

read data~[3..0]

D
= CLK Q
SCLR

4'h0]

clk
mem
CLKOD

Th0lc

write_data[3..0] D— DATAIN[3..0]

1'hl

addr[3..0] D—: RADDRI[3..0]
WADDR[3..0]

wr_en Di WE

ENAT DATAOUT[3..0]

|

SYNC_RAM

|

always_ff@(posedge clk) begin
if(!rstn) read_data <=0;
else read_data <= mem[addr];
end

Synthesizer will use logic cells, ALUTs and
dedicated registers to implement memory
model since embedded block RAM IP does not

support reset for read data output

read data[0]~reg[3..0]

read data[3..0]

Simulation Result For Single Port RAM with Synchronous Read
J Embedded Block RAM Simulation Result

ﬂ Wave - Default i

i

AAAA

+ 0+ |+

(s Yi4] Jool Ym[Y1 T s

During Worltf c;peratlo.n no read data available. During read operation, read data is sync to clock & available
nly data written to memory for 1 full clock and no write data committed to memory

(] Distributed RAM Simulation Result

m| Wave - Defauit i

£

T R E—
(© 13 4 Too T T [Os T2 Wi T Mo e [s [[
o } 3] Jas[Ysol Yaa[{3 [Y5

0

4+ |+

CALVAAA

-
| +

Same behavior has Block RAM. During write operation no read Same behavior as for Block RAM.
data available. Only data written to memory Read data sync to clock.

Simple Dual Port Single Clock RAM with Simultaneous Read and Write

// Simple Dual-port Single Clock Block RAM with Synchronous Read
module simple_dual_port_block_ram_model5 #(
parameter DATA_ WIDTH=4, parameter ADDR_WIDTH=4)
(
input logic clk,
input logic wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logiclADDR_WIDTH-1:0] write_addr,

Write data,
address, enable

W
Block Ram

altsyncram_n0q1:auto_generated

=]

clk~input

ram_block1a0

write_addr[0_3]~input

1'h1

LKO

—ENAZ

PORTAADDR[3..0]

write_data[0.3]~input

PORTADATAIN PORTBDATAOUT

wr_en~input

PORTAWE

read_addr[0.3]~input

rd_en-~input

PORTBADDR[3.0]
PORTBRE

Write Mappeq|

ram_block1a[0..3]

RAM
ram_block1a1

1'h1

LKO

—ENAZ2

PORTAADDR[3.0]
PORTADATAIN PORTBDATAOUT

ports
input logic rd_en,
input logic[ADDR_WIDTH-1:0] read_addr, Read data,
output logic[DATA_ WIDTH-1:0] read_data);| address, enable
ports

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

Simultaneous write
and read to different
memory location.
Write and read
operations in same
clock domain

// Synchronous write and read
always_ff@(posedge clk) begin
if(wr_en) mem[write_addr] <= write_data;
if(rd_en) read_data <= mem|[read_addr];
end
endmodule

Note: In case of same write and read address, model can return older
data on read_data port before writing new data to memory location

Read Mapped
to PortB of
Block Ram

PORTAWE
PORTBADDR[3..0]
PORTBRE

RAM
ram_block1a2

CLKO

1'h1|

ENAZ

PORTAADDR[3.0]
PORTADATAIN PORTBDATAOUT

PORTAWE

PORTBADDR[3..0]
PORTERE

RAM
ram_block1a3

CLKO

1h1|

ENAZ

PORTAADDR[3..0]
PORTADATAIN PORTBDATAOUT

PORTAWE

PORTBADDR[3..0]
PORTBRE

18

Simple Dual Port Single Clock RAM with Simultaneous Read and Write

: : Both Wri Read Enabl 7
0 Embedded Block RAM Simulation Result oth Write and Read Enables are set to

Simultaneous read and write operation to RAM on different addresses

sm| Wave - Default

| wses
£ dk |

(0 Y1, 02 Y3 Ja 05 Je)7 Y8 Yo [0 a1 Jip Y33 ¥i4 JJis

In case of simultaneous write and read operation to same address, RAM will prioritize write
operation over read. And there will be no data returned for read when write is being performed.

Simple Dual Port Dual Clock RAM with Simultaneous Read and Write

// Simple Dual-port Dual Clock Block RAM with Synchronous Read

altsyncram_

hOk1:auto_generated

=

ram_block1a0

CLKO

module simple_dual_port_block_ram_model6 #(

CLKT

1'h1

—EMAZ

parameter DATA_ WIDTH=4, parameter ADDR_WIDTH=4)(e

ENAZ

PORTAADDR[3.0]
PORTADATAIN

PORTAWE

input logic wr_clk, wr_en, Write clk. data
y ’

input logic[DATA_WIDTH-1:0] write_data, address, enable

input logiclADDR_WIDTH-1:0] write_addr, ports trite Mapped|
0 Por
I~~~
input logic rd_en, rd_clk, Block Ram

input logiclADDR_WIDTH-1:0] read_addr,
output logic[DATA_WIDTH-1:0] read_data);

. Read Mapped
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

to PortB of
Block Ram
always_ff@(posedge wr_clk) begin — i)
if(wr_en) mem[write_addr] <= write_data; Slmultaneou§ write
end and read to different

memory location.
Write and read
operations using
different clocks (wr_clk
and rd_clk)

always_ff@(posedge rd_clk) begin
if(rd_en) read_data <= mem|[read_addr];
end
endmodule

Note: Simple dual port dual clock memory typical usage is in
Asynchronous FIFO design used for clock domain crossing

1'h1

PORTEADDR[Z.0]

—PORTERE

PORTBDATAOUT

ram_block1a[l-3]

RAM
ram_block1al
CLKO
—CLKT
LI
ENA3
\ PORTAADDR[Z.0] PORTEDATAOUT
PORTADATAIN
PORTAWE
e PORTEADDR[Z.0]
Thly PORTERE
RAM
ram_block1a2
LKO
- LK1
LIS
ENA3
PORTAADDR[3.0] PORTEBDATAQUT
PORTADATAIN
PORTAWE
=t PORTBADDR[Z.0]
Thly PORTERE
RAM
ram_block1a3
CLKO
—CLKT
LI
ENA3
PORTAADDR[Z.0] PORTBDATAQUT
PORTADATAIN
PORTAWE
=i PORTEADDR[Z.0]
Thly PORTERE
RAM

20

True Dual Port Dual Clock RAM

//True Dual-port Block RAM with Dual Clock
module true_dual_port_block_ram_model7 #(
parameter DATA_ WIDTH=4, parameter ADDR_WIDTH=4)

(

BT

T

DO ST T S

ram_block1al

input logic[DATA_WIDTH-1:0] data_a,data b, | _ . . = e
input logicfADDR_WIDTH-1:0] addr_a, addr_b, ua P°rtB e S T
. . or " Uenas
input logic we_a, we b, rd a, rd b, clk_a, clk_b, \ 2 j~mput \tpzmmm_m
output logic[DATA_ WIDTH-1:0] q_a, q_b); e PORTADATAM PORTADATAOUT
L PORTARE PORTROATAOUT
| we_S~input
// Declare the RAM variable SRR A \.ﬂﬁfm_m
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0]; — PORTBDATAM
— PORTERE
. PORTEWE
// Port A = Simultaneous write RAM
always_ff@(posedge clk_a) begin and read from oo
if(we_a) mem[addr_a] <= data_a; different ports f S E-;r;
else if(rd_a) q_a <= mem[addr_a];]
end * Simultaneous two [:1 .
- reads from different PORTARE PORTEDATADUT
// Port B pOftS PORTAWE
always_ff@(posedge clk _b) begin :g:;:::;:“
if(we_b) mem[addr_b] <= data_b; = Simultaneous two PORTERE
else if(rd_b) q_b <= mem[addr_b]; . . D
end writes from different RAM
endmodule ports

21

