
Lecture-14 : Packed/Unpacked Array, Memory Modeling

ECE-111

Vishal Karna

Winter 2022

Packed and Unpacked Arrays

2

Packed and Unpacked Arrays

❑ Information is represented as a contiguous set of bits.

❑ Dimensions declared before variable name

❑ Can be constructed with :

▪ of single bit data types (reg, logic, bit),

▪ enumerated types

▪ packed structures

▪ packed arrays

❑ Examples :

▪ bit [3:0] C; → 4 bit vector

▪ logic [2:0] [7:0] A; → logic type 24 bit vector
3

Example : bit[2:0][7:0] A

[7:0]

A[0]A[1]A[2]

[7:0][7:0]

A[2:0]

Packed Array

Example : bit[7:0] B[2:0]

Unpacked Array

❑ Information may or may not be represented as
a contiguous set of bits. Looks like a RAM !!

❑ Dimensions declared after variable name

❑ Can be constructed with any data type:

▪ of single bit data types (reg, logic, bit),

▪ enumerated types, user defined types

▪ packed structures, packed arrays, unpacked array

❑ Examples :

▪ logic [3:0] D [7:0][2:0]; → 2-dimension array of 4-bit vector

▪ bit [7:0] B [2:0]; → 1-dimension array of 8-bit vector

A[2:0]

A[0]

A[1]

A[2]

[7:0]

Compiler might
allocate these three
7-bit vectors in non-
contiguous memory

location

Packed Array Unpacked Array

Packed and Unpacked Arrays

❑ Assigning values to packed arrays :
▪ Assigning constant value :

• logic [7:0] P = 8'h24;

• logic [1:0][3:0] Q = 8'h24;

▪ Assigning the result of a replication operator

• logic [1:0][3:0] Q = {2{4'b1001}};

▪ Assigning the result of a concatenation operator

• logic [1:0][3:0] Q = {4'h2, 4'h4};

❑ Use packed arrays to model
▪ Vectors of 1-bit types, e.g., logic

▪ Vectors where it is useful to access subfields

4

❑ Assigning values to unpacked arrays :
▪ Assigning constant value :

• logic R[7:0] = ' {0,0,1,0,0,1,0,0}; // unpacked array

• logic [1:0] S[3:0] = 8'h24; // mix of packed and
unpacked array

▪ Assigning the result of a replication operator

• logic [1:0] T[2:0] = ' {3{2'b11}}; // mix of packed and
unpacked array

• logic V[1:0][2:0] = ' {2{'{1,0,1}}}; // unpacked array

▪ Assigning the result of a concatenation operator

• logic [1:0] T[2:0] = ‘ {{2'b11}, {2'b10}, {2'b01}}; // mix
of packed and unpacked array

• logic V[1:0][2:0] = ' {'{1,0,1}, '{0,1,1}}; // unpacked

❑ Use unpacked arrays to model
▪ Arrays accessed one element at a time, e.g., RAM

▪ Arrays of byte, int, real, etc.

Packed and Unpacked Arrays

5

Indexing Packed and Unpacked ArrayDeclaration of Packed and Unpacked Array

Packed and Unpacked Arrays

6

Memory Modeling for FPGA

7

Memory Modeling
❑ When modeling memory in SystemVerilog code, one can either use:

▪ Dedicated registers (flipflops) within each ALUT inside FPGA

OR

▪ Embedded memory IP’s, such as Block Rams, available inside FPGA

❑ Memory modeling using flipflops inside ALUT vs using Embedded Memory
▪ Memory modeled using flipflops inside ALUT reduces design performance and utilizes more

area

▪ Flipflops inside ALUT to model memory should be used when all embedded memory
resources are used

▪ Embedded memory IP’s within FPGA are optimized for speed and area.

▪ Embedded Memory IP is known as Block Ram

▪ Synthesizer will generate messages whenever it infers embedded memory IP resources

▪ Memory modeled using logic cells is know as Distributed Ram

▪ Synthesizer tool should be instructed to use embedded memory for RAM modeling,
otherwise it will use flipflops within ALUT's

8

Memory Modeling
❑ Altera FPGA devices has various types of Memory IP cores

▪ Based on SystemVerilog memory modeling style and if auto option RAM replacement feature
set in synthesizer settings, synthesizer will select appropriate embedded memory IP to meet
speed, area, power targets

▪ With Auto option, synthesizer will favor larger block ram’s to fit entire memory inside single
embed memory block.
o This gives the best performance and requires no logic elements (LEs) for glue logic !

9

Embedded Memory Blocks in Intel Altera FPGA Devices

10

Single Port Distributed RAM with Asynchronous Read

11

// Single-port Distributed RAM with Asynchronous Read
module single_port_distributed_ram_model1 #(
parameter DATA_WIDTH=4, //width of data bus
parameter ADDR_WIDTH=4 //width of addresses buses)(
input logic clk, // clock
input logic wr_en, // '1' indicates write and '0' indicates read
input logic[DATA_WIDTH-1:0] write_data, //data to be written to memory
input logic[ADDR_WIDTH-1:0] addr, //address for write or read operation
output logic[DATA_WIDTH-1:0] read_data //read data from memory);
// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write
always_ff@(posedge clk) begin

if(wr_en) mem[addr] <= write_data;
end

// asynchronous read
assign read_data = mem[addr];

endmodule:

Since address is not registered for read,
synthesizer will not able to map memory

model to internal embedded block ram IP.
Instead will use ALUT’s and dedicated logic

registers and create distributed RAM
Synthesizer indicates that Block

Ram IP was *not* inferred

Indicates distributed memory model was
implemented

Single Port Block RAM with Asynchronous Read

12

// Single-port Block RAM with Asynchronous Read
module single_port_block_ram_model2 #(
parameter DATA_WIDTH=4, //width of data bus
parameter ADDR_WIDTH=4 //width of addresses buses)(
input logic clk, // clock
input logic wr_en, // '1' indicates write and '0' indicates read
input logic[DATA_WIDTH-1:0] write_data, //data to be written
input logic[ADDR_WIDTH-1:0] addr, //address for write or read operation
output logic[DATA_WIDTH-1:0] read_data //read data from memory);
// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];
logic[ADDR_WIDTH-1:0] read_addr_t;

// Synchronous write
always_ff@(posedge clk) begin
if(wr_en) mem[addr] <= write_data;
read_addr_t = addr;

end

// asynchronous read
assign read_data = mem[read_addr_t];

endmodule

Since address is registered for read,
Synthesizer will map memory model
to internal embedded block ram IP.

Message from synthesizer
“1 megafunctions from design logic”

indicates that Block Ram IP was inferred
for given SystemVerilog model

Dedicated logic register and ALUT count is 0
since Synthesizer mapped SystemVerilog code

to embedded Block Ram

Post Synthesis and Mapping Schematic

13

Embedded Block Ram already registers
Read address hence post mapping netlist will
not show externally placed register (flipflop)

before read address port

Embedded Block Ram Cells
inferred by Synthesizer

❑ Single-Port Embedded Block RAM with Asynchronous Read

Simulation Result For Single-Port RAM with Asynchronous Read

14

During read, data returned is immediate and also last
written data on this address
Read on addr=4, returns last value return which in 11

❑ Embedded Block RAM Simulation Result

❑ Distributed RAM Simulation Result

upon each write to memory, read is
automatically available in next clock cycle

upon each write to memory, read is automatically available
however it is less than 1 cycle pulse since address changed

Read on addr=4, returns last value return which in 11

Single Port Distributed RAM & Block RAM with Synchronous Read

15

// Single-port Distributed RAM with Synchronous Read (Read
Through)
module single_port_distributed_ram_model3 #(
parameter DATA_WIDTH=4,
parameter ADDR_WIDTH=4)(
input logic clk, rstn, // added reset
input logic wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logic[ADDR_WIDTH-1:0] addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write and read
always_ff@(posedge clk) begin

if(wr_en) mem[addr] <= write_data;
if(!rstn) read_data <= 0;
else read_data <= mem[addr];

end
endmodule

Memory model with reset for read data output
are only mappable onto distributed RAM. No
Embedded Block Ram inferred by Synthesizer

// Single-port Block RAM with Synchronous Read (Read Through)
module single_port_block_ram_model4 #(
parameter DATA_WIDTH=4,
parameter ADDR_WIDTH=4

)(
input logic clk,
input logic wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logic[ADDR_WIDTH-1:0] addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write and read
always_ff@(posedge clk) begin
if(wr_en) mem[addr] <= write_data;
read_data <= mem[addr];

end
endmodule

This Memory model will infer embedded Block Ram
with Synchronous Read

Distributed
Memory will have
Synchronous read

behavior

Post Synthesis and Mapping Schematic

16

Synthesizer will use logic cells, ALUTs and
dedicated registers to implement memory

model since embedded block RAM IP does not
support reset for read data output

❑ Single-Port Distributed Block RAM with Asynchronous Read (Read Through)

always_ff@(posedge clk) begin
if(!rstn) read_data <= 0;
else read_data <= mem[addr];

end

Simulation Result For Single Port RAM with Synchronous Read

17

❑ Embedded Block RAM Simulation Result

❑ Distributed RAM Simulation Result

During write operation no read data available.
Only data written to memory

During read operation, read data is sync to clock & available
for 1 full clock and no write data committed to memory

Same behavior has Block RAM. During write operation no read
data available. Only data written to memory

Same behavior as for Block RAM.
Read data sync to clock.

Simple Dual Port Single Clock RAM with Simultaneous Read and Write

18

// Simple Dual-port Single Clock Block RAM with Synchronous Read
module simple_dual_port_block_ram_model5 #(

parameter DATA_WIDTH=4, parameter ADDR_WIDTH=4)
(

input logic clk,
input logic wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logic[ADDR_WIDTH-1:0] write_addr,

input logic rd_en,
input logic[ADDR_WIDTH-1:0] read_addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write and read
always_ff@(posedge clk) begin
if(wr_en) mem[write_addr] <= write_data;
if(rd_en) read_data <= mem[read_addr];

end
endmodule

Write data,
address, enable

ports

Note: In case of same write and read address, model can return older
data on read_data port before writing new data to memory location

Read data,
address, enable

ports

Simultaneous write
and read to different

memory location.
Write and read

operations in same
clock domain

Read Mapped
to PortB of
Block Ram

Simple Dual Port Single Clock RAM with Simultaneous Read and Write

19

❑ Embedded Block RAM Simulation Result Both Write and Read Enables are set to ‘1’
Simultaneous read and write operation to RAM on different addresses

Only write operation to RAM during this period. Both write and read operation to RAM during this period.

In case of simultaneous write and read operation to same address, RAM will prioritize write
operation over read. And there will be no data returned for read when write is being performed.

Simple Dual Port Dual Clock RAM with Simultaneous Read and Write

20

// Simple Dual-port Dual Clock Block RAM with Synchronous Read
module simple_dual_port_block_ram_model6 #(
parameter DATA_WIDTH=4, parameter ADDR_WIDTH=4)(

input logic wr_clk, wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logic[ADDR_WIDTH-1:0] write_addr,

input logic rd_en, rd_clk,
input logic[ADDR_WIDTH-1:0] read_addr,
output logic[DATA_WIDTH-1:0] read_data);

logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

always_ff@(posedge wr_clk) begin
if(wr_en) mem[write_addr] <= write_data;

end

always_ff@(posedge rd_clk) begin
if(rd_en) read_data <= mem[read_addr];

end
endmodule

Write clk, data,
address, enable

ports

Note: Simple dual port dual clock memory typical usage is in
Asynchronous FIFO design used for clock domain crossing

Read clk, data,
address, enable

ports

Simultaneous write
and read to different

memory location.
Write and read

operations using
different clocks (wr_clk

and rd_clk)

Read Mapped
to PortB of
Block Ram

True Dual Port Dual Clock RAM

21

//True Dual-port Block RAM with Dual Clock
module true_dual_port_block_ram_model7 #(
parameter DATA_WIDTH=4, parameter ADDR_WIDTH=4)

(
input logic[DATA_WIDTH-1:0] data_a, data_b,
input logic[ADDR_WIDTH-1:0] addr_a, addr_b,
input logic we_a, we_b, rd_a, rd_b, clk_a, clk_b,
output logic[DATA_WIDTH-1:0] q_a, q_b);

// Declare the RAM variable
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Port A
always_ff@(posedge clk_a) begin
if(we_a) mem[addr_a] <= data_a;
else if(rd_a) q_a <= mem[addr_a];

end

// Port B
always_ff@(posedge clk_b) begin
if(we_b) mem[addr_b] <= data_b;
else if(rd_b) q_b <= mem[addr_b];

end
endmodule

Dual PortA and
PortB

▪ Simultaneous write
and read from
different ports

▪ Simultaneous two
reads from different
ports

▪ Simultaneous two
writes from different
ports

