
Lecture-15 & 16 : Timing and Synchronization

ECE-111

Vishal Karna

Winter 2022

Timing and Synchronization

2

Timing
❑ What limits speed of a circuit ?

▪ Speed limited by the time data takes to get from one register (Flip Flop) to another

▪ State machines and pipeline data stages

❑ What is the bottleneck ?
▪ Combinational logic delay

▪ Routing delay

▪ Clock skew and delay

▪ FlipFlop (FF) setup and hold time requirements

3

Timing
❑ Combinational Delay

▪ Time taken by signal to propagate through gates

▪ More gates, then higher combinational delay which will result in slower performance

▪ FPGA doesn’t have “gates” instead it has N-input LUTs (look-up-tables)

▪ All functions of 4 inputs or less are the same speed however with n >4 inputs there are more
CLB’s hook up increasing routing delay

❑ Routing Delay

▪ FPGA wiring slow compared to ASIC

▪ Lots of switches to go through

▪ Wires don’t go exactly where you want

▪ Routing can be ~50% of total delay (requires Manual placement to reduce routing delay)

4

Clock Skews
❑ Static variation in time of arrival of the clock edge at the different FlipFlops

▪ If not accounted for, can lead to erroneous behavior.

▪ Reason for clock skews :

o clock wires have delay

o circuit is designed with a different number of clock buffers from the clock source to the various
clock loads, or

o buffers have unequal delay

▪ All synchronous circuits experience some clock skew:

o more of an issue for high-performance designs operating with very little extra time per clock cycle.

▪ To control clock skew

o Careful clock distribution. Equalize path delay from clock source to all clock loads by controlling
wires delay and buffer delay.

o Don’t “gate” clocks.

▪ FPGA Structure: very regular, “easy” distribution

▪ ASIC: Random logic, different skews is common

5

clock skew, delay in distribution

FlipFlop Timing

❑ Setup Time :

▪ Minimum amount of time the synchronous
input (D) must be stable before the active edge
of the clock

❑ Hold Time:

▪ Minimum amount of time the synchronous
input (D) must be stable after the active edge
of the clock

❑ Note : If Setup or Hold time is violated, the FF
output will be metastable (neither 1 or 0) 6

❑ Clock-to-Q (Tclk->Q)

▪ Time it takes for the Flipflop output to be in
a stable state after a clock edge occurs

▪ If output is sampled before Tclk->Q delay
then Q is not guaranteed to be correct
value

FlipFlop Metastability

7

❑ Every flip-flop (FF) used in any design has a specified setup and hold time, or the time in which the data
input is not legally permitted to change before and after a sampling clock edge.

❑ If some input (say d in Figure above) violates the setup and hold time of a FF, the output of the FF (q in
Figure above) keeps oscillating for an indefinite amount of time.

❑ This unstable value may or may not non-deterministically converge to a stable value (either 0 or 1) before
the next sampling clock edge arrive. Flip-Flop enters state metastability

❑ Meta-stability is a probabilistic phenomenon. It cannot be completed eliminated !

MTBF

8

❑MTBF is Mean time between failure

❑MTBF gives us information on how often a particular element will fail or in other words, it gives
the average time interval between two successive failures.

❑For a Flip Flop we can compute its MTBF, which is a figure of merit related to metastability

❑MTBF of a flip-flop is shown below :
▪ It is a function of source clock frequency and frequency of incoming data (data rate)

FF1 FF2

FlipFlop Timing

❑ Sample data using clock

❑ Hold data between clock cycles

❑ Computation (and delay) occurs between
registers

9

❑ Max Frequency of operation of above mentioned circuit is : Fmax = 1 / T
▪ T >= Tclk→Q + TCL_max + Tsetup (Circuit will fail, need to consider clock skew, Tskew)
▪ T >= Tclk→Q + TCL_max + Tsetup + Tskew

▪ Note: Tsetup is for FF2, Tclk→Q is for FF1 and TCL_max is max propagation delay of combinational logic

❑ DFF values: Tclk→Q =1ns, Tsetup =1ns, Thold =1ns, Tskew =max 2ns, TCL_max =10ns, TCL_min =1ns
▪ 1 + 10 + 1 + 2 <= T (Clock Period) >= 1 + 10 + 1 + 2 = 14ns, Fmax = 71Mhz -This is the max path timing constraint
▪ Longest delay path is called as critical path
▪ MaxPath timing constraint violations can be addressed by slowing down the clock after the circuit is

implemented

FlipFlop Timing

10

❑ Min path timing constraint : Now, what happens when the same clock edge is considered at the far DFF.
▪ Tclk→Q + TCL_min >= Tskew + Thold (1 + 1 >= 2 + 1)
▪ The new value from FF1 can get there so fast that when the clock arrives the new value may change before it

has been latched in to FF2. This is known as Hold-Time Violation.
▪ Min path timing constraint cannot be fixed by slowing down the clock

FF1 FF2

Clock Domain

❑ What is a Clock Domain ?
▪ Clock Domain is that portion of a circuit that is generated and processed by a single clock

▪ In diagram below, there are 4 clock domains in design top module

▪ Flipflops in each clock domain operate on a separate clock

▪ All 4 clocks can be of different frequency, out of phase and asynchronous to each other
11

always@(posedge
clock1)

alway@(posedge
clock2)

always@(negedge
clock3)

always@(posedge
clock4)

Asynchronous
External

Inputs

External
Outputs

Design Top Module

Design with 4 clock domains

FlipFlops operate on clock2

FlipFlops operate on clock4

FlipFlops operate on clock3

FlipFlops operate on clock1

Clock Domain Crossing (CDC)

❑ What is Clock Domain Crossing (CDC) ?
▪ Signal travels from one clock domain to another clock domain

▪ CDC takes place anytime the inputs to a given flipflop were set based upon some other clock

▪ In example above signal generated from FF operating on clock1 travels and arrives at the flipflop
inputs which is operating on clock2→ Signal crossed clock domains

12

always@(posedge
clock1)

alway@(posedge
clock2)

always@(negedge
clock3)

always@(posedge
clock4)

Asynchronous
External

Inputs

External
Outputs

Design Top Module

Design with 4 clock domains

FlipFlops operate on clock2

FlipFlops operate on clock4FlipFlops operate on clock3

FlipFlops operate on clock1

Signal generated in Clock1
domain travels and arrives
at FF input in Clock2
domain

What is the issue when signal crosses clock domains ?

❑ Synchronization failure that occurs when a signal (adat) generated in one clock domain (aclk) is
sampled too close to the rising edge of a clock signal (bclk) from a second clock domain.

❑ adat does not meet setup time requirement for FF2 hence output of FF2 (bdat1) goes metastable

▪ output (bdat1) going metastable and not converging to a legal stable state by the time the output
must be sampled again.

13

FF1 FF2

Synchronization Techniques

❑ Open-loop and Close-loop Synchronization

❑ For Single-bit control signal synchronization :

▪ 2-FF or 3-FF Synchronizer (open-loop)

❑ For Multi-bit data bus synchronization :

▪ Handshake Mechanism (closed loop)

▪ Asynchronous FIFO (open loop)

14

2-FlipFlop Synchronizer to Address Metastability

❑ First flipflop (FF1) samples the asynchronous input signal into the new clock domain (bclk)

❑ Waits for full clock cycle to permit any metastability on the synchronizer stage-1 output signal (bq1_dat) to
decay, then the stage-1 signal is sampled by the same clock(bclk) into a second stage flipflop (FF2)

❑ The stage-2 signal (bq2_dat) is now a stable and valid signal synchronized and ready for distribution within the
new clock domain

15

Note : Multi-Flop synchronizers allow
sufficient time for the oscillations to
settle down and ensure that a stable
output is obtained in the destination
domain

Signal Crossing Slow Clock Domain to Fast Clock Domain

❑ If the transition on signal A happens very close to the active edge of clock C2, it could lead to setup or hold
violation at the destination flop "FB“ and “FB” will enter metastable state.

❑ Output signal B from FA will be unstable and may or may not settle down to some stable value before the next
clock edge of C2 arrives

❑ Unstable signal B fanout cones may read different values, and may cause the design to enter into an unknown
functional state, leading to functional issues in the design

❑ To address such slow to fast clock domain crossing scenario, two or three flipflop synchronizer can be used !

16

❑ Scenario -1 : Flipflop-A clock frequency < Flipflop-B clock frequency

2-FlipFlop Synchronizer For Slow to Fast Clock Domain

❑ CLK-A frequency is slower than CLK-B

❑ Din entering into CLK-B domain goes through
2-FF synchronizer stage (FF1, FF2)

❑ 2-FF synchronizer will operate on receiving
clock which is CLK-B

❑ Even if Din changes close to CLK-B clock edge
violating setup violation of FF1, causing
metastable output Ds, output of second stage
of synchronizer (FF2) will be stable.

❑ If Din changes fast and frequently, sometimes
2-FF synchronizer is not enough for metastable
output to settle. In such cases 3rd FF can be
added (i.e.3-FF synchronizer)

17

FA FF1 FF2 FB

2-FF Synchronizer

2-FlipFlop and 3-FlipFlop Synchronizer

18

2-FF
Synchronizer

2-FF Synchronizer

3-FF Synchronizer

❑ Synchronizers must be designed to reduce the
chances system failure due to metastability

❑ Synchronizer requirements
▪ Reliable [high MTBF]
▪ Low latency [works as quickly as possible]
▪ Low power/area impact

❑ For some designs 3-FF synchronizer might be
required if source frequency is high and input
data is changing fast

❑ Can increase MTBF by adding more series
stages
▪ 3-FF synchronizer can have higher MTBF

Signal Crossing Fast Clock Domain to Slow Clock Domain

19

❑ Scenario-2 : Flipflop-A clock frequency > Flipflop-B clock frequency

❑ C1 is two times faster than C2 and there is no phase difference between C1 and C2

❑ If signal A is changing rapidly, say for example signal A sequence is "00101111", output from FB in C2 clock
domain will be "0011".

▪ Here the third data value in the input sequence which is "1" is lost

▪ For some circuits data loss is not acceptable

❑ Two or three Flipflop synchronizer technique will not able to address data loss, instead it will require storage
between FA and FB !

▪ Asynchronous FIFO (First in First Out) can be used between FA and FB with correct FIFO depth to address data
loss

2-FF Synchronizer for Signal crossing Fast Clock to Slow Clock Domain

20

❑ Consider, signal crossing from source clock domain ClkA to Destination ClkB domain where ClkA is faster than ClkB

❑ ClkA is 200 Mhz and Clk B is 166 MHz

❑ Signal is Crossing Fast to Slow clock domain through 2-FF synchronizers (FF1 and FF2)

❑ Adding 2-FF or 3-FF synchronizer will still result in data loss when signal crossed fast to slow clock domain as seen
in the waveform above

❑ If source signal “din” width entering FF1 can be guaranteed to be 1.5 times of receiving clock ClkB then 2-FF or 3-FF
synchronizer still can be used for signals crossing fast to slow clock domain

❑ If source signal cannot be guaranteed to 1.5 times of receiving clock and if the data loss is not acceptable for
subsequent circuit in destination clock domain then 2-FF or 3-FF open ended synchronization technique should
not be deployed !

FF1 FF2FA

din

Handshake Synchronizer For Multi-bit Signal Crossing Fast to Slow Clock Domain

21

❑ For many open-ended data-passing applications, a simple two-line handshaking sequence is sufficient

❑ The sender places data onto a data bus (data_o) and then synchronizes a "req_o" signal (request) to the
receiving clock domain.

❑ When the "req_o" signal is recognized in the destination clock domain, the receiver clocks the data_o into a
register (the data should have been stable for at least two/three sampling clock edges in the destination
clock domain)

❑ Receiver then passes an "ack_o" signal (acknowledgement) through a synchronizer to the sender.

❑ When the sender recognizes the synchronized "ack_o" signal, the sender can change the value being driven
onto the data bus (data_o)

_o

Sender Receiver

Register Output Before Signal Crosses Clock Domain

22

❑ Avoid any combinational logic between the launching flop and synchronizer, this will affect
the MTBF of the synchronizer.

❑ It can also cause glitches if not handled carefully.

❑ Add a register after combinational logic if it can be avoided, to prevent glitch’s entering
another clock domain

2-FF and 3-FF Synchronizer Code

23

module ff_sync_2(
input logic clk, reset,
input logic d,
output logic q);

logic ff1;
always_ff@(posedge clk, posedge reset) begin

if(reset == 1) begin
q <= 0;

end
else begin

ff1 <= d;
q <= ff1;

end
end
endmodule: ff_sync_2

module ff_sync_3(
input logic clk, reset,
input logic d,
output logic q);

logic ff1, ff2;
always_ff@(posedge clk, posedge reset) begin

if(reset == 1) begin
q <= 0;

end
else begin

ff1 <= d;
ff2 <= ff1;
q <= ff2;

end
end
endmodule: ff_sync_3

❑ 2FF and 3FF synchronizer can be built using shift register

What is a FIFO ?

❑ FIFO means First-In First-Out

▪ A FIFO is a structure used in hardware or software application when one needs
to buffer data

▪ FIFO is a queue, with first data in comes out first

▪ FIFO contains memory structure to store incoming data

24

FIFO Concepts

25

0
1
2
3
4
5
6
7

wr_ptr = 0 rd_ptr = 0

Figure-A

FIFO EMPTY

E1
E2
E3

0
1
2
3
4
5
6
7

wr_ptr = 3

rd_ptr = 0

Figure-B

3 data elements written
0 read data performed

❑ FIFO is implemented using a circular memory buffer to store data element

❑ FIFO has a write pointer and read pointer in order to write data to the current memory address and read
data from the memory address

❑ The maximum number of elements that can bed stored inside FIFO memory is known as the FIFO depth

❑ Each element inside FIFO memory can be 1 or more number of bits. It is known as DATA WIDTH

❑ In Figure-A, since write pointer (wr_ptr) and read pointer (rd_ptr) is pointing to same address location.
This means FIFO is empty

❑ In Figure-B, write pointer has advanced and it is pointing to memory address location ‘3’. It means three
data elements E1, E2, E2 were pushed into the FIFO. Since read pointer is pointing to 0th address location,
it means no data has been popped (read) out of FIFO yet.

FIFO has 3 data
elements E1, E2
and E3 which are
not read out yet.
No data element
read out yet

FIFO has 5 empty
locations to write
Address ‘3’ until ‘7’

FIFO Concepts

26

E1
E2
E3

0
1
2
3
4
5
6
7

wr_ptr = 3

rd_ptr = 0

Figure-B

3 data elements written
0 read data performed

❑ In Figure-C, write pointer has advanced and it is pointing to memory address location ‘7’

▪ It means 4 new data elements E4, E5, E6, E7 were pushed into the FIFO.

❑ In Figure-C, read pointer has advanced to address location ‘1’

▪ it means data from address location ‘0’ which was E1, was read out from the FIFO memory

▪ Remember, E1 was the first data entered into the FIFO and now the first data to exit

E2
E3
E4
E5
E6
E7

0
1
2
3
4
5
6
7wr_ptr = 7

rd_ptr = 1

Figure-C

4 more data elements written
1 data read performed

FIFO has 6 data
elements E2, E3,
E4, E5, E6, E7
which are not read
out yet.
Only data element
E1 was read out.FIFO has 2 empty

locations to write
Address ‘0’ and ‘7’

FIFO Concepts

27

❑ In Figure-D, write pointer has advanced and it has wrapped around to point to location ‘1’

▪ It means 2 new data elements E8, E9 were pushed into the FIFO.

▪ FIFO write pointer was able to wrap around since there were 2 new elements were to be
pushed into FIFO. Location ‘7’ was available and location ‘0’ was freed up since E1 data from
location ‘0’ was read out previously.

▪ Since write and read pointers can wrap around, FIFO memory is known as circular buffer

❑ In Figure-D, read pointer has advanced to address location ‘d’

▪ It means data from address location ‘1’ and ‘2’ which were E2 and E3 were read out

E2
E3
E4
E5
E6
E7

0
1
2
3
4
5
6
7wr_ptr = 7

rd_ptr = 1

Figure-C

4 more data elements written
1 data read performed

E9

E4
E5
E6
E7
E8

0
1
2
3
4
5
6
7

wr_ptr = 1
after wrap

around rd_ptr = 3

Figure-D

2 more data elements written and write
pointer wrapped around
2 data read performed

FIFO has 2 empty
locations to write
Address ‘1’ and ‘2’

FIFO has 2 empty
locations to write
Address ‘0’ and ‘7’

Location ‘0’ is
overwritten with
new data E9

So far 3 data
elements read out.
E1, E2 and E3

FIFO Concepts

28

❑ FIFO Full and FIFO Empty can look the same !

▪ In Figure-A and Figure-E, both wr_ptr and rd_ptr are pointing to same location ‘0’

▪ Pointing to same address location does not always mean that FIFO is empty

❑ To determine if FIFO is empty or FIFO is full, additional information is required to differentiate

▪ Typically additional address bit is added to the MSB of write and read pointers

▪ If FIFO_DEPTH = 8, then wr_ptr and rd_ptr width is 3 bit each

▪ In such case, 4th bit is added to wr_ptr and rd_ptr. This is called as a “wrap” around bit

❑ FIFO is Empty if (wr_ptr[3:0] == rd_ptr[3:0])

▪ Wrap around MSB bit of write and read pointer and remaining bits have same value

❑ FIFO is Full if ((wr_ptr[3] != rd_ptr[3]) && (wr_ptr[2:0] == rd_ptr[2:0]))

▪ MSB wrap around bit’s or write and read pointer are different and remaining bits are same

E1
E2
E3
E4
E5
E6
E7
E8

0
1
2
3
4
5
6
7

wr_ptr = 0
after

writing 8
data

elements
and wrap

around

rd_ptr = 0

Figure-E

FIFO FULL

0
1
2
3
4
5
6
7

wr_ptr = 0 rd_ptr = 0

Figure-A

FIFO EMPTY

FIFO Concepts

29

❑ Both Figure-E and Figure-F represents FIFO Full Condition

▪ In Figure-A and Figure-E, both wr_ptr and rd_ptr are pointing to same address locations

▪ In Figure-A, 8 data elements were written and 0 were read out. Hence FIFO is full as max occupancy in
FIFO memory is 8

▪ In Figure-F, 10 data elements were written and 2 were read out. Hence FIFO is full as max occupancy in
FIFO memory is 8

▪ In Figure-E, wr_ptr = 4’b1000 and rd_ptr = 4’b0000

• FIFO_FULL = 1, since (wr_ptr[3] != rd_ptr[3] && wr_ptr[2:0] == rd_ptr[2:0])

▪ In Figure-F, wr_ptr = 4’b1010 and rd_ptr = 4’b0010

• FIFO_FULL = 1, since (wr_ptr[3] != rd_ptr[3] && wr_ptr[2:0] == rd_ptr[2:0])

E1
E2
E3
E4
E5
E6
E7
E8

0
1
2
3
4
5
6
7

wr_ptr = 0
after

writing 8
data

elements
and wrap

around

rd_ptr = 0

Figure-E

FIFO FULL

E9
E10
E3
E4
E5
E6
E7
E8

0
1
2
3
4
5
6
7

wr_ptr = 2
after

writing 10
data

elements
and wrap

around

rd_ptr = 2

Figure-F

FIFO FULL

FIFO Concepts

30

❑ FIFO Full and FIFO Empty differentiation using MSB bit (wrap around Bit)
▪ Note : waddr and raddr in diagram is same as write and read pointers (wr_ptr and rd_ptr)

▪ Below mentioned example is with FIFO_DEPTH -16 with raddr and waddr have 5 bits each

• MSB bit position waddr[4] and raddr[4] is the wrap around bit to differentiate between full and empty
condition. Hence FIFO depth is still 2 ^ 4 = 16 and not 2 ^ 5 = 32.

• In another words, only 16 data elements can be stored in FIFO Memory since MSB bit 4 is a wrap around bit

Credit : Clifford E. Cummings

FIFO Concepts

31

❑ Both Figure-A and Figure-G represents FIFO Empty Condition

▪ In Figure-A and Figure-G, both wr_ptr and rd_ptr are pointing to same address locations

▪ In Figure-A, 0 data elements were written and 0 were read out. Hence FIFO is empty since all 8
locations in FIFO memory are available to be written

▪ In Figure-G, 4 data elements were written and 4 were read out. Hence FIFO is empty since all 8
locations in FIFO memory are available to be written

▪ In Figure-A, wr_ptr = 4’b0000 and rd_ptr = 4’b0000

• FIFO_EMPTY = 1, since (wr_ptr[4:0] == rd_ptr[4:0])

▪ In Figure-G wr_ptr = 4’b0100 and rd_ptr = 4’b0100

• FIFO_EMPTY = 1, since (wr_ptr[4:0] == rd_ptr[4:0])

0
1
2
3
4
5
6
7

wr_ptr = 0 rd_ptr = 0

Figure-A

FIFO EMPTY
0
1
2
3
4
5
6
7

wr_ptr = 4 rd_ptr = 4

Figure-G

FIFO EMPTY

FIFO Concepts

32

❑ FIFO Overflow (also known as FIFO Overrun):
▪ When FIFO internal memory is full and any attempt to write a new data element to FIFO memory is

called FIFO overflow condition

▪ Overflow expression is : (FIFO_FULL == 1) && (write_enable == 1). See below mentioned Figure.

▪ It is the responsibility of transmitting module to ensure it does not write to FIFO when it is full

▪ Typically FIFO designs provides FIFO_FULL signal which gives indication to transmitting module if FIFO
has any room to write or not

▪ Additionally FIFO designs provides such more flags to indicate memory occupancy information
• FIFO_ALMOST_FULL : FIFO internal memory has 1 location remaining to write before it is full. Acts like an early full

indication

• FIFO_HALF_FULL : FIFO internal memory has 50% occupancy

• FIFO_FULL : FIFO is full and its internal memory has max occupancy

E1E2E3E4E5E6E7E8

01234567

FIFO_FULL == 1

Transmitting
Module

writing data
into FIFO

Receiving
Module

reading data
from FIFO

data_in = E9

write_enable = 1

data_out

FIFO_DEPTH = 8 and FIFO Memory has max
occupancy with 8 data elements E1 through E8

FIFO
Overflow

FIFO Concepts

33

❑ FIFO Underflow (FIFO Underrun) :
▪ When FIFO internal memory is fully empty and any attempt to read any location of FIFO memory is

called FIFO underflow condition

▪ Underflow expression is : (FIFO_EMPTY == 0) && (read_enable == 1). See below mentioned Figure.

▪ It is the responsibility of receiving module to ensure it does not read FIFO memory when it is empty

▪ Typically FIFO designs provides FIFO_EMPTY signal which gives indication to receiving module if FIFO
has any data element to read or not.

▪ Additionally FIFO designs provides such more flags to indicate memory occupancy information
• FIFO_ALMOST_EMPTY : FIFO internal memory has 1 data element remaining to be read before it is fully empty. Acts like an

early empty indication

• FIFO_HALF_EMPTY : FIFO internal memory has 50% occupancy

• FIFO_EMPTY : FIFO is fully empty and its internal memory does not have any data elements which can read

01234567

Transmitting
Module

writing data
into FIFO

Receiving
Module

reading data
from FIFO

data_in

data_out

FIFO_DEPTH = 8 and FIFO Memory has all 8
locations which does not have any data

FIFO
Underflow

FIFO_EMPTY == 0

read_enable = 1

Asynchronous FIFO

Types of FIFO
❑ There are 4 kinds of FIFO

▪ Shift registers FIFO

▪ Exclusive Read/Write FIFO’s

▪ Concurrent Read/Write FIFO’s

• Synchronous and Asynchronous FIFO

❑ Basic difference between Synchronous and Asynchronous FIFO :

▪ In case of synchronous FIFO both write and read operation is performed on the same clock

▪ In case of asynchronous FIFO write operation and read operation of asynchronous FIFO are performed on
different clocks

• Write and read clock can run independently with same or different frequency !

34Synchronous FIFO

Single Clock for write and Read Separate Clock for write and read

Synchronizers required
for write and read
pointers for full /
empty generation

There are no
synchronizers for write
and read pointers for

full / empty generation

clock

Dual Port RAM
with Single Clock

Synchronous FIFO

35

FIFO Operation :
▪ Within FIFO there is a has dual port memory block for storage. It allows simultaneous write and read operation !
▪ FIFO has an input data in port (DIN) and an output read port (DOUT).
▪ Each data port has its own associated pointers which points to a location in the memory
▪ After a FIFO reset both the write and read pointers will be at the first memory location within the FIFO.
▪ Each write operation will cause the write pointer to increment to the next location in memory
▪ Each read operation will cause the read pointer to increment to the next location
▪ FIFO has full and empty signals indicating whether it has no empty location for any new data to be stored (full

condition) or it has no data available for reading (empty condition)
▪ Full marker prevents overriding of existing data. This is known as fifo overrun or overflow condition
▪ Empty marker prevents reading junk data, when it is empty. This is known as fifo underrun or underflow condition

There are no
synchronizers for

write and read
address pointers for

full / empty Flag
generation !

Single clock used
for both read and
write operation !

Dual Port RAM
supports

simultaneous write
and read operation !

Synchronous FIFO RTL Model

36

`include "dual_port_ram.sv"
module sync_fifo#(
parameter DATA_WIDTH = 32,
parameter FIFO_DEPTH = 16)

(
input logic clk,
input logic reset,
input logic wr_en,
input logic rd_en,
input logic [DATA_WIDTH-1:0] data_in,
output logic [DATA_WIDTH-1:0] data_out,
output logic fifo_full,
output logic fifo_empty

);

// Local parameter to set address width based on FIFO
DEPTH
localparam ADDR_WIDTH = $clog2(FIFO_DEPTH);

// internal register declaration
logic [ADDR_WIDTH:0] wr_ptr;
logic [ADDR_WIDTH:0] rd_ptr;

// Step-1 : Increment write pointer each time wr_en is '1'
always_ff@(posedge clk, posedge reset) begin

if(reset) begin
wr_ptr <= 0;

end
else begin
if(wr_en && !fifo_full) begin
wr_ptr <= wr_ptr + 1;

end
end

end

// Step-2 : Increment read pointer each time rd_en is '1'
always_ff@(posedge clk,posedge reset) begin

if(reset) begin
rd_ptr <= 0;

end
else begin
if(rd_en && !fifo_empty) begin
rd_ptr <= rd_ptr + 1;

end
end

end

Synchronous FIFO RTL Model

37

// Step-3 : The FIFO is empty when both read and write pointers point to the same location
assign fifo_empty = (wr_ptr == rd_ptr) ? 1 : 0;

// Step-4: Fifo is full when wr_ptr - rd_ptr = 2^address_width.
// In that case, the Lower address bits are identical, but the MSB address bit is different.
assign fifo_full = ((wr_ptr[ADDR_WIDTH] != rd_ptr[ADDR_WIDTH]) &&

(wr_ptr[ADDR_WIDTH-1:0] == rd_ptr[ADDR_WIDTH-1:0])) ? 1 : 0;

// Step-5 : Instantiate FIFO Memory
dual_port_ram #(

.DATA_WIDTH(DATA_WIDTH),

.ADDR_WIDTH(ADDR_WIDTH))
fifo_memory(
.write_addr(wr_ptr),
.read_addr(rd_ptr),
.write_data(data_in),
.read_data(data_out),
.wr_en(wr_en && !fifo_full), // And’ing wr_en with !fifo_full is required to avoid writing to fifo overflow
.rd_en(rd_en && !fifo_empty), // And’ing rd_en with !fifo_empty is required to avoid writing to fifo underflow
.wr_clk(clk),
.reset(reset)
);
endmodule:sync_fifo

Synchronous FIFO Resource Usage

38

// Simple Dual-Port Single Clock Distributed RAM with Asynchronous Read
module dual_port_ram #(parameter DATA_WIDTH=32, parameter ADDR_WIDTH=32)
(input logic wr_clk, reset,

input logic wr_en,
input logic[DATA_WIDTH-1:0] write_data,
input logic[ADDR_WIDTH-1:0] write_addr,
input logic rd_en,
input logic[ADDR_WIDTH-1:0] read_addr,
output logic[DATA_WIDTH-1:0] read_data);

// Two dimensional memory array
logic[DATA_WIDTH-1:0] mem[2**ADDR_WIDTH-1:0];

// Synchronous write to FIFO Internal Memory
always_ff@(posedge wr_clk, posedge reset) begin
if(reset) begin
for(int i=0; i<(2**ADDR_WIDTH); i++) begin
mem[i] <= 0;

end
end
else begin
if(wr_en) mem[write_addr] <= write_data;

end
end

// Asynchronous read from FIFO Internal Memory
assign read_data = (rd_en == 1) ? mem[read_addr] : 0;

endmodule:dual_port_ram

Due to asynchronous read
implementation of dual port ram

without registering address for
read, Quartus will *not* infer

internal block ram. Instead
distributed ram will be inferred

using logic registers

Synchronous FIFO Simulation Waveform

39

FIFO Memory (mem) has datain values : 51, 17, 49, 54, 55, 21,32. Each rd_en=1 caused data to push into FIFO memory

when wr_en==1 and fifo_full == 0
datain values : 51, 17, 49, 54, 55, 21,32 are stored in

FIFO Memory

After writing 8 data elements
fifo_full = 1 is set

when rd_en==1 and fifo_empty == 0
datain values : 51, 17, 49, 54, 55, 21,32 are

read out from FIFO Memory

FIFO EMPTY after
reading all elements

Asynchronous FIFO

40

rd_addr_ptr
2-FF Synchronizer

wr_addr_ptr
2-FF Synchronizer

rclk

wclk

Dual Port RAM with
Single clock is used

Since write is
synchronous and read is

asynchronous !

write clock domain read clock domain

Before sending read pointer
and write pointer to other
clock domain, it is converted
to gray coded value. In Gray
value only 1 bit changes
during counting.
This counter update strategy
minimizes the error when
counter value passes from
one clock domain to
another

rd addr pointer goes through 2-FF
Synchronizer since it is crossing

read to write clock domain.
Same applies for wr addr ptr

Asynchronous FIFO

Asynchronous FIFO
❑ Asynchronous FIFO write and read operation is similar to synchronous FIFO except :

▪ In case of asynchronous FIFO there are 2-FF synchronizers are used to synchronize write pointer coming
from write clock domain to read clock domain. This is required for fifo empty flag generation.

▪ Similarly, 2-FF synchronizers are used to synchronize read pointer coming from read clock domain to
write clock domain. This is required for fifo full flag generation.

▪ Additionally before write and read pointers are fed to the synchronizer, both write and read pointer
binary count values are converted to gray encoded values.

• In gray encoded value only 1 bit changes during counting. This counter update strategy minimizes
the error when counter value passes from one clock domain to another

41

Separate Clock for write and read

Synchronizers required
for write and read
pointers for full /
empty generation

Asynchronous FIFO Full and Empty Generation

42

FULL LOGIC
write pointer

(binary count value)

Synchronized read pointer
(binary count value after gray

to binary conversion)
FIFO_FULL Signal

EMPTY LOGIC
read pointer

(binary count value)

Synchronized write pointer
(binary count value after gray

to binary conversion)
FIFO_EMPTY Signal

assign fifo_empty = (wr_ptr_binary2 == rd_ptr) ? 1 : 0;
Note : wr_ptr_binary2 is synchronized write pointer binary value

assign fifo_full = ((wr_ptr[ADDR_WIDTH] != rd_ptr_binary2[ADDR_WIDTH])
&& (wr_ptr[ADDR_WIDTH-1:0] == rd_ptr_binary2[ADDR_WIDTH-1:0])) ? 1 : 0;

Note : rd_ptr_binary2 is synchronized read pointer binary value

Asynchronous FIFO Depth Calculation

43

❑ To compute depth of asynchronous FIFO, following parameters are required to be known :
▪ Write and read clock frequency
▪ Amount of data to be written (also know as Burst Length)
▪ Rate at which data is written to the memory and rate at which data is read from the memory.

Example :
• There is 1 cycle of idle between two consecutive writes from module A to the FIFO
• There is 3 cycle of idle between two consecutive read request from module B to the FIFO

Transmitting
Module-A

writing data
into FIFO

Receiving
Module-B

reading data
from FIFO

data_in
data_out

FIFO DEPTH

Asynchronous FIFO Depth Calculation

44

❑ Case-1:
▪ fA > fB with no idle cycles in both write and read.
▪ Writing frequency = fA = 80MHz.
▪ Reading Frequency = fB = 50MHz.
▪ Burst Length = No. of data items to be transferred = 120.
▪ There are no idle cycles in both reading and writing which means that, all the items in the burst will be

written and read in consecutive clock cycles.

❑ Solution:
▪ Time required to write one data item (1 / 80 Mhz) = 12.5 nSec
▪ Time required to write all the data in the burst = 120 * 12.5 nSec. = 1500 nSec.
▪ Time required to read one data item (1 / 50 Mhz) = 20 nSec.
▪ For every 20 nSec, the module B is going to read one data in the burst.
▪ In a period of 1500 nSec, 120 no. of data items can be written.
▪ And the no. of data items can be read in a duration of 1500 nSec = (1500 nSec / 20 nSec) = 75
▪ The remaining no. of bytes to be stored in the FIFO = 120 – 75 = 45.
▪ Hence the FIFO which has to be in this scenario must be capable of storing 45 data items.
▪ Answer : FIFO DEPTH = 45

Asynchronous FIFO Depth Calculation

45

❑ Case-2:
▪ fA > fB with no idle cycles in both write and read.
▪ Writing frequency = fA = 80MHz.
▪ Reading Frequency = fB = 50MHz.
▪ Burst Length = No. of data items to be transferred = 120.
▪ No. of idle cycles between two successive writes is = 1
▪ No. of idle cycles between two successive read is = 3

❑ Solution:
▪ The no. of idle cycles between two successive writes is 1 clock cycle. It means that, after writing one data,

module A is waiting for one clock cycle, to initiate the next write. So, it can be understood that for every 2 clock
cycles, one data is written.

▪ The no. of idle cycles between two successive reads is 3 clock cycles. It means that, after reading one data,
module B is waiting for 3 clock cycles, to initiate the next read. So, it can be understood that for every 4 clock
cycles, one data is read

▪ Time required to write one data item 2 * (1 / 80 Mhz) = 25 nSec
▪ Time required to write all the data in the burst = 120 * 25 nSec. = 3000 nSec.
▪ Time required to read one data item 4 * (1 / 50 Mhz) = 80 nSec.
▪ For every 80 nSec, the module B is going to read one data in the burst.
▪ In a period of 3000 nSec, 120 no. of data items can be written.
▪ And the no. of data items can be read in a duration of 3000 nSec = (3000 nSec / 80 nSec) = 37.5 (~37)
▪ The remaining no. of bytes to be stored in the FIFO = 120 – 37 = 83. Answer : FIFO DEPTH = 83

Asynchronous FIFO Depth Calculation

46

❑ In homework Lab, FIFO DEPTH can be fixed to 8 in testbench based on below mentioned
assumption :
▪ Write clock time period is 20ns
▪ Read clock time period is 40ns
▪ Number of packets to write is 16
▪ No. of idle cycles between two successive writes is = 0
▪ No. of idle cycles between two successive reads is = 0
▪ FIFO Depth = 16 - ((16 * 20ns) / 40ns) = 8

Application of Asynchronous FIFO

47

❑ Multi-bit data buses are synchronized across clock domain using Asynchronous FIFOs, provided :
▪ Incoming data rate is same as outgoing data rate.
▪ That means (F1 x DW1) = (F2 xDW2).

• Where F1- Frequency of launching flop,
• F2- Frequency of capturing flop,
• DW1- write data width to FIFO, DW2- Read data width from FIFO.

Example : 2.5Gigbps data path for PCIe Gen2. This data rate is
achieved by using 20bit data path at 125MHz or 40bit data
path at 62.5 MHz.
So, an asynchronous FIFO shown in in the diagram will operate
reliably without any data loss or duplication

Application of Asynchronous FIFO

48

❑ Asynchronous FIFO are used for multi-bit bus transmission from faster to slower clock
domain
▪ Using 2-FF or 3-FF synchronizer for signals crossing fast to slow clock domain can lead into

data loss.
▪ Instead asynchronous FIFO is used in such scenarios to prevent data loss
▪ Designs where data loss is not acceptable when crossing faster to slow clock domain then

asynchronous fifo can be used as a synchronizer

AYSNC FIFO Faster
Slower

Homework Assignment-9

49

❑ Develop SystemVerilog RTL model for M-bit width and N-depth Asynchronous FIFO :
▪ Asynchronous FIFO RTL model should be configurable to set following mentioned parameters :

• FIFO_DEPTH : This is number of data locations FIFO’s internal memory can store. FIFO DEPTH value should be power of
2 (such as 2, 4, 8, 16, 32, and so on). Default value of FIFO DEPTH is set to 8 in testbench.

• DATA_WIDTH : Width of each data element which can be stored in FIFO’s internal memory. By default value is set to 32
data width in Testbench.

▪ Support different clock frequency for write and read. Write clock should be faster than read clock

• In testbench write clock is set to 20 ns (which is 50 Mhz clock) and read clock is set to 40 ns (which is 25 Mhz)

• In tesbench for above mentioned default write and read clock frequency set NUM_OF_PACKETS=8

o NUMBER_OF_PACKETS : Number of data elements which needs to be transmitted through FIFO. By default set to
‘8’ in testbench. Use default values provided in testbench which is derived for wr_clk=20ns and rd_clk=40ns

▪ Memory inside FIFO should be simple dual port memory with single clock.

• Memory should support synchronous write and asynchronous read operation

• Use dual_port_ram module provided in LAB folder which implements above mentioned requirement

▪ Use M-bit wide and N-Stage deep shift register for write and read pointer synchronization

• Use shift_register module provided in LAB folder which can take M-bit of data and generate N-cycles delayed version
of input data

▪ Synthesize async fifo RTL model and run simulation using testbench provided

▪ Review synthesis results (resource usage and RTL netlist/schematic)

▪ Review input and output signals in simulation waveform.

▪ Describe simulation behavior, FIFO operation and provide simulation snapshot, RTL code,

resource estimation in final report

Homework Assignment-9

50

❑ Primary Ports for Asynchronous FIFO design :
▪ input logic wr_clk, rd_clk : Write and Read Clocks

▪ input logic reset : Asynchronous and active high reset

▪ input logic wr_en : write enable, if wr_en == 1, data gets written to FIFO Memory

▪ input logic rd_en : read_enable, if rd_en == 1, data gets read out from FIFO Memory

▪ input logic [DATA_WIDTH-1:0] data_in : input data to be written to FIFO Memory

▪ output logic [DATA_WIDTH-1:0] data_out : data read out from FIFO Memory

▪ output logic fifo_full : indicates FIFO is full and there are no locations inside FIFO memory for further writes

▪ output logic fifo_empty : indicates FIFO is empty and there are no data available inside FIFO memory for reading

▪ output logic fifo_almost_full : one cycle early indication of FIFO_FULL (fifo is not full yet, it will be next cycle)

▪ output logic fifo_almost_empty : one cycle early indication of FIFO_EMPTY (fifo is not empty yet, it will be next cycle)

❑ Name of the asynchronous fifo module : async_fifo

ASYNC
FIFO

wr_clk

rd_clk
fifo_full

fifo_empty

fifo_almost_full

fifo_almost_empty

wr_en

rd_en

data_out
data_in

reset

❑ Use below mentioned modules provided :
• shift_register :

o To implement 2-FF synchronizer for write and read
pointer

o To implement 1 bit delayed version of early fifo
empty and fifo full

• dual_port_ram :

o For FIFO Memory Implementation

Homework Assignment-9

51

❑ Note : First simulate Synchronous FIFO design with testbench provided and review waveform
and RTL code to understand Synchronous FIFO design

❑ And then, start implementing asynchronous fifo RTL model

❑ Lab folder has :

▪ Synchronous FIFO full RTL model with testbench and

▪ For asynchronous FIFO, template RTL model code with steps are provided including partial
code to guide students on implementation.

❑ Note :

▪ HW9 submission is optional and this will not have impact to final grade !

Asynchronous FIFO Simulation Snapshot -1

52

when wr_en==1 and fifo_full == 0
datain values : 51, 17, 49, 54, 55, 21,32 are

stored in FIFO Memory

FIFO Memory (mem) has datain values : 51, 17, 49, 54, 55, 21,32. Each rd_en=1 caused data to push into FIFO memory

After writing 8 data
elements

fifo_full = 1 is set

when rd_en==1 and fifo_empty == 0
datain values : 51, 17, 49, 54, 55, 21,32

are read out from FIFO Memory

After reading all 8 data elements fifo_empty = 1 is set

Asynchronous FIFO Simulation Snapshot -2

53

first set of 8 data values
popped out of FIFO memory

Second set of 8 datain values
pushed in FIFO memory

Thrid set of 8 datain values
pushed in FIFO memory

Fourth set of 8 datain values
pushed in FIFO memory

first set of 8 datain values
pushed in FIFO memory

second set of 8 data values
popped out of FIFO memory

third set of 8 data values
popped out of FIFO memory

Fourth set of 8 data values
popped out of FIFO memory

Steps to Model Asynchronous FIFO

54

❑ Step-1 : Increment write pointer each time wr_en is '1' (binary counter)

❑ Step-2 : Convert write pointer to gray value from binary write pointer value before sending
write pointer to rd_clk domain through 2-FlipFlip synchronizer

❑ Step-3 : Increment read pointer each time rd_en is '1' (binary counter)

❑ Step-4 : Convert read pointer to gray value from binary read pointer value before sending
read pointer to wr_clk domain through 2-FlipFlip synchronizer

❑ Step-5 : Generate fifo empty flag using synchronized write pointer and original read pointer
value comparison. Before comparison convert back synchronized write pointer gray value to
binary value.

▪ The FIFO is empty when both read and write pointers point to the same location

▪ assign t_fifo_empty = (wr_ptr_binary2 == rd_ptr) ? 1 : 0;

❑ Step-6 : Assert output signal fifo_almost_empty

▪ FIFO Almost empty is generated simultaneously when the very last data available in fifo is
read hence it is named as fifo almost empty. In another words, one cycle before fifo is
actually empty

▪ assign fifo_almost_empty = t_fifo_empty;

Steps to Model Asynchronous FIFO

55

❑ Step-7 : Generate fifo full flag. . Before comparison convert back synchronized read pointer
gray value to binary value.

▪ FIFO is full when wr_ptr - rd_ptr = 2^address_width.

▪ In that case, the Lower address bits are identical, but the MSB address bit is different.

▪ assign t_fifo_full = ((wr_ptr[ADDR_WIDTH] != rd_ptr_binary2[ADDR_WIDTH])

▪ && (wr_ptr[ADDR_WIDTH-1:0] == rd_ptr_binary2[ADDR_WIDTH-1:0])) ? 1 :

❑ Step-8 : Assert almost full flag

▪ FIFO Almost full is generated simultaneously when the very last location in fifo is written
with data hence it is named as fifo almost full. In another words, one cycle before the fifo is
actually full

▪ assign fifo_almost_full = t_fifo_full;

❑ Step-9 : Instantiate or create dual port single clock FIFO Memory

▪ Memory should support synchronous write and asynchronous read

▪ when connecting below wr_en and rd_end remember to do logical-and with !fifo_full and
!fifo_empty respectively. This is to prevent FIFO overflow and underflow conditions

▪ Dual port ram should support perform simultaneous write and read operations.

Steps to Model Asynchronous FIFO

56

❑ Step-10 : Synchronize write pointer gray value to read clock domain using 2-FF synchronizer.

▪ This is done to synchronize wr_ptr to rd_clk domain, and in rd_clk domain, output of this
synchronizer will be used to compute fifo empty flag.

❑ Step-11 : Convert synchronized write pointer gray value available from Step-10, back to
binary value

▪ Prior to generation for fifo empty flag, synchronized gray write pointer value is converted
first to binary write pointer value

▪ assign wr_ptr_binary2 = gray_to_binary(wr_ptr_gray2);

❑ Step-12 : Synchronize read pointer gray value to write clock domain using 2-FF synchronizer

▪ This is done to synchronize rd_ptr to wr_clk domain, and in wr_clk domain, output of this
synchronizer will be used to compute fifo full flag.

❑ Step-13 : Convert synchronized read pointer gray value available from Step-12, back to
binary value

▪ Prior to generation for fifo full flag, synchronized gray read pointer value is converted first
to binary read pointer value

▪ assign rd_ptr_binary2 = gray_to_binary(rd_ptr_gray2);

Steps to Model Asynchronous FIFO

57

❑ Step-14 : Delay fifo almost empty (t_fifo_empty) by 1 clock cycle to generate fifo_empty
output signal

▪ This is done to generate fifo_empty output signal after the last available data in FIFO is
read out

❑ Step-15 : Delay fifo almost full (t_fifo_full) by 1 clock cycle to generate fifo_full output signal

▪ This is done to generate fifo_full output signal after the last available location in FIFO is
written with a data

