
The View from 35,000 Feet
CPEN 400P – Lecture 1
Karthik Pattabiraman

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of
these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Learning Objectives

• Identify the reasons why we study compiler design

• List the components of a traditional 2-pass compiler/3-pass
and their functionality

• Provide a brief summary of the history of compilers and the
state of the art today

1

Why study compilers - 1

• Single core performance has plateuaed – need to extract
performance through parallelism (i.e., parallel code)

2

Why study compilers - 2

• Static analysis for reliability and security violations

3Slide courtesy: Ben Zorn, MSR

Why study compilers - 3

• New languages that are dynamic – challenging to compile
• Embedded applications – need specialized compilers (energy,

space, cost are the constraints)

4

Why Study Compilers - 4

• What is the main factor influencing browser adoption ?

5

Learning Objectives

• Identify the reasons why we study compiler design

• List the components of a traditional 2-pass
compiler/3-pass and their functionality

• Provide a brief summary of the history of compilers and the
state of the art today

6

7

Implications
• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code
Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source
code

Machine
code

Compiler

Errors

8

Traditional Two-pass Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR

• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code

Front
End

Errors

Machine
code

Back
EndIR

Depends primarily
on source language

Depends primarily
on target machine

Classic principle from
software engineering:
Separation of concerns

9

IR

Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end

Successful in systems with assembly level (or lower) IRs

A Common Fallacy

Fortran

Scheme

C++

Python

Front
end

Front
end

Front
end

Front
end

Back
end

Back
end

Target 2

Target 1

Target 3Back
end

e.g., gcc’s rtl or llvm ir

10

Responsibilities
• Recognize legal (& illegal) programs
• Report errors in a useful way
• Produce IR & preliminary storage map
• Shape the code for the rest of the compiler
• Much of front end construction can be automated

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

11

The Front End

Scanner
• Maps character stream into words—the basic unit of syntax
• Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;
— word ≅ lexeme, part of speech ≅ token type, pair ≅ a token

• Typical tokens include number, identifier, +, –, new, while, if
• Speed is important

Textbooks advocate automatic scanner generation
Commercial practice appears to be hand-coded scanners

Source
code Scanner

IR
Parser

Errors

tokens

12

The Front End

Parser
• Recognizes context-free syntax & reports errors
• Guides context-sensitive (“semantic”) analysis (type checking)
• Builds IR for source program (e.g., Abstract Syntax Tree)

Hand-coded parsers are fairly easy to build
Most books advocate using automatic parser generators

Source
code Scanner

IR
Parser

Errors

tokens

13

The Front End
Context-free syntax is specified with a grammar

SheepNoise → SheepNoise baa
 | baa

This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P : N → N ∪T)

(Example due to Dr. Scott K. Warren)

14

Context-free syntax can be put to better use

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

The Front End

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number 
5. | id 
6. Op → +
7. | -

S = Goal

T = { number, id, +, - }
N = { Goal, Expr, Term, Op }
P = { 1, 2, 3, 4, 5, 6, 7 }

15

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

Production Result
 Goal

1 Expr
2 Expr Op Term
5 Expr Op y
7 Expr - y
2 Expr Op term - y
4 Expr Op 2 - y
6 Expr + 2 - y
3 Term + 2 - y
5 x + 2 - y

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id 
6. Op → +
7. | -

A
derivation

Comp 412, Fall 2010 16

The Front End

A parse can be represented by a tree (parse tree or syntax tree)
x + 2 - y

Ter
m

Op Ter
m

Ex
pr

Ter
m

Ex
pr

Go
al

Ex
pr

Op

<id,x>

<number,2>

<id,y>

+

-

The parse tree contains a lot
of unneeded information

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id 
6. Op → +
7. | -

17

Abstract Syntax Tree (AST)

This is much more concise

ASTs are one kind of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y> The AST summarizes
grammatical structure,
without including detail
about the derivation

Some people think that the
AST is the “natural” IR.

18

Code shape determines many properties of resulting program

The Front End

Source
code Scanne

r

IR
Parser

Errors

tokens

a ← b x c + d
e ← f + b x c + d becomes

load @b ⇒ r1
load @c ⇒ r2
mult r1,r2 ⇒ r3
load @d ⇒ r4
add r3,r4 ⇒ r5
store r5 ⇒ @a
load @f ⇒ r6
add r5,r6 ⇒ r7
store r7 ⇒ @e

reuses
b x c + d

We would like to produce this
code, but getting it right takes a
fair amount of effort ….

Is “a” distinct from b, c, & d ?

computes
b x c + d

19

The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which value to keep in registers
• Ensure conformance with system interfaces

Automation has been less successful in the back end

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

20

The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

— ad hoc methods, pattern matching, dynamic programming
— Form of the IR influences choice of technique

This was the problem of the future in 1978
— Spurred by transition from PDP-11 to VAX-11
— Orthogonality of RISC simplified this problem

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

Standard goal has become “locally optimal” code.

21

The Back End

Register Allocation
• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices & insert LOADs & STOREs
• Optimal allocation is NP-Complete in most settings

Compilers approximate solutions to NP-Complete problems

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

22

The Back End

Instruction Scheduling
• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

23

Traditional Three-part Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables

Errors

Source
Code

Optimizer
(Middle End)

Front
End

Machine
code

Back
End

IR IR

Subject of this course

24

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

LLVM Compiler Structure

25

26

Run-time Compilation
Systems such as HotSpot, Jalapeno, and Dynamo deploy
compiler and optimization techniques at run-time

Policy chooses between
interpreter & compiler
• LLVM compiles on 1st call
• Dynamo optimizes on 50th execution

Offline
Compiler

Source
Code

Run-time environment

Interprete
r

JIT
CompilerCode base

IR

27

Even a modern JIT fits the mold, albeit with fewer passes

• Front end tasks are handled elsewhere
• Few (if any) optimizations

Avoid expensive analysis
Emphasis on generating native code
Compilation must be a priori profitable

JIT Compilers

Middle
End

Back
End

bytecode
native
code

Java
Environment

28

Role of the Run-time System

• Memory management services
— Allocate

→ In the heap or in an activation record (stack frame)
— Deallocate
— Collect garbage

• Run-time type checking
• Error processing
• Interface to the operating system

— Input and output
• Support of parallelism

— Parallel thread initiation
— Communication and synchronization

Learning Objectives

• Identify the reasons why we study compiler design

• List the components of a traditional 2-pass compiler/3-pass
and their functionality

• Provide a brief summary of the history of compilers and
the state of the art today

29

First FORTRAN compiler

• John Backus on the Fortran Compiler (around 1958)

• “It is our belief that if FORTRAN, during its first months,
were to translate any reasonable scientific program into an
object program only half as fast as its hand-coded
counterpart, then acceptance of our system would be in
serious danger. ...

• “To this day I believe that our emphasis on object program
efficiency rather than on language design was basically
correct. I believe that had we failed to produce efficient
programs, the widespread use of languages like FORTRAN
would have been seriously delayed.”

• – John Backus, Fortran I, II and III, Annals of the History

of Computing, vol. 1, no. 1, July 1979.
30

A Sense of History

1955-1959
Fortran
Cobol

1960–1964
Algol 60

1965-1969
PL/I
Algol 68
Simula 67

Commercial compilers generated good code
Separation of concerns (Backus, 1956)
Control-flow graph, register allocation (Haibt, 1957)

Academics try to catch up with industrial trade secrets
Early algorithms for “code generation” (1960, 1961)
Relating theory to practice (Lavrov, 1962)
Alpha project at Novosibirsk (Ershov, 1963 & 1965)

Technology begins to spread
Fortran H (Medlock & Lowry, 1967)
Value numbering (Balke, 1967 ?)
Literature begins to emerge (Allen, 1969)

A Sense of History

1970-1974
SETL
Smalltalk
Lisp
APL

1975-1979
Pascal
CLU
Alphard
Com. Lisp

The literature explodes and optimization grows up
Cocke & Schwartz, Allen-Cocke Catalog, 1971
Theory of analysis (Kildall, 1971, Allen & Cocke, 1972)
Interprocedural analysis (Spillman,1972)
Strength reduction, dead code elimination, Live (SETL)
Expression tree algorithms (Sethi, Aho & Ullman)

Global optimization comes of age
Full literature of data-flow analysis
Strength reduction (Cocke & Kennedy, 1977)
Partial redundancy elimination (Morel & Renvoise, 1979)
Inline substitution studies (Scheiffler, 1977, Ball, 1979)
Tail recursion elimination (Steele, 1978)
Data dependence analysis (Bannerjee, 1979)

A Sense of History

1980-1984
Smalltalk80
ADA
Scheme

1985–1989
C++
ML
Modula-3

Programming environments and new architectures
Incremental analysis (Reps, 1982; Ryder, Zadeck, 1983)
Incremental compilation (Schwartz et al., 1984)
Interprocedural analysis (Myers, 1981; Cooper, 1984)
RISC compilers (PL.8, 1980; MIPS, 1983)
Graph coloring allocation (Chaitin, 1981; Chow, 1983)
Vectorization (Wolfe, 1982; R. Allen, 1983)

Resurgence of interest in classical optimization
Constant propagation (Wegman & Zadeck,Torczon,1985)
Code motion of control structures (Cytron et al., 1986)
Value numbering (Alpern et al., Rosen et al., 1988)
Software pipelining (Lam, Aiken & Nicolau, 1988)
Pointer analysis (Ruggeri, 1988)
SSA-form (Cytron et al., 1989)

A Sense of History

1990-1994
Fortran 90

1995–1999
Java
Perl (?)

Architects (and memory speed) drive the process
Hierarchical allocation (Koblenz & Callahan,1991)
Scalar replacement (Carr 1991)
Cache blocking (Wolf, 1991)
Prefetch placement (Mowry, 1992)
Commercial interprocedural compilers (Convex, 1992)

The internet & SSA both come of age
JIT compilers (Everyone, from 1996 to present)
Code compression (Franz, 1995; Frasier et al., 1997; ...)
SSA-based formulations of old methods (lots of papers)
Compile to VM (Java, 1995; Bernstein, 1998; …)
Memory layout optimizations (Smith, 19??; others …)
Widespread use of analysis (pointers, omega test, …)

*

The state of compilers today: My subjective view

• 2000 to 2005: Expansion beyond classical optimization
— Dawson Engler’s work on finding bugs in the Linux Kernel (2001)
— Work by Manuvir Das on protocol violation errors (2002)
— SLAM at MSR for model checking of C code (2001)
— MOPS by David Wagner for security property checking (2001)
— Findbugs by William Pugh for bug pattern detection (2004)

• 2005 to 2010: Program synthesis, energy/power, Web 2.0
— Program sketching by Solar Lezama et al (2005, 2006)
— Program synthesis by Gulwani (2007-2014)
— Failure oblivious computing by Rinard (2005- 2014)
— Fault-tolerance by Berger, Pattabiraman, Zorn (2005-2014)
— Energy savings through relaxed correctness – Sankaralingam,

Chillimbi, Pattabiraman, Grossman, Ceze (2009 to 2014)
— Fast compilation of JavaScript programs (2010 onwards)
— Analysis of programs for continuity (Gulwani and Chaudhri) 35

Learning Objectives

• Identify the reasons why we study compiler design

• List the components of a traditional 2-pass compiler/3-pass
and their functionality

• Provide a brief summary of the history of compilers and the
state of the art today

36

